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Abstract One key challenge in zero-shot classification (ZSC) is the exploration of knowledge hidden in

unseen classes. Generative methods such as generative adversarial networks (GANs) are typically employed

to generate the visual information of unseen classes. However, the majority of these methods exploit global

semantic features while neglecting the discriminative differences of local semantic features when synthesizing

images, which may lead to sub-optimal results. In fact, local semantic information can provide more discrim-

inative knowledge than global information can. To this end, this paper presents a new triple discriminator

GAN for ZSC called TDGAN, which incorporates a text-reconstruction network into a dual discriminator

GAN (D2GAN), allowing to realize cross-modal mapping from text descriptions to their visual representa-

tions. The text-reconstruction network focuses on key text descriptions for aligning semantic relationships

to enable synthetic visual features to effectively represent images. Sharma-Mittal entropy is exploited in

the loss function to make the distribution of synthetic classes be as close as possible to the distribution of

real classes. The results of extensive experiments over the Caltech-UCSD Birds-2011 and North America

Birds datasets demonstrate that the proposed TDGAN method consistently yields competitive performance

compared to several state-of-the-art ZSC methods.
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1 Introduction

Visually distinguishing unseen classes based only on their text descriptions is an attractive characteris-
tic of human beings, which is a desired learning and generalization capability in the machine learning
domain [1–3]. For example, humans can recognize a zebra when they first see its appearance based only
on the description that a zebra is a striped horse. The concept of zero-shot classification (ZSC) has been
introduced to emulate this capability [4, 5].

Generally, ZSC is achieved by transferring knowledge from seen classes to unseen classes using some
additional information such as attributes, word vectors, and descriptions. Early ZSC methods rely on
semantically meaningful attributes to transfer knowledge [4, 6]. The majority of these methods transfer
cross-modal information [5,7] through the joint embedding of image visual features and attributes [8–11].
As intermediate representations, attributes share properties across multiple classes, indicating whether
some predefined properties exist. However, such methods require experts in the field to annotate a
potentially huge amount of data attributes, which is a tedious and costly task. To overcome this problem,
word vectors and text descriptions requiring no predefined annotation are employed in ZSC. In particular,
word vectors are typically obtained using neural networks trained on a large language corpus, while text
descriptions are directly acquired from the Internet, e.g., from Wikipedia articles. Descriptions can
provide richer and more detailed information than word vectors can. However, the problem is that these
textual descriptions often contain a large amount of redundant information.
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   It has a small, cute three-petal mouth with 

brown and white fur, triangular ears on both 

sides, sitting leisurely, and two round brown 

eyes looking straight ahead.

Figure 1 (Color online) Motivation behind this study. Suppose that the tiger, cat, horse, and lion classes belong to the training

set, while the dog class belongs to the test set. The dog’s text description is noisy; the discriminative description is marked in red.

The purpose of this study is to generate fake images of the corresponding test classes using semantic textual descriptions. Each

fake image is semantically associated with the real images of seen classes, while their related information is transferred to unseen

classes.

Generative adversarial networks (GANs) have been widely applied to ZSC. In GANs, the idea is to
synthesize pseudo visual features for unseen classes by projecting the class semantic prototypes into
the visual space. However, when applying descriptions as auxiliary information, the noisy information
among them seriously degrades their effect. To address this problem, a triple discriminator GAN model
is proposed in this study to mine effective textual parts and synthesize discriminative visual features for
images in unseen classes. The motivation behind this proposal is illustrated in Figure 1. In particular, the
proposed model is built upon a dual discriminator GAN (D2GAN) [12], which incorporates the Lipschitz
constraint to make the weights follow the Gaussian distribution, thereby improving the network stability
for ZSC. A text-reconstruction network is further introduced to utilize local text parts and highlight the
key information from text descriptions. Sharma-Mittal (SM) entropy is employed to impose constraints
on weights for different textual features with the purpose of reducing irrelevant text information so that
the sample local visual features synthesized by GAN are more discriminative.

In summary, the contributions of this work are twofold:

•We propose a novel triple discriminator GAN (TDGAN) for ZSC, which employs a GAN to synthesize
visual features for images of unseen classes. In particular, TDGAN employs three discriminators for
emphasizing infomation of real samples, focusing on synthetic samples, and discriminating the visual
features generated by reconstructed text respectively. It can progressively improve the stability of network
training and the diversity of generated samples.

