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Abstract For a given text, previous text-to-image synthesis methods commonly utilize a multistage gen-

eration model to produce images with high resolution in a coarse-to-fine manner. However, these methods

ignore the interaction among stages, and they do not constrain the consistent cross-sample relations of images

generated in different stages. These deficiencies result in inefficient generation and discrimination. In this

study, we propose an interstage cross-sample similarity distillation model based on a generative adversarial

network (GAN) for learning efficient text-to-image synthesis. To strengthen the interaction among stages,

we achieve interstage knowledge distillation from the refined stage to the coarse stages with novel interstage

cross-sample similarity distillation blocks. To enhance the constraint on the cross-sample relations of the

images generated at different stages, we conduct cross-sample similarity distillation among the stages. Exten-

sive experiments on the Oxford-102 and Caltech-UCSD Birds-200-2011 (CUB) datasets show that our model

generates visually pleasing images and achieves quantitatively comparable performance with state-of-the-art

methods.
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1 Introduction

Image generation [1–3] has achieved remarkable progress owing to the flourishing development of deep
learning. Many applications of image generation [4–11], such as style-transfer [5], video generation [6],
image-to-image translation [8,9], image inpainting [7], and text-to-image synthesis [12–17], have attracted
increasing attention. For a given text, the text-to-image synthesis task aims at producing images that
are of high quality and semantically consistent with the given text.

Serveral methods [12–17] for text-to-image synthesis have been proposed. Reed et al. [12] proposed
the classic single-stage generative adversarial network (GAN) framework based on conditional deep con-
volutional GAN (DCGAN) [18]. Subsequent multistage GAN models [13–15,17] generate images with a
256×256 resolution conditioned on the given text in a coarse-to-fine manner. These models first generate
an initial image from noise and text. In the following stages, they utilize the image from the previous
stage and the text condition to produce relatively fine-grained images. Although much progress has been
made in this area, problems still exist in available methods. Specifically, two unsolved problems hinder
efficient text-to-image synthesis.

One problem is that these methods do not generally consider interactions and the full transfer of useful
information among stages. They generate images with coarse-to-fine quality stage-by-stage. In the last
stage, the refined images contain vivid visual and semantic information, which is vital for discriminators
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to distinguish real images from generated ones. However, some information is lacking in the coarse
images generated in the initial stages. Such shortcoming may cause inaccurate discrimination and then
adversely affect the image generation in these stages. Therefore, previous methods may conduct inefficient
text-to-image synthesis.

The other problem is that these methods do not enforce the consistent cross-sample relations of images
generated in different stages. Intuitively, these images are generated in a coarse-to-fine manner. They
differ in terms of resolution, with local details ranging from coarse to refined. Meanwhile, the cross-sample
relations of these images should remain the consistent. Under this circumstance, the relation among a
batch of coarse images should be consistent with that of the refined images. However, existing methods do
not constrain the required consistency of cross-sample relations, which may thus cause unstable network
training.

In this study, we propose an interstage cross-sample similarity distillation GAN (ICSD-GAN), which
can transfer useful knowledge and constrain the consistency of cross-sample relations for multistage
text-to-image generation. Motivated by knowledge distillation [19], which can conduct the transfer of
knowledge from a teacher network to a student network, we propose interstage knowledge distillation to
strengthen interactions and the full transfer of useful information among stages. With novel cross-sample
similarity distillation (CSD) blocks, we achieve efficient interstage interaction and information transfer.
To enhance the constraint on cross-sample relations, we adopt knowledge distillation of the cross-sample
similarity in the CSD blocks. We conducts efficient text-to-image synthesis with ICSD-GAN.

Thorough experiments on the Oxford-102 [20] and Caltech-UCSD Birds-200-2011 (CUB) [21] datasets
validate the effectiveness of our model. We achieved excellent visualization and generalizability perfor-
mance. Our results are comparable to those of state-of-the-art methods in terms of the evaluation metrics
of common inception score [22] and Fréchet inception distance (FID) [23].

