
SCIENCE CHINA
Information Sciences

January 2021, Vol. 64 112208:1–112208:13

https://doi.org/10.1007/s11432-019-2749-0

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .

A population randomization-based multi-objective
genetic algorithm for gesture adaptation in

human-robot interaction

Luefeng CHEN1,2*, Wanjuan SU1,2, Min LI1,2, Min WU1,2,

Witold PEDRYCZ3 & Kaoru HIROTA4

1School of Automation, China University of Geosciences, Wuhan 430074, China;
2Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China;

3Department of Electrical and Computer Engineering, University of Alberta, Edmonton AB T6R 2G7, Canada;
4Tokyo Institute of Technology, Yokohama 226-8502, Japan

Received 18 July 2019/Revised 24 September 2019/Accepted 2 December 2019/Published online 24 December 2020

Abstract In recent years, vision-based gesture adaptation has attracted great attention from many experts

in the field of human-robot interaction, and many methods have been proposed and successfully applied, such

as particle swarm optimization and genetic algorithm. However, the reduction of the error and energy con-

sumption of a robot while paying attention to more subtle attitude changes is very important and challenging.

In view of these problems, we propose a population randomization-based multi-objective genetic algorithm.

The gesture signal is processed with a slight change by imitating the biological evolution mechanisms. In the

proposed algorithm, a random out-of-order matrix is added in the process of population evolution synthesis

to prevent the premature grouping convergence of the new population. The weights of the objective func-

tion and the elite retention strategy are adopted, and the most adaptable individuals in each generation are

inherited directly in the next generation without any recombination or mutation. To verify the effectiveness

of the algorithm, preliminary application experiments are performed on the gesture adaptation of a robotic

arm. The results are compared with the original signal, and the comparison shows that by using the proposed

method, the energy consumption is reduced, and the end error is decreased to less than 3 mm while ensuring

the tracking effect of the robotic arm. These obtained results meet the communication requirements for

human-robot interactions such as handshakes. Moreover, the proposed method has better performance, uses

less energy, and has a smaller tracking error than the particle swarm optimization, the single-objective ge-

netic algorithm, and the traditional multi-objective genetic algorithm. A preliminary application experiment

indicates that the robotic arm can adapt to human gestures in real time.
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1 Introduction

The human-robot interaction (HRI) has become a vibrant research area involving the systems, humans,
and robots [1,2]. Currently, many researchers have focused their attention on gesture adaptation, and the
related research can be easily applied to HRI, such as the online robot teaching [3], gesture recognition [4],
and emotional interaction [5, 6]. Because of its excellent performance, vision-based gesture adaptation
technology has attracted the attention of many experts in HRI [7,8]. Hence, there is a great demand for
a high-performance gesture adaptation method [9–11].

Many studies on gesture adaptation can be found in the literature. For instance , Kılıboz et al. [12]
presented a method to detect and recognize the trajectory-based dynamic hand gestures in real time
where the gestures were represented as an ordered sequence of directional movements, and a fast learning
mechanism on gesture trajectory was used. An adaptive hidden Markov model-based gesture recognition
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method with user adaptation was presented in [13], where the Kinect sensor was used for obtaining the
gesture signals from a user. Then, the gesture action was recognized and used as a control command
for driving a humanoid robot to imitate human’s actions. In [14], a hybrid approach based on the
mutual adaptation for human gesture recognition was proposed, where a neuro-fuzzy system was used to
classify human gestures, and an evolution strategy was applied for tuning the parameters and pruning
the membership functions. The gesture adaptation has a wide application prospect, and it can be used
in the visual tracking of arms [15], interactive games [16], and robot assistance for getting dressed [17].
Moreover, by using the gestures [18,19], human behavior can be analyzed and people’s intentions can be
deeply understood [20, 21].

