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Abstract The almost surely (a.s.) exponential stability is studied for semi-Markovian switched stochastic

systems with randomly impulsive jumps. We start from the case that switches and impulses occur syn-

chronously, in which the impulsive switching signal is a semi-Markovian process. For the case that switches

and impulses occur asynchronously, the impulsive arrival time sequence and the types of jump maps are

driven by a renewal process and a Markov chain, respectively. By applying the multiple Lyapunov function

approach, sufficient conditions of exponential stability a.s. are obtained based upon the ergodic property

of semi-Markovian process. The validity of the proposed theoretical results is demonstrated by a numerical

example.
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1 Introduction

Stochastic hybrid systems represent a class of dynamical systems involving continuous evolution, in-
stantaneous change and random effects. As two important types of stochastic hybrid systems, randomly
switched systems and randomly impulsive systems have received increasing interests over the past decades;
see [1–6] for randomly switched systems, [7, 8] for randomly impulsive systems. Randomly switched sys-
tems are composed of a family of subsystems and a random switching signal orchestrating the switching
among the subsystems. Recently, randomly switched systems have received increasing research interests
which involve stability analysis [1, 3–6], controller synthesis [2], fault detection [9], and filter design [10].
Randomly impulsive systems combine continuous-time dynamics with abrupt state changes occurring
at random moments. In practice, randomly switched systems and randomly impulsive systems have a
variety of applications in diverse areas such as networked control systems, biological systems, air traffic
management systems and economic systems [11–13].

In the real world, dynamic systems may encounter sharp state jumps and abrupt dynamical changes,
which cannot be well modeled as purely switched systems or purely impulsive systems. Thus, a more
comprehensive model, namely, impulsive switched system [14–18], is proposed to characterize switched
systems with impulsive jumps at switching instants. In this case, the switching signal and impulsive
signal can be integrated as an impulsive switching signal [19]. For instance, the synchronization problem
of nonlinear systems was discussed in [14] by utilizing hybrid impulsive and switching control. For
randomly impulsive switching signals, the impulsive switching time sequence is a stochastic process. And
Markovian impulsive switching signal is an important class of them, in which the impulsive switching
signal is modeled by a Markovian process [16]. It is worth mentioning that the sojourn time for each
subsystem is required to obey the exponential distribution in Markovian impulsive switched systems. To
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remove this restriction, we introduce the concept of semi-Markovian process (see [20,21]), which has been
referred in switched systems [4,6,22–27], to describe a more general impulsive switching signal. For semi-
Markovian impulsive switching signal, the sojourn times of subsystems do not necessarily obey exponential
distribution and transition rates are time-varying. Up to now, researches about semi-Markovian impulsive
switched systems are few.

On the other hand, switches and impulses can also occur asynchronously in numerous physical and
man-made systems. For example, under switching communication topologies, networked systems with
continuous-time and impulsive communications can be described as switched systems with asynchronous
impulsive jumps [28]. It is known that the stability of switched stochastic systems with randomly im-
pulsive jumps can be impacted by different types of subsystems and impulsive jumps in different man-
ners [16, 18], that is, some subsystems and impulsive jumps can make positive effects on stability, and
others can potentially destroy stability. The impulsive switching frequency in impulsive switched sys-
tems can be restricted by utilizing dwell-time conditions such as fixed dwell-time condition in [16] and
average dwell-time condition in [18]. However, this approach cannot be applied to switched systems with
asynchronous impulsive jumps directly, because there exist two kinds of discrete-time signals, namely,
switching and impulses. To overcome this difficulty, Ref. [29] provided the stabilizing impulses condition
for Makovian switched systems with asynchronous impulsive jumps. Unfortunately, this condition is not
available for semi-Makovian switched systems in the presence of stabilizing and destabilizing impulses.
Therefore, an effective method is needed to tackle and quantify the mixed effects of subsystem’s stability,
switches, impulses, and stochastic noises for the whole system’s stability.

In fact, numerous practical systems are often perturbed by stochastic noises. For instance, air traffic
management systems are often subject to mode-switching and various stochastic disturbances such as wind
and air turbulence [30]; financial systems may undergo sudden changes of volatility rates [13]. Stochastic
noise also can be used to stabilize an unstable system. In [31], the stochastic stabilization problem of
continuous-time nonlinear systems was addressed by artificial multiplicative noise based on aperiodically
sampled data. In general, stochastic noises can be modeled as the Brownian motion. Switched systems
with the effects of stochastic noises are also known as switched stochastic systems [4,32]. It is natural to
consider a more general system model, i.e., switched stochastic systems with impulsive jumps [16,29,33].
Moreover, impulsive jumps do not always occur at fixed times, which means that the states of systems
may change instantaneously at random times. In order to simulate this phenomenon, random impulsive
systems, in which the impulsive time sequence is a stochastic process, were introduced in some literature
(see [7,8]). However, there is no work on semi-Markovian switched stochastic systems with asynchronously
randomly impulsive jumps.