• By exploiting class-level text description information, we develop a text-reconstruction network for
guiding the process of generating features and highlighting key information of text descriptions. Besides,
we introduce the SM entropy as a constraint for the embedding of text information to generate common
representation.

The performance of the proposed TDGAN is tested on the Caltech-UCSD Birds-2011 (CUB) [13] and
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North America Birds (NABirds) [14] ZSC datasets under two different settings.
The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 presents the

proposed TDGAN approach, including the details on the employed D2GAN and the text-reconstruction
network. Section 4 outlines the experiments and ablation studies. Section 5 concludes the paper.

2 Related work

2.1 Description-based zero-shot classification

As easily accessible side information for ZSC, class descriptions offer a rich knowledge about both seen
and unseen classes. They can be obtained from various sources such as Wikipedia articles [15, 16], and
sentence descriptions [17]. For example, Ba et al. [16] proposed to utilize Wikipedia articles for ZSC
to avoid the problem of having to explicitly define attributes. The authors mapped raw descriptions
and images to a shared embedding space, where the dot product was utilized to learn their matching
relations. Qiao et al. [18] presented an L2,1-norm based objective function to simultaneously suppress
noise in descriptions and learn to match images and their descriptions. The authors demonstrated that
inherent noise in text descriptions has a significant impact on ZSC. Elhoseiny et al. [19] proposed a new
learning framework associating text descriptions with the relevant parts of unseen images and suppressing
text noise in unseen information without any text annotation. Zhu et al. [20] used GAN to form a loop
network, and introduced cycle consistency loss to generate features for adapting to another domain space,
so that the generated features are retained in the original distribution of ZSC, namely, most of the content
information of the original image is retained. Similarly, this study utilizes a GAN for description-based
ZSC. However, in contrast to [20], a text-reconstruction network is additionally incorporated into the
GAN framework to suppress noisy signals present in descriptions.

2.2 Generative zero-shot classification

The GAN model firstly proposed in 2014 [21] suffers from unstable training due to the Jensen-Shannon
divergence between the generated and true distribution during the training process. Many attempts have
been made to address this problem [22–24]. For example, Arjovsky et al. [24] proposed a Wasserstein-
GAN (WGAN) model utilizing the Wasserstein distance, while Gulrajani et al. [23] further developed
this model by introducing a gradient penalty based on the Lipschitz constraint. However, both models
do not consider image features. In contrast, Xian et al. [25] utilized three conditional GANs combining
the f-GAN with the Wasserstein GAN and classification loss to generate embedding features step by step
and employ them in training a good classifier to achieve ZSC. Schonfeld et al. [26] used two variational
autoencoders with the same structure, one encoding images, while the other decoding class embeddings,
ensuring consistency of the space, onto which the images and class embeddings are projected in ZSC.
Unlike the above approaches, this study tackles ZSC by generating features for unseen classes via a novel
GAN model. The proposed model combines a GAN with a discriminator to employ unlabeled data of
unseen classes in generating discriminative features.

Many existing generative models [25, 27, 28] have been applied to solve ZSC by generating features of
unseen classes from semantic embeddings. For example, Bucher et al. [27] employed a generative moment
matching network [29], while [25, 28] used GANs. This study proposes a novel triple discriminator GAN
architecture to directly generate features from text description. In particular, the proposed architecture
combines the powerful D2GAN [12] with a text-reconstruction network and a classification loss function
to achieve effective ZSC.

3 TDGAN framework for zero-shot classification

The main notations are listed in Table 1. The proposed TDGAN framework employs two networks, a
D2GAN and a text-reconstruction network, which exploit global and local semantic features to synthesize
images, respectively (Figure 2). In particular, the D2GAN is used to train a stable and diverse generator
with a dual discriminator GAN structure, while the text-reconstruction network applies another GAN
with discriminative local text knowledge. In this way, TDGAN realizes an accurate cross-modal mapping
from text descriptions to their visual representations. Training is performed using labeled seen data
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Table 1 Main notations

Symbol Meaning

N Number of instances

s Number of seen categories

u Number of unseen categories

V Dimensionality of visual space

Q Dimensionality of textual space

M Dimensionality of noise

x ∈ R
V Visual representation vector

t ∈ R
Q Textual representation vector

y ∈ R
s+u Label vector

z ∈ R
M Noise representation vector

θ Generator network parameters

ω1, ω2 Dual discriminator network parameters
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Figure 2 (Color online) Overall framework of the proposed TDGAN model, where the arrows indicate data flow. It consists of

two parts: D2GAN network and text reconstruction network.