2 Related work

2.1 Generative adversarial networks

GAN [2] has been widely explored recently. It learns the mapping from a random noise distribution to a
realistic image distribution with a generator and a discriminator, both of which are trained in an adver-
sarial way. Followed by the conditional version, the conditional GAN [24] generates images conditioned
on class labels. DCGAN [18] is one of the most classical models in the GAN family. Built upon these,
many applications of GAN have also become research hotspots [5–9, 17, 25–27]; examples include style-
transfer [5], video generation [6], image-to-image translation [8,9,26], person image generation [27], image
inpainting [7], and text-to-image synthesis [17]. In this study, we focus on the text-to-image synthesis
task and aim to improve the quality of generated images and strengthen their semantic consistency with
a given text.

2.2 Text-to-image synthesis

As a result of the rapid development of computer vision [2, 18, 24, 28, 29], methods based on the GAN
model have been widely explored for text-to-image synthesis tasks. Reed et al. [12] made initial attempts
to conduct text-to-image synthesis with the conditional DCGAN model. Conditioned on the text em-
beddings, this model outputs vivid images with a 64 × 64 resolution. Note that text embeddings can
be extracted from models of cross-modal matching [30, 31]. Furthermore, Zhang et al. [13] proposed a
two-stage StackGAN model to synthesize images of high resolution conditioned on the input text in a
coarse-to-fine manner. The first stage generates 64× 64 initial images conditioned on the input text, and
the second stage inputs the given text and the initial images and outputs 256×256 refined images. Stack-
GANv2 [14] adopted a multistage model, which divides the generation process into several sophisticated
steps. It consists of multiple generators and discriminators, and the multiply generators are organized
in a tree-like structure to share the most parameters. Similar to the multistage model, the HDGAN
model [16] consists of a single stream generator and hierarchically-nested discriminators. Despite their
remarkable improvements, these models are conditioned on global sentence embeddings extracted from
the char CNN-RNN text encoder [30] without fully utilizing the semantic information at the word level.
To solve this issue, Xu et al. [15] proposed AttnGAN to introduce attention between local image region
features and word embeddings in the input layer of succeeding stages. Moreover, Xu et al. extracted
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text embeddings with a deep attentional multimodal similarity model, which obtains visual-relevant text
features. Qiao et al. [32] added sentence-level attention based on AttnGAN and proposed a text-to-
image-to-text model for semantic preservation. Qiao et al. [33] further proposed co-embedding model of
prior visual and layout knowledge, which includes a text-image encoder and a text-mask encoder. The
multi prior text embeddings extracted from the co-embedding model are aggregated as the condition of
cascade attentive generation networks to produce images. Li et al. [34] divided the process of text-to-
image synthesis into two steps: layout generation and image generation. They proposed the object-driven
attentive image generator to generate salient objects from layout and text. Compared with the above
methods, the method proposed in this study pays more attention to the self-learning of networks. We
conduct coarse-to-fine generation and transfer abundant knowledge from the features of high-resolution
images to those of low-resolution images.

2.3 Knowledge distillation

Hinton et al. [19] first proposed the concept of knowledge distillation as a model compression method,
which learns a compact student network from a complicated teacher network without much performance
loss. It tries to transfer the prediction knowledge of the teacher network to the student network. Built
upon this method, subsequent studies [35–41] adopted other types of knowledge distillation. Some stud-
ies [36,37,39] matched the intermediate features between teacher networks and student networks. Paying
attention to the important regions, Zagoruyko et al. [38] conducted knowledge transfer via the attention
map of intermediate layers. Huang et al. [35] transferred the knowledge of neuron selectivity feature
distributions. Chen et al. [41] proposed the DarkRank method to distill the knowledge of cross-sample
similarity. Yuan et al. [40] proposed a symmetrical distillation network, which consists of a source net-
work as the discriminator and a target network as the generator. The feature knowledge is transferred
from each layer of the discriminator to that of the generator. These existing methods conduct knowledge
distillation with two separate models, whereas our proposed method distills the knowledge from gener-
ated high-resolution generated images to low-resolution ones in different stages of the same multistage
generation network.

3 ICSD-GAN

In this section, we will first introduce the overall architecture of the proposed model. Second, we describe
the interstage cross-sample similarity distillation method in detail. Finally, we introduce the objective
functions and the training algorithm of our model.