Motivated by above discussion, we aim to investigate the exponential stability almost surely (a.s.)
problem for semi-Markovian switched stochastic systems with synchronously and asynchronously ran-
domly impulsive jumps, respectively. For the case that switches and impulses occur synchronously, the
impulsive switching signal is modeled by a semi-Markovian process. For the case that switches and im-
pulses occur asynchronously, the impulsive arrival time sequence and the types of jump maps are driven
by a renewal process and a Markov chain, respectively. The contributions of this paper can be highlighted
as follows: (1) The sufficient conditions of exponential stability a.s. are obtained for semi-Markovian im-
pulsive switched stochastic systems. These results provide the unified framework to study exponential
stability a.s. for impulsive switched stochastic systems driven by Markovian process or renewal process.
(2) By using the limit properties of semi-Markovian process and renewal process, sufficient conditions of
exponential stability a.s. are derived for semi-Markovian switched stochastic systems with asynchronously
randomly impulsive jumps. This class of systems cover the semi-Markovian switched stochastic systems
in [5,6] and randomly impulsive systems as special cases. (3) An effective method is proposed to balance
impulses, switches and stochastic noises in order to guarantee system stability.

Notation. Rn and R
n×m stand for the n-dimensional Euclidean space and the set of n×m matrices,

respectively. N+ represents the set of positive integers and N , N
+ ∪ {0}. ‖ · ‖ represents the Euclidean

vector norm. The superscript T denotes the transpose of matrix (or vector). P and E stand for the
probability measure and the mathematical expectation, respectively. C2 denotes the set of all nonnegative
functions V (x, i) : Rn × SS → [0,∞), which are twice differentiable in x. The symbol tr[·] denotes trace
operator. The notation I(·) stands for the indicator function.
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2 Preliminaries

Consider the switched stochastic system with impulse effects at random times:
{

dx(t) = f(x(t), σ(t))dt + g(x(t), σ(t))dW (t), t 6= tk,

x(t) = h(x(t−), r(k)), t = tk, k ∈ N
+,

(1)

where x(t) ∈ R
n is the system state. W (t) is a d-dimensional Brownian motion defined on the complete

probability space (Ω,F , {Ft}t>0,P). σ(t) : [0,∞) → SS = {1, 2, . . . , r} is the switching signal, which
is a piecewise constant function specifying the index of the active subsystem. A strictly increasing
sequence IS , {T1, T2, . . .} is called switching time sequence satisfying limk→∞ Tk = ∞, in which the
switching signal σ(t) randomly chooses a value from index set SS . The functions f : Rn × SS → R

n and
g : Rn × SS → R

n×d are assumed to be continuous and uniformly locally Lipschitz with respect to x
and f(0, i) = g(0, i) = 0, i ∈ SS . {r(k), k ∈ N

+} is a stochastic process taking values in the index set
SJ and r(k) represents the type of jump map at the kth impulse arrival time tk. The strictly increasing
sequence IJ , {t1, t2, . . .} is called impulse arrival time sequence satisfying limk→∞ tk = ∞, in which r(k)
randomly chooses a value from index set SJ . The function h : Rn×SJ → R

n is assumed to be continuous
and uniformly locally Lipschitz with respect to x and h(0, r(k)) = 0, r(k) ∈ SJ . We assume that r(k),
tk, σ(t) are independent with W (t) and there exists a unique solution of system (1) (see [16, 34, 35]).

It is noted that there exist two kinds of discrete-time random signals in system (1), namely, switching
and impulses, which make effects on the stability. Next, some notations are introduced for such two kinds
of discrete-time random signals. For switching signal σ(t), let N i

S(t) be the activated number of the ith
subsystem in the interval (0, t], Nij(t) be the number of switching from the ith subsystem to the jth
subsystem in the interval (0, t] and Ti(t) be the total time for system (1) active on the ith subsystem in
the interval (0, t], where i ∈ SS . For the impulse arrival time sequence {tk, k ∈ N

+}, let NJ (t) be the
total number of impulse occurring in the interval (0, t] with NJ (0) = 0. Let ξ(k) = tk − tk−1 denote the
impulsive interval between the (k − 1)th impulse arrival time and kth impulse arrival time.