Recently, objective optimization algorithms [22], e.g., genetic algorithms (GAs) [23] and particle swarm
optimization (PSO) algorithm [24], have received a great attention. According to the optimization type,
problems can be classified into discrete problems and continuous problems [25]. In [25], a predatory
search strategy, the PSO, was proposed to solve continuous variable optimization problems. On the
other hand, the GA has the potential to address continuous problems because it has many similarities
with the PSO. Thus, the GA can also be used to solve complex optimization models that contain both
discrete and continuous variables; for instance, a modified non-inferior stratified genetic algorithm-III
(NSGA-III) for large-scale optimization problems was proposed in [26]. In [27], a GA approach for the
real-time motion tracking of redundant and non-redundant manipulators was introduced. By applying the
genetic operators to a set of suitably generated configurations, the end effector can accurately follow the
desired workspace trajectory. Additionally, a multi-objective genetic algorithm (MOGA) for optimally
finding the dimensions of links and joint angle of a robot gripper was presented in [28]. In addition,
many researchers used the advantage of the GAs to solve non-linear problems, which shows that the
GA is effective in engineering applications [29, 30]. Besides, the GA has been shown to be capable of
simultaneously evaluating many points in the parameter space and converging toward the global solution.
Therefore, the GA is chosen to solve the optimization problem in this paper.

However, many real-world applications, such as the gesture adaptation task [31], involve multiple
objectives that are conflicting and affecting each other [32]. Consequently, on the basis of the single-
objective genetic algorithm (SOGA), the MOGA was developed in [28], which can be defined as finding
a decision vector that satisfies the constraints and optimizes a phasor function. The core of the MOGA
is to coordinate the relationship between the objective functions and find an optimal solution set of the
objective functions to the greatest possible extent. The MOGA allows evolutionary groups to search
multiple targets in parallel, and gradually finds the optimal solution to the problem. In addition, the
MOGA has played an important role in the field of multiarticular robotic arm tracking for the movement
of the human arm [33,34].

The MOGA starts from a randomly generated population and then progresses by performing the
operations of selection, crossover, and mutation through several generations of evolution during which
the adaptation of individuals in a population continues to increase and approaches the Pareto optimal
solution set gradually [35,36]. In [37], we presented the results of a pilot study conducted with the aim to
optimize building energy performance using the MOGA, i.e., the evolutionary adaptive approach. This
study concluded that the MOGA is an appropriate approach that can ensure a better global optimal
solution for the design of energy-efficient buildings. The position of the robotic arm end is different from
the target position. Thus, we not only need to reduce the energy consumption of a general robotic arm
system but also to increase its precision. In order to solve these problems, the population randomization
multi-object genetic algorithm (PRMOGA) is proposed. The proposed algorithm merges all the generated
subpopulations into a complete population the same as the traditional multi-objective genetic algorithm
(TMOGA), but the PRMOGA adopts a stochastic matrix to make the new population out-of-order
randomly. Meanwhile, we select the elitist individual in each generation and put it directly into the next
generation. It has been proven by experiments that an elite reservation strategy and random population
sorting can improve the performance of our model. Moreover, the objective functions are designed to
consider not only the output error but also the weight of a robotic arm and joint angles of human arms.
These considerations are beneficial for adapting to the human arm gesture and reducing the robot’s
energy consumption.

Vision-based gesture adaptation has attracted great attention in the field of human-robot interaction,
and many methods have been introduced, such as PSO and GA. However, the gesture adaptation task
represents a multi-objective problem. Among the multi-objective optimization algorithms, PSO has a
limited ability to explore new space and can easily converge to a local optimal solution. Although the GA
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Figure 1 (Color online) Kinematic model of a human arm gesture.

can calculate multiple points in the parameter space simultaneously, it can also converge prematurely.
In order to coordinate the relationship between the objective functions, maximize the search for an
optimal solution set of the objective functions, and avoid premature convergence of the GA, the MOGA
algorithm is adopted. However, the traditional MOGA algorithm combines all generated subpopulations
into a complete population, which results in a large computing overhead and a large end error. Therefore,
it is needed to reduce the error and energy consumption, and shorten the calculation time.