(visual images and their corresponding text descriptions). At the testing stage (i.e., classification of
unseen images), unseen images are recognized by training a classifier with the synthesized data.

3.1 Dual discriminator generative adversarial networks

Compared with the traditional GAN model, the advantage of the D2GAN [12] is its employment of one
generator and two discriminators formulating a mini-max game of three players. The D2GAN structure
has three main modules (Figure 3): (1) generative network G1; (2) discriminator network D1; and
(3) discriminator network D2.

The generator G1 inputs the prior noise z ∼ pz(z) (a ramdom noise vector following a standard normal
distribution) and text feature t ∼ pt(t) (represented by term frequency-inverse document frequency (TF-
IDF)) to generate synthetic data for the corresponding class. The discriminators D1 and D2 output
probability values for the considered classes. There are two types of input data for the discriminators
D1 and D2, namely, labeled real image data and image data generated for from G1. Real image data are
considered by the SPDA-CNN [30], which extracts fine-grained visual features. The purpose of employing
the two discriminators is to utilize the complementary statistical properties of two divergences in elevating
the quality and diversity of samples output by the generator G1. In particular, D1 provides high marks
for the data sampled from pdata and low marks to the data sampled from G1; D2 acts in the opposite
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Figure 3 (Color online) Illustration of the D2GAN structure.

way. The generator G1 generates data to fool both D1 and D2.
The design of D1 is the same to that in the traditional GAN, whose loss function is

LD1 = min
G1

max
D1

v(D1, G1)

= Ex∼pdata(x)[logD1(x)] + Ez∼pz(z),t∼pt(t)[log(1 −D1(G1(z, t)))], (1)

where v(D1, G1) represents the divergence between the D1 distribution pdata(x) and the G1 distribution
produced by pz(z) and pt(t).

The loss function of D2 is designed as

LD2 = max
G1,D2

v(D2, G1)

= E(x,y)∼pdata(x1,y1)[logD2(y|x)] + Ez∼pz(z),t∼pt(t)[log(D2(t|G1(z, t)))]− Lc, (2)

where Lc is applied to supervised G1 to generate the corresponding label for category c. Its loss function
is defined as

Lc = Ex∼pdata(x)S[D2(n|x)]

=
1

N

N
∑

n=1

S[D2(n|x)]

=
1

N

N
∑

n=1

[

−

c
∑

n=0

D2(n|x) logD2(n|x)

]

, (3)

where S[D2(n|x)] represents Shannon entropy of the discriminator D2, and n indicates the number of
instances per category.

Combining the three parts of D1, D2, and G1, the objective function is

min
G1,D2

max
D1

v(D1, D2, G1) = LD1 − LD2 . (4)

Note that there is a fully connected layer behind the D1 and D2, respectively. It predicts the class
information with cross entropy loss function. We naturally adopt the Lipschitz constraint to avoid the
gradient disappearing problem, so that the objective function is

LD2GAN = LD1 − LD2 + LGP, (5)

where LGP = (‖∇
X̂
Dω(X̂)‖22 − 1)2 is the gradient penalty to enforce the Lipschitz constraint [23] with

X̂ being the linear interpolation of the real feature X and the synthetic feature X̃, Dω is a discriminator
for the optimization parameter ω.

3.2 Text-reconstruction network

A text-reconstruction network comprising a text-reconstruction module (Figure 4) and a GAN module is
employed in this study to extract useful text semantic features and match them to image features. The
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Figure 4 (Color online) The proposed text reconstruction module.

text-reconstruction module pays partial attention to texts, thus helping to extract local discriminative
features. In essence, the module combines global text features with local key text features, with local text
features being used to distinguish the differences across the considered classes, while global text features
being used to make up for the missing information captures by local key features.