3.1 Overall architecture

Previous methods [13–15,17] do not consider the information transfer among stages and the constraint on
the consistent cross-sample relations of generated images in different stages. To address these problems, we
consider enhancing information transfer via interstage knowledge distillation and by enforcing consistent
cross-sample similarity among stages to learn efficient text-to-image generation.

In this study, we propose the ICSD-GAN model. Figure 1 shows the detailed architecture of our
model. The whole generation is divided into three stages (i.e., Stage0, Stage1 and Stage2) in a coarse-to-
fine manner. Stagei, i ∈ [0, 1, 2] consists of an attention-modulated generator Gi and a similarity-aware
discriminator Di [17].

Gi inputs the text information t = [ts, tw], noise z (in G0), and previous image feature (in G1, G2).
The corresponding generated image is denoted as Ii. ts is the sentence feature for all the stages, and tw is
the word feature for the last two stages. Table 1 [17,42] shows the structure of our multistage generators.
Some attention-modulation (AM) blocks are applied to the intermediate layers of the generators to
modulate the visual features of these layers with the given text.

In the similarity-aware discriminator Di, the generated image Ii is downsampled to a high-level feature
map Fi ∈ R

N×C×H×W with several convolutional blocks. N , C, H , and W denote the batch size,
number of channels, and the height and width of the feature map, respectively. The discrimination block
discriminates not only True/False, but also the similarity between images and the given text information.
It outputs the True/False score and the cross-modal similarity score, which is denoted as d. One can
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Figure 1 (Color online) Architecture of the proposed ICSD-GAN model. The whole network contains three stages (i.e., Stage0,

Stage1 and Stage2) and generates images with 64 × 64, 128 × 128, and 256 × 256 resolutions. Gi and Di are the generator and

discriminator for Stagei, respectively. We conduct interstage knowledge distillation between Stage2 and Stage0/Stage1 via the CSD

block. On the red line, “T” means the teacher branch, and “S” means the student branch.

Table 1 Structure of generatorsa)

G0 G1/G2

Concat, FC, BN, GLU, Reshape Attn, Concat

UpSample(2), Conv(3 × 3/1), BN, GLU}×4 AM block } ×NAM

Conv(3× 3/1), Tanh UpSample(2), Conv(3 × 3/1), BN, GLU

Conv(3 × 3/1), Tanh

a) AM block denotes the attention-modulation block [17]. GLU denotes the gated linear units layer [42]. UpSample(2) means

that the upsampling stride is 2. Conv(3× 3/1) means that kernel size is 3 and stride is 1 for the convolutional layer.

Table 2 Structure of Downsample blocksa)

Downsample block in D0 Downsample block in D1 Downsample block in D2

Conv(4× 4/2), LeakyReLU Conv(4× 4/2), LeakyReLU Conv(4× 4/2), LeakyReLU

Conv(4× 4/2), BN, LeakyReLU} ×3 Conv(4× 4/2), BN, LeakyReLU} ×4 Conv(4× 4/2), BN, LeakyReLU} ×5

Conv(3× 3/1), BN, LeakyReLU Conv(3× 3/1), BN, LeakyReLU} ×2

a) Conv(4× 4/2) means that kernel size is 3 and stride is 1 for the convolutional layer.

refer to MS-GAN [17] for further details about the discrimination block. Table 2 shows the structure of
the downsample blocks in D0, D1, and D2.

Through multistage generation, the model produces images with progressively high quality. The refined
image I2 contains more vivid details than the coarse images I0 and I1. To boost the performance of our
model, we propose an interstage cross-sample similarity distillation method with CSD blocks among
stages. This method transfers the knowledge of I2 to I0 and I1. Moreover, it constrains the cross-sample
relation of these images. As shown in Figure 1, we consider the Stage2 model as the teacher network
and the previous stage models as the student networks. We conduct knowledge distillation between the
teacher network and the student networks via the CSD blocks. In this way, we generate coarse-to-fine
images from I0 to I2, and then utilize the fine-grained image I2 to guide the previous stages in improving
the training in the next iteration. Therefore, we can improve the interaction and information transfer
among stages to learn efficient text-to-image generation. Furthermore, we choose to distill the cross-
sample similarity in the CSD blocks to enforce the consistency of the cross-sample relations and stabilize
the training of our multistage model. We will subsequently present the proposed CSD method in detail.
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Figure 2 (Color online) Detailed structure of CSD block. This block takes student feature FS and teacher feature FT as input,

and outputs the CSD loss. In this figure, the black solid line denotes forward-propagation and the blue dotted line denotes

backpropagation. We optimize the output loss without backpropagation to the teacher branch.