The PRMOGA is proposed to quickly search for an optimal solution for the three angles of robotic
arm joints as shown in Figure 1, in which the objective functions and elitist generation are developed
by considering the human gesture information, and in such a way that the solution conforms to the
object end position and adapts to the movement of a human arm. In combination with the closed-loop
feedback control from the angle sensor, this method greatly improves the control precision of a robotic
arm, and the system response is also ameliorated. Finally, the precise control of the robotic arm is
realized. The PRMOGA is verified by a preliminary application experiment of a robotic arm adapting
to a human arm gesture. A scene is executed by a user using a Kinect sensor, a robotic arm, and PCs
(personal computers). The right arm of the user is used as the original model for the Kinect to acquire
the gesture data, and the robotic arm is used to adapt to the right arm of the user. By considering the
three objective functions, the end error, tracking error, and energy consumption of the manipulator are
optimized globally.

The rest of the paper is organized as follows. In Section 2, a multi-objective genetic algorithm and
robotic arm-based gesture adaptation are presented. The experiments are introduced in Section 3. The
conclusion and prospects are given in Section 4.

2 Multi-objective genetic algorithm and robotic arm-based gesture adapta-
tion

The development of HRI is gradually characterized by multi-modal perception and smooth interaction.
The existing posture recognition optimization methods in the HRI seldom consider the end error, tracking
error, and energy consumption simultaneously. However, the proposed method can find the global optimal
solution by considering these three objective functions.

This paper proposes a population randomization-based multi-objective genetic algorithm for robots
adapted to human arm gestures that can realize flexible adaptation and certain positioning behavior.
First, the Kinect is employed to recognize human gestures and obtain feature points of the recognized
human gesture. Then, the kinematic model of the human arm gesture is built, as shown in Figure 1. In
the optimization of joint angles, a method of group randomization using the parallel selection method
is adopted to design the adaptive PRMOGA of robot posture better. Finally, by delivering the joint
information, the robot can smoothly adapt to the human arm gesture.
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Table 1 Parameters of the human arm gesture kinematic model

Joint Length (cm) Angle Weight (kg)

1 17 −π/2 − π/2 0.8

2 10 −π/2 − π/2 0.6

3 17 −π/2 − π/2 0.4

2.1 Population randomization-based multi-objective genetic algorithm

The population randomization method utilizing the parallel selection method called the PRMOGA is
proposed to design the robot gesture adaptation. The implementation steps of the PRMOGA are shown
as follows:

Step 1: Determine the rotation angle of the three joints deviating from the vertical axis: θi = (θ1, θ2, θ3),

and the end position of the robotic arm: X =
∑3

i=1 (Li × sin θi), Y =
∑3

i=1 (Li × cos θi), where Li

denotes the joint length of a robotic arm.
Step 2: Determine the three sub-objective functions f1, f2, and f3.
Step 3: Encode the joint rotation angle θi using the traditional genetic algorithm, and obtain an

individual S, S = (θ1, θ2, θ3).
Step 4: Using the three sub-objective functions, calculate the fitness of each individual in each group,

and retain the highest fitness individual in the next generation.
Step 5: Choose the two individuals S1 and S2, and generate the progeny populations using the genetic

cross mutations.
Step 6: Judge whether the fitness of individuals in the population converges. If so, the final Pareto

optimal solution is obtained; otherwise, go to Step 4.

In the parallel selection method, all individuals in a population are divided into several subpopulations
according to the number of sub-objective functions. Each subpopulation is independently assigned to
a sub-objective function, and each sub-objective function is used to select good individuals in its cor-
responding subpopulation. In order to maintain the population diversity, when a new subpopulation is
formed, all the generated subpopulations are merged into a complete population, and then the random
matrix is used to order the new population randomly. Finally, the crossover and mutation operations are
applied to determine the final Pareto optimal solution (θ1, θ2, θ3) of the problem by iterating until the
preset number of generation is reached.