The reconstruction steps include the following. The text features (the TF-IDF feature vector [31]) is
first averaged to obtain the mean text feature, text feat mean, by averaging the features in the same
class. Then, two text features are extracted to obtain text feat 1 and text feat 2. Our motivation is
to highlight discriminative text words. Considering that each word makes a different contribution to
each class, a simple sorting method is applied to weight each word. Intuitively, the larger is the number
of features, the greater is their contribution to the classification task. Thus, features are sorted in the
descending order, and the first 50 features are taken to construct a new vector text feat 1. At the same
time, 50 features are randomly sampled from the original feature set to form text feat 2, which can be
regarded as a down-sampling process. While the global representation ability is reduced, the text feat 2
still contains global features. Both sorting processes can be viewed as simple feature selection approaches.
Of course, other advanced feature selection methods can be more effective. Since feature selection is not
the focus of this study, simple sorting functions are employed. L2 normalization is applied to accelerate
the convergence of the loss function after text feature scaling. Finally, the text feature text feat Syn is
obtained using the text-reconstruction module.

In the Figure 4, T represents the transpose of the matrix. We use the specific formulas to illustrate
some stages of text reconstruction. Firstly, by sorting function to get the partial important text features
H is

H = softmax((f(TM )T)⊗ TM ), (6)

where TM indicates the average text feature text feat mean, f(·) represents a descending sorting function.
Then, we combine the original text feature information and H to form a new text feature, which is

formulated as

t = (αH + (1 − α)(r(TM )T))T, (7)

where r(·) represents a random sampling function, the reconstruction coefficient α is formed to synthesize
a new text feature, and the important labeled information is highlighted. We set α to be 0.9.

Finally, we get new synthetic text features TS via L2 normalization. The synthetic text feature TS

together with the Gaussian noise z are the inputs for the generator G2, which generates a synthesized
local visual feature. It is more effective than the original visual features to assist in the classification of
unseen classes in the ZSC.

The GAN network with G2 and D3 has two outputs, namely, the probability of real features derived
from generated features and the prediction of features belonging to their corresponding classes. To assign
feature weight constraints to important parts in the reconstructed text and enhance knowledge transfer
from seen classes to unseen classes in ZSC, SM entropy is employed instead of cross entropy as the loss
function, which is defined as

Scls-f =

C
∑

c=1

pri

(

pki − p−k
j

2k

)

, (8)

where k and r are the two parameters in the SM entropy. In our experiment, we set k = 0.1, r = 0.01, and
use it to measure the information distribution of each category. The pi and pj represent the probability
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     This small bird has a 

pink  breast  and  crown , 

and black  primaries 
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fellow  is almost all 

black  with a red  crest , 

and black  cheek  patch .

Pink

Black

Crown

Breast

Red

Cheek

Crest

Black

Figure 5 (Color online) The text reconstruction network focuses on important textual information, which is marked in red. The

information includes color (pink, black, red and white), parts (breast, crest and patch) and textures.

distribution of categories, respectively. In this way, the loss function of D3 is

LD3 = −λSMScls-f −
1

C

C
∑

c=1

D3

(

EX̃c∼pc
g
[X̃c]

)

, (9)

where X̃c is the synthetic feature of the category, D3 is the discriminator for text reconstruction net-
work. pcg is the conditional distributions of the generated features. The λSM is SM entropy weight
hyperparameter.

As shown in Figure 5, the network could focus on more local discriminative regions, and reduces
uncorrelated text noise, thereby making the synthesized visual features more representative.

3.3 Final TDGAN model

The proposed method generates visual data from text to assist the classifier in learning the information of
unseen classes. However, the distribution of generated data may be scattered. To alleviate this problem,
the following constraint is imposed on generated features to make them be as close to the center of the
real class as possible

LE =
1

C

C
∑

c=1

∥

∥

∥
EX̃c∼pc

g
[X̃c]− EXc∼pc

data
[Xc]

∥

∥

∥

2

, (10)

where c is the number of seen categories, Xc is the mean of the visual feature of category c, X̃c is the mean
of the generated feature of category c, pcg and pcdata are the conditional distributions of the generated
features and the real features, respectively.

Further, we design a classification loss function to optimize the discriminators D1, D2, and D3, which
is as follows:

Lcls =
1

2
(Lc(Gθ1 ,θ2(T, z)) + Lc(x)), (11)

where Gθ1 ,θ2 is the optimization parameter corresponding to the two generators G1 and G2.

The final objective function of TDGAN is

lossTDGAN = LD2GAN + LD3 + Lcls + LE. (12)

In the training stage of TDGAN, the D2GAN and text-reconstruction networks are trained separately
in the end-to-end manner, while the parameters in the visual features branch are shared. The D2GAN
is trained by alternatively updating D1, D2, and G1.
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Table 2 The settings of CUB and NABirds datasets

Dataset
SCS-split SCE-split

Train Test Train Test

NABirds [14] 323 81 323 81

CUB [13] 150 50 160 40

3.4 Applying TDGAN to zero-shot classification

Once the TDGAN model is trained, G1 and G2 can generate pseudo visual features for each unseen
class using corresponding text descriptions, which can be viewed as global and fine-grained features,
respectively. These features can be either combined in a weighted manner or employed separately. Given
similar results produced by the two methods, the features were employed separately in the experiments
presented below.

Since many pseudo visual features with different noise inputs can be generated, they can be combined
with other samples in the training data to train any new classifier. In this way, zero-shot learning can
be considered as a traditional classification task. Optional classifiers include softmax, support vector
machine, and k-nearest neighbor (k-NN). For fair comparison, a simple k-NN classifier is employed for
testing.

4 Experiments

4.1 Datasets and settings

Datasets. Following [28], two bird datasets were employed in the experiments, namely, CUB [13] and
NABirds [14], since only these two datasets have text descriptions. Both datasets are fine-grained, with
the challenges of imperceptible inter-class variance and large intra-class variance.

Two types of splitting schemes in terms of how close seen classes are to unseen classes, namely, super-
category-shared splitting (SCS) and super-category-exclusive splitting (SCE) [28], were employed to split
the datasets into training and test set. For the SCS setting, the parent class of unseen classes are disjoint
from those of seen classes, which is the conventional ZSL split setting for ZSC datasets. In contrast, one
or more seen classes belonging to the same parent class of each unseen class can exist in the SCE setting.
This division minimizes the correlation between seen and unseen classes, which poses a bigger challenge
compared to the SCS setting. For brevity, the two settings are denoted as SCS-split and SCE-split,
respectively.

The CUB dataset contains 200 bird classes with a total of 11788 images, each with 312 attributes.
Under SCS-split, the same split ratio was employed as in [28], with 150 classes allocated for training and
50 disjoint classes allocated for testing. Under SCE-split, the splitting method used in [15] was employed
in this study, where the parent classes of unseen classes are exclusive to those of seen classes. Compared
to SCS-split, the relevance between seen and unseen classes in SCE-split is minimized, which brings more
challenges for knowledge transfer. Under SCE-split, 160 classes were used for training and 40 classes were
used for testing. The NABirds dataset is much larger than the CUB dataset; it contains 1011 classes
with a total of 48562 images. In the NABirds dataset, a hierarchy of birds can be found, having a root
class with 555 leaf nodes and 456 parent nodes. After merging the leaf node classes into their parent class
similar to [19], 404 classes were obtained. For SCS-split, 20% of subclasses were randomly selected as
unseen classes under each parent class. For SCE-split, 20% of parent classes were randomly selected, and
all their-descendant classes were considered as unseen classes. In both cases, a total of 323 classes were
selected as seen (training set), while the remaining 81 classes were selected as unseen (test set). Table 2
lists the numbers of classes included into the training and test sets for CUB and NABirds under the two
different settings.

Textual representation. Original Wikipedia articles as described in [19] were used for both bench-
mark datasets. First, the articles were marked as words without considering stop words. Second, the
TF-IDF feature vectors [31] were extracted, whose dimensionalities for CUB and NABirds were 7551 and
13217, respectively.

Visual representation. The SPDA-CNN [30] was employed to extract local image features and
detect important regions, followed by a sub-network using 3×3 region of interests (ROIs) to pool a region
for a 512-dimensional feature . For the CUB dataset, the following seven local regions were extracted
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Table 3 Top-1 average accuracy (%) of traditional ZSC for CUB and NABirds datasets under two split settingsa)

Dataset
CUB NABirds

SCS SCE SCS SCE

MCZSL [32] 34.7 – – –

WAClinear [15] 27.0 5.0 – –

WACkernel [15] 33.5 7.7 11.4 6.0

ESZSL [33] 28.5 7.4 24.3 6.3

SJE [34] 29.9 – – –

ZSLNS [18] 29.1 7.3 24.5 6.8

SynCfast [10] 28.0 8.6 18.4 3.8

SynCOVO [10] 12.5 5.9 – –

ZSLPP [19] 37.2 9.7 30.3 8.1

GAZSL [28] 43.7 10.3 35.6 8.6

TDGAN (ours) 44.2 12.5 36.7 9.6

a) The best results are annotated as bold font.

to represent each CUB image: “head”, “back”, “belly”, “breast”, “leg”, “wing”, and “tail”. For the
NABirds dataset, no “leg” annotations were available; hence only the features of the remaining six visual
regions were extracted to represent local visual features. Thus, the visual feature dimensionalities of CUB
and NABirds were 3584 and 3072, respectively.

Implementation details. TDGAN was implemented using Torch. The batch size was set to 512,
while the learning rate was set to 0.0001. The Adam optimizer was used for optimization. The perfor-
mance of TDGAN was measured in terms of top-one accuracy over the test images for each value of n
denoting the number of novel examples per class. The results were averaged over five runs, each of which
employed a different random sample of new examples during the zero-shot training phase. The testing
was performed over 2000 iterations.

4.2 Traditional zero-shot classification

We compare our algorithm with 8 state-of-the-art methods, including ZSLPP [19], MCZSL [32],
ZSLNS [18], ESZSL [33], SJE [34], WAC [15], SynC [10], and GAZSL [28], and report the per-class
average top-1 accuracies, which is defined as follows:

Accys =
1

‖s‖

‖s‖
∑

c=1

correction prediction in c

samples in c
, (13)

where s indicates the number of unseen classes, c is the corresponding category. The results are show
in Table 3. It should be noted that SynC [10] and GAZSL [28] are attribute-based methods and we
apply textual features to replace attributes for fair comparison. The performance results of the selected
approaches are all from the original papers [28].

It can be noticed from Table 3 that the proposed TDGAN method outperforms all the eight state-of-
the-art methods on both the CUB and NABirds datasets. In particular, TDGAN outperforms the second
best approach (GAZSL) by 0.5% and 2.2% on CUB, as well as 1.1% and 1.0% on NABirds for the SCS
and SCE-split settings, respectively. Since both TDGAN and GAZSL employ GANs, the improvement
can be attributed to the text-reconstruction network employed in TDGAN. In addition, the performances
under SCE-split are far inferior to those under SCS-split, which demonstrates the challenges of SCE-split.

Ablation studies. Ablation studies were conducted to explore the impacts of the D2GAN and text-
reconstruction network, denoted as D2ZSL and TRZSL, respectively. GAZSL [28] was chosen as the
baseline in these experiments. According to the results (Table 4), D2ZSL achieved accuracy scores of
44.2% and 36.7% under the SCS setting on the CUB and NABirds datasets, respectively, which is an
improvement over the baseline. However, there was no significant improvement under the SCE setting.
This is mainly because while D2ZSL generates different embeddings through semantic text descriptions,
it increases the diversity of generated samples to a certain range using Lipschitz regularization. It
realizes global semantic information mining and improves the classification performance. However, since
the center points between classes are originally far apart under the SCE setting, semantic information
contributes less to the classification result, and thus, the performance does not improve significantly.
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Table 4 Ablation studies (%) of different components of the method on both CUB and NABirds datasetsa)

Method
CUB NABirds

SCS SCE SCS SCE

GAZSL [28] 43.7 10.3 35.6 8.6

D2ZSL 44.0 10.5 36.0 8.7

TRZSL 43.8 11.5 35.8 9.0

TDGAN (ours) 44.2 12.5 36.7 9.6

a) The best results are annotated as bold font.
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Figure 6 (Color online) The visualization of the outputs by the G1 and G2 in our TDGAN model by employing the two birds

“pelagic cormorant” and “crested auklet” as examples. We could observe that the G1 embodies the global information, while the

G2 captures the fine-grained local information.

The TRZSL achieved accuracy scores of 43.8% and 35.8% under the SCS setting on the CUB and
NABirds datasets, respectively, which does not indicate any obvious improvement against GAZSL. In
contrast, the performance of TRZSL improved by 1.2% and 0.4% under the SCE setting compared to
GAZSL on the CUB and NABirds datasets, respectively. This is because local semantic information is
more recognizable than global semantic information. The text-reconstruction network was employed to
describe the key text so as to better highlight local key semantic information and get a better classification
effect. However, the designed text-reconstruction network may pay attention to some local information
that is not relatively important, thus introducing text noise and generating irrelevant samples, which
can negatively affect the classification performance. Under the SCS setting, the center points of different
classes are relatively concentrated, and there is a large overlap of their semantic information, which
undermines the positive role of the text-reconstruction networks. In contrast, the center points of different
classes are far apart under the SCE setting, and the key local information can alleviate the semantic gap
between unseen and seen classes. Since the proposed TDGAN approach draws on the advantages of the
two variants, its performance is further improved.

Figure 6 illustrates some qualitative results of the generators G1 and G2, where G1 represents the
D2GAN part of TDGAN, which explicitly focuses on holistic global features, and G2 corresponds to the
text-reconstruction part, which captures important local features. As the number of iterations increases
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Figure 7 (Color online) The seen-unseen precision curves for each algorithm on two benchmark datasets with two split settings.

(a) CUB with SCS splitting; (b) CUB with SCE splitting; (c) NAB with SCS splitting; (d) NAB with SCE splitting.

from 0 to 2000 and the generated results are output every 400 iterations, the images generated by G1 and
G2 gradually change from blurry to relatively clear. Moreover, the fine-grained local images generated
by G2 are relatively more effective in representing the important information of the classes compared to
the images generated by G1.

4.3 Generalized zero-shot classification

Compared to ZSC, generalized ZSC (GZSC), where test data include examples from both seen and
unseen classes, has proven to be more practical in real applications [26, 35]. Chao et al. [35] proposed a
GZSL measurement method, which classifies a seen class S and an unseen class U into the total classes
T = S

⋃

U , where the corresponding precisions are denoted as AS→T and AU→T , respectively. This
protocol was adopted in this study along with the seen-unseen accuracy curve (SUC) and area under
SUC (AUSUC) to evaluate the knowledge transfer ability of the tested methods in GZSC.

Figure 7 shows the SUCs for all the tested methods under the considered settings. The proposed
approach is superior to all the other methods in terms of the AUSUC scores, except for the WAClinear

approach, which has significantly higher AS→T and lower AU→T . This result indicates that TDGAN did
not fully learn the knowledge transferred from seen to unseen classes and suffered from overfitting over
both datasets. It is worth noting that GAZSL achieved a higher AUSUC score compared to the rest of
the tested methods. However, the proposed TDGAN method performs better than GAZSL; In particular,
its SUC illustrated in Figure 7 shows that the AUSUC scores of TDGAN on the CUB dataset under the
SCS and SCE settings are higher than those of the GAZSL method by 0.034 and 0.046, respectively.
Furthermore, the proposed method achieved higher AUSUC scores compared to GAZSL under the two
setting for the NABirds dataset (by 0.025 and 0.013, respectively). In summary, the proposed TDGAN
method is not only superior to other methods in the classification of unseen classes, but also achieves
relatively high precision in the classification of seen classes. Moreover, TDGAN has a strong balanced
performance on AS→T and AU→T .
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Figure 8 (Color online) The influence of different weight parameters λSM of SM entropy under SCE settings. (a) Synthetic-weight

= 0.2; (b) Synthetic-weight = 0.5; (c) Synthetic-weight = 0.8.

4.4 SM entropy weight hyperparameter λSM

To check the impact of different weight parameters for SM entropy in the text-reconstruction network,
further experiments were conducted under the SCE setting since semantic information is missing in this
setting.

It can be noticed from Figure 8 that our TDGAN performances on both settings are relatively good
when λSM is around 0.5; too small or too large λSM causes the performance degradation. This indicates
that the text-reconstruction parameters are beneficial for different levels of key features of different classes,
and information is transferred from the seen to unseen classes. Furthermore, it can be noticed from the
figure that the performance is relatively stable when the number of iterations reaches around 1400. In
the other words, the objective function of the TDGAN model is minimized and reaches a local optimum.
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5 Conclusion

This paper presented a new ZSC method performing the generation task to compensate for data loss.
The method incorporates a novel triple discriminator GAN to synthesize new data samples, along with
a text-reconstruction network designed to distribute local attention to different text parts, thereby high-
lighting key text description information and deeply mining semantic relevance. Furthermore, a SM
entropy weight constraint loss function is introduced to make the prediction class distribution of the
reconstructed text feature synthesis be consistent with the original real class distribution. The proposed
method achieved a better performance compared to several state-of-the-art methods on two benchmark
datasets, especially under the SCE setting. It is worth noting that the text reconstructed by the pro-
posed method allows capturing key information of text descriptions, compensating for the interference
caused by redundant or irrelevant information and noise. In the future, we plan to apply the atten-
tion mechanism [36] to improve the accuracy of the text-reconstruction network in the key information
extraction [37].
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