Definition 1 ([20, 21]). The switching signal σ(t) is said to be semi-Markovian switching, if let σ(t) =
σ(Tk) = σk for t ∈ [Tk, Tk+1), k ∈ N, (i) the discrete-time process {σk, k ∈ N} is a Markov chain with
P = [pij ]r×r, i, j ∈ SS , where pij = P{σ(Tk+1) = j | σ(Tk) = i} stands for the transition probability of the
subsystem transiting from i to j at time Tk+1; and (ii) the distribution function of τ(k+1) = T (k+1)−T (k)
is given by

Fij(s) = P
{

τ(k + 1) 6 s | σk = i, σk+1 = j
}

, i, j ∈ SS , s > 0,

which has the continuous differentiable density fij(t) and does not depend on k.
From Definition 1, let τi be the sojourn time on the ith subsystem, i ∈ SS , and then its distribution

function can be defined by

Fi(s) = P
{

τi 6 s
}

= P
{

T (k + 1)− T (k) 6 s | σk = i
}

=
∑

j∈SS

Fij(s)pij , i ∈ SS , s > 0, ∀k ∈ N.

Here, we assume that pii = 0 and the embedded Markov chain {σk, k ∈ N} is irreducible. Then,
{σk, k ∈ N} has a stationary distribution π̄ satisfying π̄P = π̄ and

∑

i∈SS
π̄i = 1.

Definition 2. The system (1) is said to be exponentially stable a.s., if

lim sup
t→∞

1

t
ln ‖x(t;x0, σ0)‖ < 0, a.s.

holds for any initial conditions x0 ∈ R
n and σ0 ∈ SS .

Definition 3 ([3]). For any C2 function V (x, i), i ∈ SS , the two operators L and H, which are associated
with the system (1), are defined as

LV (x, i) ,
∂V (x, i)

∂x
f(x, i) +

1

2
tr

[

gT(x, i)
∂2V (x, i)

∂x2
g(x, i)

]

, HV (x, i) ,
∂V (x, i)

∂x
g(x, i).

By means of operators L, H and Itô formula, we can obtain that for each i ∈ SS ,

dV (x(t), i) = LV (x(t), i)dt +HV (x(t), i)dW (t). (2)
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3 Exponential stability a.s. of semi-Markovian switched stochastic systems
with synchronous impulsive jumps

In this section, we consider the first situation that semi-Markovian switching and impulsive jumps occur
synchronously and the types of impulsive jumps are determined by the modes of subsystems. In this
case, system (1) becomes to be a semi-Markovian impulsive switched system. Next, we will study the
exponential stability a.s. for system (1). Moreover, some corollaries will be given to show that our results
can be considered as a further development of some existing results.

Assumption 1. The semi-Markovian switching and impulsive jumps occur synchronously and the
types of impulsive jumps are determined by the modes of subsystems, i.e., Tk = tk, SJ = SS × SS and
r(k) = σk−1, σk.

Lemma 1 ([6, 21]). Let {σ(t), t > 0} be a semi-Markovian process and {σk, k ∈ N} is its associated
embedded Markov chain; then

lim
t→∞

Ti(t)
t

= πi, a.s., ∀i ∈ SS , (3)

lim
t→∞

N i
S(t)

t
=

πi

mi

, a.s., ∀i ∈ SS , (4)

where mi = E[τi] and π = (π1, π2, . . . , πr) is the stationary distribution of σ(t), which can be given as
πi =

π̄imi∑
j∈SS

π̄jmj
.

Theorem 1. Under Assumption 1, if there exist a function V ∈ C2, positive numbers c, p, µij , and
constants βi > 0, λi ∈ R such that

c‖x(t)‖p 6 V (x(t), i), (5)

LV (x(t), i) 6 λiV (x(t), i), (6)

|HV (x(t), i)|2 > βiV
2(x(t), i), (7)

V (h(x(t−), i, j), j) 6 µijV (x(t−), i), (8)

∑

i∈SS

πi



λi +
∑

j∈SS

pij
mi

lnµij − 0.5βi



 < 0, (9)

hold for all i, j ∈ SS , then semi-Markovian switched stochastic system (1) with synchronous impulsive
jumps is exponentially stable a.s..
Proof. It follows from Itô formula [35] and (2) that

d[lnV (x(s), i)] =

[LV (x(s), i)

V (x(s), i)
− 1

2

|HV (x(s), i)|2
V 2(x(s), i)

]

ds+
HV (x(s), i)

V (x(s), i)
dW (s), i ∈ SS . (10)