Meanwhile, we select the best solution called the elitist individual during each generation, and use it in
the next generation without conducting the crossover and mutation operations. The experimental results
show that the elite reservation strategy and random population sorting improve system performance.

2.2 Robot gesture adaptation using population randomization-based multi-objective ge-

netic algorithm

The kinematic model of a human arm gesture including six degrees of freedom is established, and the
parameters are determined, as shown in Figure 1 and given in Table 1. The human arm gesture is
simplified to three joints, so the number of chromosomes in the gene is also three. The range of the
joint angle is [−π/2,π/2], and each chromosome consists of 18 bits. The total number of entries of the
chromosomes of each individual is 54. The coordinates of the end position of the robotic arm are (X,Y ),
as shown in Figure 1.

The three chromosomes of an individual can be expressed as

θi = θi(low) +
Rindi

218 − 1
θi(up)− θi(low), (1)

where the resolution of a joint angle (θi) is expressed as (θi(up)−θi(low))/(2
18
−1). The mechanical arm

is powered by batteries, and energy consumption is a major constraint. In practical applications, due to
different connections between the joints, the energy consumed by the joints is different, even when they
turn by the same angle. On the premise of ensuring that the desired joint angle value can make a robotic
arm achieve the desired position (x0, y0), the mechanical arm should consume the lowest energy. In the
process of a mechanical arm movement, the potential energy changes with L1, L2 and L3.
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The objective function f1 indicates the change in joint potential energy, which is expressed as

f1 =
L1cosθ1

2
×G1 +

(

L1cosθ1 +
L2cosθ2

2

)

×G2

+

(

L1cosθ1 + L2cosθ2 +
L3cosθ3

2

)

×G3,
(2)

where G1, G2, and G3 denote the weights of the three section joints, respectively; L1, L2, and L3 are
three different distances, as shown in Figure 1.

The objective function f2 describes the error between the expected position and theoretical position
of the mechanical arm’s end, and this error is given by

e =

√

(X − x0)
2
+ (Y − y0)

2
, (3)

where (x0, y0) denote the actual position coordinates of the end of a human arm gathered by the genetic
training PC; (X,Y ) denote the position of the mechanical arm’s end, and they are expressed as

X =

3
∑

i=1

(Li × sin θi), Y =

3
∑

i=1

(Li × cos θi). (4)

To make the method converge faster, a penalty function f2 is used, e is the threshold value for the
current joint end of a robotic arm and the expected end of the robotic arm. In the experiment, we set
emax = 100.

f2 = e(0 < e < emax) + 100× e(e > emax). (5)

Furthermore, the arm angle deviation is employed as an objective function f3 so that the robotic arm
can imitate the human arm better and can reach the end position accurately while consuming the least
possible energy. The three angles for which the system consumes the least energy are θo1, θ

o
2, and θo3 . The

energy consuming function f3 is defined as

f3 =

√

(θ1 − θo1)
2
+ (θ2 − θo2)

2
+ (θ3 − θo3)

2
. (6)

In order to observe the average level of the population, and not just the high-fitness individuals,
each sub-objective function is independently applied to select a good individual [21]. All the generated
subpopulations are merged into a complete population. Also, the newly formed population is a matrix
arranged in rows. We select the first element of each row in the newly formed population matrix to
form a new matrix. By randomly arranging the new matrix without repetition, the required stochastic
matrix can be obtained. Then, the rows of the new generation are taken out and rearranged row by row
according to the rows specified in the stochastic matrix. Finally, the new population that is randomly
sorted is obtained.

3 Experiments using population randomization-based multi-objective genetic
algorithm

3.1 Experimental settings

The gesture adaptation system includs a user, a Kinect for obtaining the gesture data, a data-processing
PC used for processing the gesture information, a PC for training the PRMOGA, and a robotic arm with
six degrees of freedom. The gesture adaptation system is presented in Figure 2.