3.2 Interstage cross-sample similarity distillation

We propose the interstage cross-sample similarity distillation method to transfer knowledge from refined
images to coarse images. Specifically, we propose the CSD block and adopt knowledge distillation of
cross-sample similarity. This approach provides a way to transfer the knowledge among stages, while
constraining the consistency of the cross-sample relations of the images generated in different stages.

Figure 2 shows the detailed structure of the CSD block. The CSD block takes the feature map
FS ∈ R

N×C×H×W and FT ∈ R
N×C×H×W as input. It outputs the CSD loss. FS is the feature map

extracted from image IS by a student network. FT is the feature map extracted from image IT by a
teacher network. As mentioned previously, we regard the Stage2 model as the teacher network, and the
previous stage models as the student networks. Therefore, in this study, FT can be F2. FS can be F0

and F1.
Before distillation, the feature map FS is reshaped into F ′S ∈ R

N×L, where L = C × H × W . In
the knowledge distillation of the cross-sample similarity process, we consider the distillation of the cross-
sample similarity matrix inspired by Gu et al. [39]. As shown in Figure 2, we normalize the feature for
each sample in F ′S with a normalization layer. The cross-sample similarity matrix MS is computed by
matrix multiplication between the normalized F ′S and its transposed matrix. MS can be formulated as

MS = (mij) ∈ R
N×N , mij =

F ′S,i · F
′T
S,j

||F ′S,i|| · ||F
′
S,j||

, (1)

where mij denotes the cosine similarity between the feature of i-th and j-th samples. We get the cross-
sample similarity matrix MT for FT in the same way. To constrain the consistency of cross-sample
relations, we enforce the cross-sample similarity matrix MS to be close to MT . Therefore, the CSD loss
between IS and IT can be formulated as follows:

LCSD(IS , IT ) =
1

N2
||MS −MT ||

2
F . (2)

3.3 Objective functions

In our model, each discriminator Di, i ∈ [0, 1, 2] outputs both the discrimination of True/False and the
similarity, which is computed between images and the given text information. With these discriminations,
the discriminator and generator loss in Stagei can be formulated as follows:

LDi
= LTF

Di
+ λLASL

Di
, LGi

= LTF
Gi

+ λLASL
Gi

, (3)

where LTF
Di

and LTF
Gi

denote the losses for True/False discrimination. LASL
Di

and LASL
Gi

denote the losses for
the similarity discrimination with coefficient λ. Moreover, we propose interstage cross-sample similarity
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distillation in this paper. The corresponding distillation loss is denoted as LCSD. The full loss of our
multi-stage discriminator and generator can be formulated as follows:

LD =

2∑

i=0

LDi
, LG =

2∑

i=0

LGi
+ λ1LDAMSM + LCA + LCSD, (4)

where LDAMSM is the deep attentional multimodal similarity model (DAMSM) loss [15] with the coefficient
λ1. This loss is fine-grained image-text matching loss from the DAMSM [15]. LCA is the loss for
conditional augmentation [13]. Zhang et al. [13] augmented the text space by resampling the input
sentence feature and added regularization on the standard Gaussian distribution and the conditioning
Gaussian distribution LCA = DKL (N (µ (t) ,Σ (t)) ||N (0, I)).

Discrimination of True/False. For discrimination of True/False, we adopt the widely used condi-
tional and unconditional GAN loss for Di, which can be formulated as

LTF
Di

=− EIr
i
∼pri

[logDi (I
r
i , t)]− EIg

i
∼pgi

[log (1−Di (I
g
i , t))]

− EIr
i
∼pri

[logDi (I
r
i )]− EIg

i
∼pgi

[log (1−Di (I
g
i ))] .