Hence, we obtain

lnV (x(t), σ(t)) = lnV (x(Tk), σk)+

∫ t

Tk

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ t

Tk

Υ(s)dW (s), t ∈ [Tk, Tk+1), k ∈ N, (11)

and

lnV (x(T−
k ), σk−1) = lnV (x(Tk−1), σk−1) +

∫ Tk

Tk−1

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ Tk

Tk−1

Υ(s)dW (s), k ∈ N
+, (12)

where Φ(s) , LV (x(s),σ(s))
V (x(s),σ(s)) , Ψ(s) , |HV (x(s),σ(s))|2

V 2(x(s),σ(s)) and Υ(s) , HV (x(s),σ(s))
V (x(s),σ(s)) . By (8), we have

lnV (x(Tk), σk) = lnV (h(x(T−
k ), σk−1, σk), σk) 6 lnµσk−1,σk

+ lnV (x(T−
k ), σk−1), k ∈ N

+. (13)

Combining (11), (12) with (13) yields that for any t ∈ [Tk, Tk+1), k ∈ N
+,

lnV (x(t), σ(t)) 6 lnµσk−1,σk
+ lnV (x(Tk−1), σk−1) +

∫ t

Tk−1

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ t

Tk−1

Υ(s)dW (s).
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Repeating the above procedure, we have for all t ∈ [Tk, Tk+1), k ∈ N
+

lnV (x(t), σk) 6 lnV0 +

k
∑

l=1

lnµσl−1,σl
+

∫ t

0

[

Φ(s)− 1

2
Ψ(s)

]

ds+M(t), (14)

where M(t) ,
∫ t

0
Υ(s)dW (s) is a continuous local martingale with M(0) = 0 and V0 = V (x0, σ0). Thus,

for any t > 0,

lnV (x(t), σ(t)) 6 lnV0 +
∑

i,j∈SS

Nij(t) lnµij +

∫ t

0

[

Φ(s)− 1

2
Ψ(s)

]

ds+M(t). (15)

Notice that the quadratic variation of M(t) is 〈M(t),M(t)〉 =
∫ t

0 Ψ(s)ds. Setting ε ∈ (0, 1) and using the
similar analysis used in Theorem 3.1 of [5] or Theorem 2.2 of [36], we can obtain that there exists an
integer N0 = N0(ω), such that

M(t) 6
2

ε
lnN +

∫ t

0

ε

2
Ψ(s)ds, ∀N > N0, a.s., (16)

holds for 0 6 t 6 N . Substituting (16) into (15), we obtain

lnV (x(t), σ(t)) 6 lnV0 +
∑

i,j∈SS

Nij(t) lnµij +
2

ε
lnN +

∫ t

0

[

Φ(s)− 1− ε

2
Ψ(s)

]

ds, 0 6 t 6 N. (17)

Combining (17) with (6) and (7) yields that for any 0 6 t 6 N,N > N0,

lnV (x(t), σ(t)) 6 lnV0 +
∑

i,j∈SS

Nij(t) lnµij +
2

ε
lnN +

∫ t

0

(

λσ(s) −
1− ε

2
βσ(s)

)

ds

= lnV0 +
∑

i,j∈SS

Nij(t) lnµij +
2

ε
lnN +

∑

i∈SS

(

λi −
1− ε

2
βi

)

Ti(t), a.s.. (18)

Hence, if N − 1 6 t 6 N and N > N0, we can get that

1

t
lnV (x(t), σ(t)) 6

1

N − 1

(

lnV0 +
2

ε
lnN

)

+
∑

i,j∈SS

Nij(t)

t
lnµij +

∑

i∈SS

(

λi −
1− ε

2
βi

) Ti(t)
t

, a.s..

(19)
Let N̆ i

S(t) = N i
S(t)− I(σ(t) = i) be the total number of the events “deactivating the ith subsystem”. It

can be got from (4) that

lim
t→∞

Nij(t)

t
= lim

t→∞
pij

N̆ i
S(t)

t
= lim

t→∞
pij

N i
S(t)− I(σ(t) = i)

t
= πi

pij
mi

, i, j ∈ SS , a.s.. (20)

Substituting (20) and (3) into (19), we can get that

lim sup
t→∞

1

t
lnV (x(t), σ(t)) 6

∑

i∈SS

πi



λi +
∑

j∈SS

pij
mi

lnµij −
1− ε

2
βi



 , a.s..

Letting ε → 0, according to conditions (5) and (9), we obtain that

lim sup
t→∞

1

t
ln ‖x(t;x0, σ0)‖ < 0, a.s..