The Kinect is applied to acquire the 3D coordinates of the joints of the human arm. In the data-
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Figure 2 (Color online) The gesture adaptation system.

processing PC, the 3D coordinates are converted into the rotation angles of the joints, given by

a =

√

(x2 − x1)
2
+ (y2 − y1)

2
,

b =

√

(x2 − x0)
2
+ (y2 − y0)

2
,

c =

√

(x1 − x0)
2
+ (y1 − y0)

2
,

θ
′

= arccos

(

a2 + b2 + c2

2ab

)

,

θ = 180− θ
′

.

(7)

The data of the rotation angle of the robotic arm’s joints are converted into angle commands in the
data-processing PC. In order to facilitate and speed up the transmission through an 8-bit serial port, the
range of the angle command is set to 0–255. The angle command is configured directly in the timer, and
the control signal is generated by controlling the interrupt of the timer. The rotation angle is directly
proportional to the duty cycle of the pulse-width modulation (PWM) wave. Thus, the required angle
command is obtained by

Angle com =
θ × 200

π

+ 150. (8)

In what follows, it is explained how the angle commands are obtained by the data-processing PC and
how the results are transmitted to the genetic training PC for the PRMOGA. The STM32 is employed
to receive the angle commands from the genetic training PC. The genetic training PC obtains the angle
command from the data-processing PC through a serial port and sets it as the timer interrupt time. Ac-
cording to the angle command, the control signal is generated, and the corresponding steering mechanism
of the robotic arm’s joint is used to rotate the arm. The steering gear is powered by a 7.4 V-3000 mA
lithium battery with a rotation range of 0◦–180◦. The degree of rotation is determined by the control
signal input from the control port to rotate it to the position required by the command from the genetic
training PC.

After that, the three-axis acceleration data x, y, z of the ADXL345 sensors installed in the joint robotic
arm are obtained, and the change in the triaxial angle is calculated. After initial filtering by the median
algorithm, the data are fed back to the data-processing PC. The error value e(t), which denotes the
difference between the angle command and the rotating position of the steering gear, is calculated, and
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Figure 3 (Color online) Optimal angle values of the three joints.

it then is used as the proportion-integration-differentiation (PID) input. After the feedback value of the
sensor became stable, the ratio, integration, differential, and the other three parameters are adjusted,
and the corresponding compensation value u(t) is obtained by the PID algorithm. The compensation
value is added to the original angle instruction as the next angle command and is then sent to the genetic
training PC until the compensation value become zero. The PID algorithm control law can be expressed
as

u(t) = Kp

[

e(t) +
1

T

∫ t

0

e(t)dt+ Td
de(t)

dt

]

, (9)

where Kp denotes the proportional coefficient of a PID system, T denotes the integration time, Td denotes
the differential time, e(t) denotes the deviation signal of the input system, and u(t) denotes the output
signal. e(t) and u(t) stand for the difference values between the angle command and the rotating position
of a steering gear, respectively.

3.2 Simulation experiments of population randomization-based multi-objective genetic al-

gorithm

The basic parameters of the PRMOGA model are as follows: population size NIND = 75, the maximum
number of generations MAXGEN = 50, number of variables NVAR = 3, binary digit PRECI = 18,
generation gap (crossover probability) GGAP = 0.9, and mutation probability Pm = 0.013.

The desired position of the robotic arm is a random point on a plane; (x0, y0) is calculated by a given
angle (θo1 , θ

o
2, θ

o
3) using Eq. (4) and the unit is cm. In the experiment, we set (θo1 , θ

o
2, θ

o
3) as (1.4516,

1.1898, −1.0741).

As shown in Figure 3, after 50 computing generations, the inverse solution of the robotic arm’s joint
angle includes 18 combination groups. Considering the shortcomings of the genetic algorithm after the
population merging process, which requires numerous computations and high energy consumption, we
adopt the elite reservation strategy. We select the best individuals in each generation and directly put
them into the next generation. We calculate the fitness values of each individual and transfer the best
one to the data-processing PC. The final results shown in radians are obtained as (θo1, θ

o
2, θ

o
3) = (1.4525,

1.1919, −1.0632).

To demonstrate the effectiveness of the proposed algorithm, several sets of angle data are tested, and
the results are shown in Table 2. In Table 2, R1 denotes the optimized energy-to-original energy ratio,
R2 is the end position error expressed in cm, and R3 is the tracking error.

As shown in Table 2, the results produced by the multi-objective genetic algorithm have a low tracking
error, and energy consumption has decreased. And the end error of the robotic arm is only 3 mm. Thus,
the proposed algorithm plays a significant role in reducing energy consumption and the position error of
the terminal while tracking the motion trajectory of the arm. Moreover, the position error of 3 mm is
satisfactory for smooth communications in HRI, such as handshakes, embraces, and waving. The position
error is also satisfactory for performing more complicated actions, e.g., carrying a plate.
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Table 2 Verification results of angle data produced by the multi-objective genetic algorithm

(θo

1
, θo

2
, θo

3
) (θ1, θ2, θ3) R1 R2 R3

(1.4516, 1.1898,−1.0741) (1.4525, 1.1919,−1.0632) 0.9997 0.3106 0.0896

(1.4686, 1.0338,−1.3264) (1.4853, 1.0282,−1.3178) 0.9511 0.0990 0.0196

(0.7142,−0.1139,−0.6549) (0.7375,−0.1496,−0.6615) 0.9850 0.4062 0.0432

(−0.2800,−0.4277,−0.3330) (−0.2987,−0.4233,−0.3254) 0.9967 0.1459 0.0207

(1.5347,−0.5657,−1.2554) (1.5677,−0.6260,−1.1946) 0.8941 0.1555 0.0918

(−0.9016, 1.0417,−0.8502) (−1.0350, 0.9896,−0.7193) 0.9032 0.1482 0.1940

(1.0270, 0.3269, 0.5976) (1.0589, 0.4945, 0.4887) 0.9571 0.2867 0.2024

(0.6138,−0.2058,−0.7063) (0.6396,−0.3152,−0.6449) 0.9852 0.1600 0.1280

(1.5058,−0.7557,−0.2540) (1.5230,−0.7449,−0.2590) 0.9637 0.2399 0.0209

(0.7108, 0.2231,−1.2131) (0.7408, 0.1680,−1.2036) 0.9859 0.1289 0.0635

(−0.4804,−0.8168,−0.7634) (−0.5372,−0.7622,−0.7419) 0.9881 0.2545 0.0817

(1.0961,−1.1386,−1.2963) (1.116,−1.1493,−1.2733) 0.9705 0.2266 0.0328

(−1.1527, 1.4562,−0.3654) (−1.1864, 1.4285,−0.3434) 0.9619 0.1530 0.0488

(−1.1481, 0.3165, 1.1845) (−1.1871, 0.3711, 1.1546) 0.9498 0.3303 0.0735

Figure 4 (Color online) Experimental environment. 1: the human arm, 2: the data-processing PC used to obtain the gesture

data, 3: Kinect, 4: robotic arm.

In addition, the design of the objective function in PRMOGA considers not only the output error
but also the weight of the manipulator and the joint angle of the human arm. In the proposed method,
the solution (minimum) and average value of the objective functions f1, f2, and f3 are changed. The
experimental results are shown in Figure 3, where it can be seen that with the increase in the number of
iterations, the minimum value and average value of the objective function decrease, indicating that the
population is evolving continuously, which greatly improves the control accuracy of the manipulator and
system response. Meanwhile, during the experiment, we constantly adjust the angles of the three joints
to minimize the energy consumption of the robotic arm. In the practical applications of the human-
computer interaction system, this method has the advantages of good real-time performance and low
energy consumption.

3.3 Preliminary application experiment

The gesture data is collected from a 20-year-old Chinese girl by moving her right arm vertically, flexibly,
and horizontally. The experimental environment is shown in Figure 4.

During the gesture change, the data-processing PC obtains the gesture data from the Kinect sensor
and transmits the angle data of all the joints to the genetic training PC. At the same time, the angular
sensor feeds the actual angle of the robotic arm to the genetic training PC. The feedback angle data and
the individual data in the PRMOGA process are used to compensate for the next action. Then, the best
individual is selected so that the robotic arm perfectly follows the human arm’s movement. Thus, the
gesture adaptation is improved.

To prove the advantages of the proposed algorithm, the PSO, the SOGA, and the TMOGA are selected
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as the compared algorithms. First, for the PSO and SOGA, the target function is set as

f = ω1 × f1 + ω2 ×K1 × f2 + ω3 ×K2 × f3, (10)

where ω1, ω2, and ω3 denote the weights used to combine the objective functions. According to the HRI
environment, the energy consumption (for saving energy), terminal error (ensuring touching), and hand
signal tracking function (for comfort) are all important for the communication, so the weights are all set
to 0.33. Also, K1 and K2 are set to 10 and 100 to ensure that the results of f1, f2, and f3 are of the
same order of magnitude. In that way, we can draw the conclusion easily.

Simultaneously, we use the TMOGA in another comparison. In the TMOGA, the sub-objective func-
tions are F1 and F2. First, in the simple genetic algorithm, we set the target function as follows:

F1 = f1 +K × f3,

F2 = f2,
(11)

where F1 represents the sum of the changes in joint potential energy and angle deviation or arm imitation
function. The function F2 is the same as f2 which we used in the proposed PRMOGA.

However, there are certain differences in the processing procedure between the two algorithms. The
TMOGA uses the parallel selection method, and all the individuals in the population are divided equally
into several subpopulations according to the number of sub-objective functions. Each subpopulation is
assigned to a sub-objective function, and each sub-objective function is used to select good individuals
in the corresponding subpopulation independently. Then, a new subpopulation is formed, and all the
generated subpopulations are merged into a complete population directly. However, the population
sequence remains unchanged because the angle solutions only adapt to the function which they belong
to, and they may not be well suited for another function. For the PRMOGA, two strategies are added.
They are the new population random disorder strategy in each generation and the elitist reservation
strategy. By selecting the best solution in each generation as the elitist individual and using it into the
next generation directly, the probability of generating the best offspring individual is increased.

In each generation, we select the best solutions of all the four different algorithms and then compare
them. The results are shown in Figure 5. According to the obtained results, the angle obtained by the
PRMOGA is the closest to its initial value.

Additionally, we also compare the variance of each angle selected by the four algorithms to further
analyze our results. As shown in Figure 6, the PRMOGA can achieve a smallest variance value.

Finally, we put the best angles of each generation calculated by the four algorithms separately into
the same energy consumption function, end position function, and imitation function. The obtained
results are shown in Figure 7. The presented results prove that the PRMOGA yields the smallest energy
consumption, the lowest end position error, and the best imitation effect.

Meanwhile, we compare the results calculated by the four different algorithms, and they are shown in
Table 3. In Table 3, it can be seen that the PRMOGA achieves better results than the other methods.
The energy consumption, end error, and tracking error of the PRMOGA are the smallest. In Table 3,
the computation time of each algorithm is provided, and it can be seen that the computation times of
the PSO, the SOGA, the TMOGA, and the PRMOGA are 0.043449, 0.066131, 0.069721, and 0.073386 s,
respectively. Although the proposed algorithm has the longest computation time, the computation time
is still at the sub-second level, so the accuracy of the real-time tracking is in the acceptable range.
According to the HRI environment, since the energy consumption (for saving energy), end error (ensuring
touching), and gesture tracking (for comfort) function are all important for communication performance,
the PRMOGA can be considered as the most suitable method for practical application in the HRI systems
among all the several tested methods.

To further verify the performance of our proposed method, we complete the replication of the two algo-
rithms proposed recently and compare the experimental results; the results are provided in
Table 4. In [38], an end point positioning method was used for continuous gestures recognition (CHG-EP),
and in [39] an adaptive gradient multi-objective PSO method (AGMOPSO) was proposed. Compared
with the method proposed in [38], the PRMOGA consumes significantly less energy. Compared with the
method proposed in [39], the proposed method has a smaller end error and tracking error. Although the
PRMOGA’s advantage in computing time is not very prominent, compared with the other two methods,
the PRMOGA performs well regarding the tracking error, end error, and energy consumption. Moreover,
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Figure 5 (Color online) Experimental comparison of objective angle values at (a) angle1, (b) angle2, and (c) angle3.
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Figure 6 (Color online) Experimental comparison of the variance at (a) angle1, (b) angle2, and (c) angle3.

in the existing gesture adaptive researches, there are only a few studies that took into account tracking
error, end error, and energy consumption. In contrast, our method is well coordinated by considering all
the three aspects, which has advantages in the application.
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Figure 7 (Color online) Comparison of (a) energy consumption, (b) end errors, and (c) imitation errors.

Table 3 Comparison results calculated by four different algorithms

Algorithm Energy End error Tracking error Computation time (s)

PSO 0.9154 3.3924 0.2682 0.043449

SOGA 1.6277 1.9666 0.2933 0.066131

TMOGA 1.0336 −0.5312 0.1037 0.069721

PRMOGA 0.8311 0.1497 0.0550 0.073386

4 Conclusion

With the aim to make a robotic arm adapt to human arm gestures, the PRMOGA was proposed to
optimize the movement of the three steering gears of a robotic arm. The simulation experiment showed
that the proposed PRMOGA could improve the performance of the robotic arm to adapt to human arm
gestures. Moreover, the results of the preliminary application experiment indicated that the robotic arm
could adapt to the human arm’s motion in real time.

The energy consumption (for saving energy), end error (ensuring touching), and posture tracking (for
comfort) function are all important parameters in human-computer interaction [40]. However, in the
related literature, there are only a few studies that took into account all the three aspects. By setting
the objective function to include these three aspects, the proposed method solved not only the problem
of time and error but also the problem of premature convergence of the traditional GA algorithms. The
proposed PRMOGA can rapidly search the solution space of the three angles of the robotic arm’s joints.
By randomly shuffling each generation, the diversity of the population was ensured. In each generation,
the elite strategy was adopted to reduce the energy consumption of a robotic arm. In robotic arm control,
the tracking error function was used to accelerate the convergence of the objective function. Then, the
output was transmitted to the lower machine through command conversion to control the simulated
robotic arm and accurately simulate the human arm movement to reach the pre-defined end position.
The experimental results showed that PRMOGA can effectively improve the accuracy of the robotic arm’s
attitude adaptation.

Although the proposed algorithm can solve the problems of energy consumption and errors in an
HRI system, it still needs to be improved in terms of computing time, while the traditional algorithms
have their own advantages in setting up the mathematical model having sufficient theory to support the
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Table 4 Comparative analysis of the existing methods

Algorithm Energy End error Tracking error Computation time (s)

CHG-EP [38] 1.8231 0.4106 0.0932 0.076231

AGMOPSO [39] 0.9062 1.8741 0.1013 0.062146

PRMOGA 0.8311 0.1497 0.0550 0.073386

optimization problem [41]. Compared with the GA, the traditional algorithm still has many advantages
in solving some problems, such as high computational speed and easy implementation for solving multi-
objective problems. Therefore, in our future research, we will combine the advantages of the GAs and
the traditional methods to further explore the robotic arm tracking problem. Further, we will extend
the proposed method to robots for developing an emotional, social robot system [42], so that it is able
to achieve smoother HRIs.
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