(5)

The first two terms denote the conditional component of LTF
Di

. The last two terms denote the unconditional

component of LTF
Di

. pri and pgi denote the real data distribution and generated data distribution in Stagei,
respectively. The corresponding conditional and unconditional GAN loss for Gi are

LTF
Gi

= −EIg
i
∼pgi

[logDi (I
g
i , t)]− EIg

i
∼pgi

[logDi (I
g
i )] . (6)

Discrimination of similarity. For discrimination of the similarity between images and the given
text information, we utilize the adversarial similarity loss [17], which can enforce the model to generate
images more semantically consistent with the given text. The adversarial similarity losses for Di and Gi

are as follows:

LASL
Di

= Et∼pr
[max (0, 1− d (t, f r

im)) + (max (0, 1 + d (t, fw
im)) + max (0, 1 + d (t, fg

im)))/2],

LASL
Gi

= −Et∼pr
[d (t, fg

im)] ,
(7)

where t is the text embeddings. f r
im, f

w
im and fg

im are the features of real, wrong and generated images
respectively. d is the the similarity score provided by the discriminators. For t and a visual feature fim,
the similarity score can be computed as

d (t, fim) = ((Wtt)
T (Wimfim))/ (||Wtt|| · ||Wimfim||) , (8)

where t and fim are projected into the common feature space with Wt and Wim. By minimizing LASL
Di

, the
discriminator tries to increase the similarity between the text and real images, while decreasing that of the
wrong and generated images. By minimizing LASL

Gi
, the generators adversarially increase the similarity

between the text and generated images.
Distillation loss. Furthermore, we propose to conduct interstage knowledge distillation to transfer

useful information of I2 to I0 and I1. To constrain the cross-sample relation at the same time, we adopt
the interstage cross-sample similarity distillation. Therefore, we add two extra loss term LCSD(I0, I2) and
LCSD(I1, I2) to the generator loss. LCSD(I0, I2) denotes the interstage cross-sample similarity distillation
between I0 and I2. LCSD(I1, I2) denotes the interstage cross-sample similarity distillation between I1 and
I2. The total distillation loss is as follows:

LCSD = LCSD(I0, I2) + LCSD(I1, I2). (9)

During training, we first optimize the discriminator stage-by-stage. We subsequently optimize the
whole generator in an adversarial way. Adam optimizer [43] is the default optimizer in this paper. The
training process of our proposed ICSD-GAN model is shown in Algorithm 1. Note that we optimize the
loss LCSD(·, ·) without back-propagation in the teacher network (Stage2). During testing, the generator
takes random noise and the test text embedding as input. It produces images of 64× 64, 128× 128 and
256× 256 resolution.
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Table 3 The details of CUB and Oxford-102 datasets

Dataset #images Captions per image #categories #train categories #test categories

CUB [21] 11788 10 200 150 50

Oxford-102 [20] 8189 10 102 82 20

Algorithm 1 ICSD-GAN training algorithm

Require: Training set, number of stages nstage = 3, number of training iterations T , batch size N , learning rate of generator αg ,

learning rate of discriminator αd, coefficient λ and λ1 for loss terms, Adam hyperparameters β1 and β2.

Ensure: Generator parameters θg .

1: Initialize discriminator parameters θd = [θd0 , θd1 , θd2 ] and generator parameters θg = [θg0 , θg1 , θg2 ];

2: for t = 1, . . . , T do

3: Sample x, text t, mis-matching images xw and random noise z;

4: x̂ = G(z, t) (x̂ = [x̂0 ∈ R
N×3×64×64, x̂1 ∈ R

N×3×128×128, x̂2 ∈ R
N×3×256×256]);

5: for i = 0, . . . , 2 do

6: LDi
← LTF

Di
+ λLASL

Di
;

7: θdi ← Adam(LDi
, θdi , αd, β1, β2);

8: end for

9: LG ←
∑2

i=0 LGi
+ λ1LDAMSM + LCA + LCSD(x̂0, x̂2) + LCSD(x̂1, x̂2);

10: θg ← Adam(LG, θg, αg , β1, β2);

11: end for

12: return θg .

4 Experiments

In this section, we will first introduce the datasets and evaluation metrics, as well as the implementation
details in our experiments. Secondly, we will show the quantitive results and visualization of generated
images compared with state-of-the-art methods. Finally, we will analyze the performance of our ICSD-
GAN model in detail.