Thus, semi-Markovian switched stochastic system (1) with synchronous impulsive jumps is exponen-
tially stable a.s..
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Remark 1. Conditions (6) and (7) provide a quantitative estimate of the stability degree of each
subsystem of system (1). For each subsystem i ∈ SS , the negative value of λi − 0.5βi corresponds to the
case that the ith subsystem is exponentially stable a.s.. Compared with the switched system without
impulsive effects, in which µij is often assumed to be independent with j, the different types of impulses
can affect the impulsive switched systems in different manners; that is, some impulses (called stabilizing
impulses) can contribute towards stability (0 < µij < 1), and others (called destabilizing impulses) can
potentially destroy stability (µij > 1). Furthermore, according to condition (9), we can observe that if
the positive effect of stabilizing impulses is big enough, system (1) will be exponentially stable a.s., even
all systems are unstable (i.e., λi − 0.5βi > 0, ∀i ∈ SS).

If the distribution function Fij(s) is only dependent on the current subsystem mode i ∈ SS and obeys
an exponential distribution with parameter qi, in other words,

Fij(s) = P
{

τ(k + 1) 6 s | σk = i, σk+1 = j
}

= 1− e−qis, s > 0, (21)

then the corresponding semi-Markovian impulsive switching signal reduces to Markovian impulsive switch-
ing signal. The generator of Markovian impulsive switching signal σ(t) can be given as Q = [qij ]r×r with

P{σ(t+∆) = j|σ(t) = i} =

{

qij∆+ o(∆), i 6= j,

1 + qii∆+ o(∆), i = j,

where i, j ∈ SS ,∆ > 0, qij > 0 is the transition rate from i to j if i 6= j and qii = −∑

j 6=i qij = −qi. In
this case, the stationary distribution π of σ(t) can be given by solving πQ = 0, and

∑

i∈SS
πi = 1.

Corollary 1 (Markovian process case). Under Assumption 1 and condition (21), if there exist a function
V ∈ C2, positive numbers c, p, µij , and constants βi > 0, λi ∈ R such that (5)–(8) and

∑

i∈SS

πi



λi +
∑

j∈SS ,j 6=i

qij lnµij − 0.5βi



 < 0 (22)

hold for all i, j ∈ SS , then Markovian switched stochastic system (1) with synchronous impulsive jumps
is exponentially stable a.s..
Proof. From (21), we have E[τi] = mi = 1/qi. Next, we show that

πi =
π̄i/qi

∑

j∈SS
π̄j/qj

,
∑

i∈SS

πi = 1 (23)

are equivalent to πQ = 0 and
∑

i∈SS
πi = 1.

Noting that π̄P = π̄ and
∑

i∈SS
π̄i = 1, we obtain that π̄i =

∑

j∈SS
π̄jpji. It follows that

qiπi =
π̄i

∑

j∈SS
π̄j/qj

=

∑

j∈SS
π̄jpji

∑

j∈SS
π̄j/qj

=
∑

j∈SS

qjπjpji,
∑

i∈SS

πi = 1. (24)

By using qji = qjpji, we have

qiπi =
∑

j 6=i

πjqji,
∑

i∈SS

πi = 1, (25)

which means that πQ = 0 and
∑

i∈SS
πi = 1.

Thus, condition (9) can be written as condition (22).
If the distribution function of sojourn time τ(k+1) is independent on the subsystem mode i ∈ SS , i.e.,

Fij(s) = Fik(s) = Flj(s) = F (s), i, j, k, l ∈ SS , s > 0, (26)

then the total number of switching NS(t) is a renewal process and the corresponding semi-Markovian
impulsive switching signal reduces to renewal process impulsive switching signal.

Corollary 2 (Renewal process case). Under Assumption 1 and condition (26), if there exist a function
V ∈ C2, positive numbers c, p, µij , and constants βi > 0, λi ∈ R such that (5)–(8) and

∑

i∈SS

π̄i



λi +
∑

j∈SS

pij
m

lnµij − 0.5βi



 < 0 (27)
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hold for all i, j ∈ SS , where E[τ(1)] = m, then stochastic system (1) switched by renewal process with
synchronous impulsive jumps is exponentially stable a.s..
Proof. From condition (26), it is easy to get that πi =

π̄im∑
j∈SS

π̄jm
= π̄i. Thus, the condition (9) reduces

to condition (27). Then, Corollary 2 follows from Theorem 1.
Furthermore, the subsystem transition probability pij is independent on the current subsystem mode

i ∈ SS , i.e.,

pij = P
{

σ(Tk+1) = j | σ(Tk) = i
}

= P
{

σ(Tk+1) = j
}

= pj , k ