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Deep neural networks often come with a huge number of

parameters, even larger than the number of training exam-

ples, but it seems that these over-parameterized models have

not suffered from overfitting. This is quite strange and why

over-parameterization does not overfit ? poses a fundamen-

tal question concerning the mysteries behind the success of

deep neural networks.

In conventional machine learning theory, let H denote

the hypothesis space, m is the size of a training set with

i.i.d. samples, then the gap between the generalization error

and empirical error is often bounded by O(
√

|H|/m) where

|H| is about the hypothesis space complexity. If the whole

hypothesis space represented by a deep neural network is

considered, then the numerator grows with the parameter

count (depth × width), which can be even larger than the

denominator, leading to vacuous bounds. Thus, many stud-

ies resorted to consider relevant subset of hypothesis space,

e.g., by introducing implicit bias depending on specific al-

gorithms such as the norms controlled by stochastic gradi-

ent descent (SGD) [1, 2]. The results, however, were not

that satisfactory and recently there were even claims that

conventional learning theory could not be used to explain

generalization of deep neural networks even if the implicit

bias of specific algorithms had been taken into account to

the fullest extent possible [3].

Although many arguments may have their own ground-

ings, we feel that an important fact should be noticed; that

is, conventional learning theory concerns mostly about the

training of a learner, or more specifically, a classifier in classi-

fication tasks, from a feature space, but concerns little about

the construction of the feature space itself. Therefore, con-

ventional learning theory can be exploited to understand the

behavior of generalization, but one must be careful when it

is applied to representation learning.

It is well-known that deep neural networks accomplish

end-to-end learning through integrating feature learning

with classifier training. As illustrated in Figure 1(a), a deep

neural network can be decomposed into two parts, where

the first part devotes to feature space transformation, i.e.,

converting the original feature space represented by the in-

put layer to the final feature space represented by the final

representation layer, in which a classifier is constructed.

First, let’s focus on the classifier construction (CC) part

in Figure 1(a), where the number of parameters depends on

the number of units in the final representation layer. It is

well-known that there occurs overfitting if the number of

parameters is more than needed [4, 5]. For example, Fig-

ure 1(b) depicts a typical training-testing performance plot

based on results presented in [4], which shows that the test-

ing performance degrades although the training performance

increases as the number of parameters becomes too large.

This exhibits clearly that for the CC part in Figure 1(a),

over-parameterization can lead to overfitting; this confirms

with what conventional learning theory tells.

Next, let’s focus on the feature space transformation

(FST) part in Figure 1(a). Most doubts about the inca-

pability of conventional learning theory on deep neural net-

works actually come from the fact that there seems no over-

fitting even when the parameter count (depth × width) is

very large [1–3]. Here, we want to point out that the pa-

rameters of the FST part should not be simply regarded

as parameters of the hypothesis space concerned by con-

ventional learning theory. In fact, when we say that con-

ventional learning theory tells us over-parameterization will

lead to overfitting, the parameters refer to those concern-

ing the hypothesis space, such as the parameters of the CC

part; as for parameters for feature space transformation,

conventional learning theory does not claim anything. In-

deed, the connection between overfitting and the parame-

terization of feature space transformation has rarely been

theoretically studied before, and thus, there is no theory

concludes that over-parameterization of feature space trans-

formation will lead to overfitting; this applies to not only

deep neural networks but also other feature space transfor-

mation techniques.

Take distance metric learning [6] for example. It is able

to transform the original feature space to a “better” feature

space in which a relatively simple classifier can solve a prob-

lem that can be hard in the original feature space, just like

the FST part in deep neural networks transforming the fea-

ture space such that an originally complicated task can be

addressed by a simple fully-connected linear layer.
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Figure 1 (Color online) (a) A decompositional view of deep neural networks; (b) a typical performance plot showing that over-

parameterization of the CC part can lead to overfitting (replot based on experimental results presented in [4]); (c) a typical

performance plot which shows that over-parameterization of FST does not necessarily lead to overfitting.

Given a training set {(x1, y1), . . . , (xm, ym)}, let M and

C denote the must-link and cannot-link constraints, respec-

tively. These constraints can be extracted from the data; for

example, a pair of examples falling into the same class leads

to the extraction of a must-link constraint, and otherwise

a cannot-link constraint. The well-known distance metric

learning algorithm [7] attempts to solve the following prob-

lem:

min
M

dLD(M , I)

s.t. ‖xi − xj‖
2
M

6 u, ∀(xi,xj) ∈ M, (1)

‖xi − xk‖
2
M

> l, ∀(xi,xk) ∈ C, (2)

M � 0,

where ‖xi − xj‖
2
M

is the Mahalanobis distance between xi

and xj based on the positive semi-definite metric matrix

M ; dLD(M , I) is the log-det divergence between M and

identity matrix I; Eq. (1) demands the must-link examples

to be close, with pairwise distances smaller than u; Eq. (2)

demands the cannot-link examples to be faraway, with pair-

wise distances larger than l. Assuming that strong duality

holds and considering the Lagrange dual form, the solution

is

M
−1 =

∑

(xi,xj )∈M

λij(xi − xj)(xi − xj)
T

−
∑

(xi,xk)∈C

µik(xi − xk)(xi − xk)
T

+ (1 − α)I,

where α ∈ R is the dual parameter corresponding to the

positive semi-definite constraint, λij > 0 and µik > 0 are

parameters in the dual form corresponding to the must-link

and cannot-link constraints, respectively. It is evident that

the number of parameters can be large, even larger than

the number of training examples, by simply extracting more

constraints from the training data. Using a linear classi-

fier in the transformed feature space, Figure 1(c) presents

a typical performance plot which shows that the influence

of the number of parameters on the testing performance is

non-monotonic. More importantly, this breast-cancer data

set has 450 training examples (and 233 testing examples)

whereas the numbers of parameters showing in Figure 1(c)

are much larger; it is observable that the training and testing

curves are quite consistent, implying that overfitting does

not occur even when the number of parameters is larger

than the number of training examples.

In summary, we want to indicate that when conventional

learning theory concludes that over-parameterization leads

to overfitting, the parameters concerned are about hypothe-

sis space from which the classifiers are constructed; in deep

neural networks such parameters are those of the CC Part

in Figure 1(a). As for FST parameters, there was no such

claim; this applies to not only deep neural networks but also

other feature space transformation techniques. Thus, an im-

portant future direction is to rigorously study the influence

of the number of parameters on the performance of feature

space transformation, ideally by establishing learning theory

about feature space transformation, and this may shed light

on further understanding of mysteries behind deep neural

networks.
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