4.1 Experimental setup

Datasets. We conduct experiments on CUB [21] and Oxford-102 datasets [20]. Table 3 [20, 21] reports
the statistics of the two datasets. Following the previous studies [12–14,16,17], we split the datasets into
train and test dataset with separate categories.

Evaluation metrics. For the equal comparison of the proposed method with other state-of-the-
art methods, we choose the commonly used evaluation metrics of Inception Score [22] and FID [23] to
measure the quality and diversity of the generated images. For the inception score, we input the generated
images into a pretrained inception model to obtain the condition label distribution p(y|x). Note that the
pretrained inception model [44] is the same as that used in previous studies [12–17]; it is first pretrained
on ImageNet [45] and then fine-tuned on the CUB and Oxford-102 datasets. The inception score is
computed as exp(ExKL(p(y|x)||p(y))). Given one high-quality image, the probability that it belongs to
a certain category may be extremely high. The conditional label distribution p(y|x) may have a low
entropy. Take for example generated images with high diversity, their distribution p(y) may have high
entropy. Therefore, we obtain a high inception score. We utilize the same evaluation code as that used
in previous studies [13–16] to compute the inception score. For the FID, we input the generated images
and real images into the feature extractor φ, i.e., the pretrained inception model [44]. φ(pg) and φ(pr)
are modeled as two multivariate Gaussian distributions N (µg , Cg) and N (µr, Cr), respectively. µg and
µr are the mean of the feature distributions. Cg and Cr are the covariance. The distance is formulated
as FID(pr, pg) = ||µr − µg||22 + Tr(Cr + Cg − 2(CrCg)

1/2). We utilize the official implementation in
TensorFlow [46] to compute the FID of 30000 generated images and real images. We evaluate our model
with 256× 256 generated images by default.

Implementation details. We adopt MS-GAN [17] as our baseline model for both datasets. To
extract text embeddings, we utilize the pretrained bi-LSTM text encoder proposed by Xu et al. [15]. In
our experiments, the generator outputs images with 64× 64, 128× 128, and 256× 256 resolutions. The
two datasets slightly differ in terms of the number of AM blocks NAM, which is set to 2 for the Oxford-102
dataset and set to 1 for the CUB dataset. In each training iteration, we take turns in trainingD0, D1, and
D2. The generator is subsequently trained in an adversarial way. We employ the Adam optimizer [43] to
train our network, with β1 = 0.5 and β2 = 0.999. In all experiments, the learning rate is set to 0.0002
for the generator and discriminator. The batch size is set to 22. The maximum number of iterations is
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Table 4 Quantitive comparison with state-of-the-art methods on CUB and Oxford-102 datasets

Method
CUB Oxford-102

Inception score (↑) FID (↓) Inception score (↑) FID (↓)

GAN CLS INT [12] 2.88 ± 0.04 68.79 2.66 ± 0.03 79.55

GANWN [47] 3.62 ± 0.07 67.22 – –

StackGAN [13] 3.70 ± 0.04 51.89 3.20 ± 0.01 55.28

StackGAN-v2 [14] 4.04 ± 0.05 15.30 3.26 ± 0.01 48.68

HDGAN [16] 4.15 ± 0.05 18.23 3.45 ± 0.07 –

AttnGAN [15] 4.36 ± 0.03 10.65 3.75 ± 0.02 –

MirrorGAN [32] 4.56 ± 0.05 – – –

LeicaGAN [33] 4.62 ± 0.06 – 3.92 ± 0.02 –

MS-GAN [17] 4.56 ± 0.02 10.41 3.95 ± 0.03 36.24

ICSD-GAN 4.66 ± 0.04 9.35 3.87 ± 0.05 32.64

set to 800. We report the best performance across all iterations. The weight of the adversarial similarity
loss is set to 1.0. λ is set to 1.0. λ1 is set to 5.0.

4.2 Comparison results

For an equal quantitative comparison, we compare our model with GAN CLS INT [12], GANWN [47],
StackGAN [13], StackGAN-v2 [14], HDGAN [16], AttnGAN [15], MirrorGAN [32], LeicaGAN [33], and
MS-GAN [17]. Table 4 [12–17,32,33,47] reports the inception score and FID of these models. By default,
the results of each model are based on the original works. However, the results of GAN CLS INT are
given in the paper on StackGAN-v2. The inception score of AttnGAN for the Oxford-102 dataset is from
the paper on LeicaGAN. The FID results of HDGAN and AttnGAN are from the paper on MS-GAN.
For our model, we compute the inception score and FID in the same way as that used for the compared
methods. Table 4 shows that among all compared methods, our model achieves the highest inception score
and lowest FID on CUB and Oxford-102 datasets. Relative to our baseline, that is, MS-GAN, our model
improves the inception score and FID on CUB dataset by 2% and 10%, respectively. On the Oxford-102
dataset, our model achieves comparable inception score and improves FID by 9.9%. The improvement of
our model relative to the baseline model indicates that our model with interstage cross-sample similarity
distillation achieves efficient text-to-image synthesis. Furthermore, the quantitative results demonstrate
that our model generates images with higher quality in comparison with the other methods. Our model
also outperforms other models for the CUB and Oxford-102 datasets.

For an equal qualitative comparison, we visualize the images generated by our model and those by
StackGAN, HDGAN, and MS-GAN. Figure 3 shows the visualization results for the CUB and Oxford-
102 datasets. Given a text, our model can produce impressive images with high quality and semantic
consistency with the text. For example, given the text “this bird has wings that are grey and has a
spotted body and red throat.”, StackGAN and HDGAN generate images that contain many artifacts
and are semantically inconsistent with the text. MS-GAN generates a visually pleasing image, but the
bird in the image does not have a spotted body as described in the text. Compared with these methods,
our model generates a more photographic image that contains vivid details and is consistent with the
text. Visualization results also demonstrate that our model learns efficient text-to-image synthesis. As a
result, our model generates images high quality.

4.3 Performance analysis

In this subsection, we conduct several experiments to evaluate our model’s generalization ability, the
performance of its different stages, and the performance of different variants.

Performance of generalizability. To evaluate the generalizability of our model, we modify the
given text and generate images with the modified text on the CUB dataset and Oxford-102 datasets.
In Figure 4, we show the images generated with each given text and the images with the corresponding
modified text on the CUB dataset. Figure 4 shows the powerful generalizability of our model. Our model
is capable of capturing changes in the given text and generating semantically consistent images. For
example, in the first pair of results in Figure 4, “brown wings” in the original test text is modified to
“blue wings”. Our model is sensitive to this change and proceeds to generate an image of a bird with
“blue wings”. Figure 5 shows that our model also performs well for the Oxford-102 dataset when the test
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This bird has wings

that are grey and

has a spotted body

and red throat. 

A white and grey 

bird with a yellow 

bill and black inner 

rectrices and white 

outer rectrices.

A small bird with a 

speckled black and 

white breast and 

white eyebrow 

perched atop a rock.

This bird has a 

beige body with 

very distinct dark 

brown designs on 

the wings.

The flower petals 

are white in color 

with larger yellow 

stamen.

This flower has 

many purple petals 

arranged in a flat, 

disk shape with a 

brown center.

A pink flower with 

pink floppy petals 

that surrounding a 

light yellow center.

This flower is 

orange in color, 

and has petals 

that are layered.

Figure 3 (Color online) Visualization results of 256×256 images generated by StackGAN, HDGAN, MS-GAN and our ICSD-GAN

model on CUB and Oxford-102 dataset.

Small bird with 

white nape and belly, 

brown wings with 

white wing bars, 

brown outer 

rectrices, and yellow 

inner rectrices.

Small bird with 

white nape and belly, 

blue wings with 

white wing bars, 

brown outer 

rectrices, and yellow 

inner rectrices.

Small bird with a 

downy pale gray 

underside, white 

wing bars with 

brown secondaries, 

orange bil and feet, 

black eyes.

Small bird with a 

downy pale gray 

underside, white 

wing bars with 

brown secondaries, 

black bil and feet, 

black eyes.

This bird has small 

black spots along its 

breast and abdomen 

as well as a red

crown and brown 

coverts.

This bird has small 

black spots along its 

breast and abdomen 

as well as a yellow

crown and brown 

coverts.

Figure 4 (Color online) Visualization of text modification to evaluate the generation ability of our ICSD-GAN on CUB dataset.

This flower has long 
and thin yellow

petals with a lot of 

yellow anthers in the 
center

This flower has long 
and thin pink petals 

with a lot of pink

anthers in the center

This flower is 
yellow and red in 

color, with petals 

that are oval 
shaped.

This flower is 
yellow and blue

in color, with 

petals that are 
oval shaped.

The flower has 
petals that are 

pointed and pale 

pink with golden 
stamen

The flower has 
petals that are 

pointed and pale 

white with golden 
stamen

Figure 5 (Color online) Visualization of text modification to evaluate the generation ability of our ICSD-GAN on Oxford-102

dataset.

text is modified. The experimental results show the superior generalizability of the proposed ICSD-GAN
model.

Performance of different stages of ICSD-GAN. We first evaluate the performance of the different
stages of our model for the CUB dataset. Figure 6 shows the curve of the inception score for the generated
images of different resolutions. As shown in Figure 6, our method outperforms StackGAN and HDGAN
with respect to the inception score for the generated images of all resolutions, i.e., 64×64, 128×128, and
256× 256. This result indicates the effectiveness of all stages in our model. What’s more, the inception
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Figure 6 (Color online) Inception score for generated images

with different resolutions on CUB dataset.

Figure 7 (Color online) Visualization of generated images

with different resolutions on CUB dataset.

Table 5 Performance of baseline model, model with LCSD(I0, I2), model with LCSD(I1, I2) and our full model with the two losses

on CUB dataset

Method Inception score (↑) FID (↓)

Baseline 4.56 ± 0.02 10.41

With LCSD(I0, I2) 4.72 ± 0.06 10.97

With LCSD(I1, I2) 4.58 ± 0.04 9.58

ICSD-GAN 4.66 ± 0.04 9.35

score gradually increases from 64 × 64 images to 256 × 256 images; this trend is consistent with the
coarse-to-fine mode of our model.

We also visualize the generated images of different scales in Figure 7. Other semantic details appear,
and image quality increases with the resolution. The images of three resolutions differ in terms of vivid
local details while other information remains the same. This result indicates the steady refinement of the
text-to-image synthesis from the initial stage to the refined stage. Moreover, the result demonstrates the
performance of our proposed cross-sample similarity distillation in terms of its enforcement of consistency
among the generated images across stages.

Performance of different variants. In this study, we propose the interstage cross similarity distil-
lation method in our multistage model. Eq. (9) shows two losses. One is LCSD(I0, I2) between Stage0

and Stage2. The other is LCSD(I1, I2) between Stage1 and Stage2. To evaluate the effectiveness of the
two losses, we conduct experiments with different variants of our model for the CUB dataset. Table 5
shows the results of the baseline model, the model with LCSD(I0, I2), the model with LCSD(I1, I2), and
our full model with both losses. The model with only LCSD(I0, I2) shows improved inception score and
FID. The model with only LCSD(I1, I2) achieves a considerable increase in inception score, but its FID
declines. Our full model outperforms these variants with respect to both the inception score and FID.
The results demonstrate that the model with only one of the interstage cross similarity distillation loss
cannot balance the quality and diversity of the generated images. On the contrary, our full model greatly
improves the quality and diversity of the generates images. This result indicates the efficient text-to-
image generation of ICSD-GAN. Therefore, the interstage distillations for Stage0 and Stage1 are of vital
importance; it stabilizes the training and constrains the cross-sample similarity consistency for all stages
of the multistage model.

5 Conclusion

In this study, we propose the ICSD-GAN model to transfer useful knowledge and constrain the consis-
tent cross-sample relations of generated images within a multistage generation framework. With novel
CSD blocks, we achieve knowledge distillation from the refined stage to the coarse stages. This process
benefits efficient generation and discrimination. We adopt the knowledge distillation of cross-sample
similarity, which achieves consistency in the cross-sample relations of generated images. We conduct ex-
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tensive experiments on the Oxford-102 and CUB datasets. Our model achieves quantitatively remarkable
performance relative to other state-of-the-art methods. Our model also generates photographic images,
which are semantically consistent with the given text.
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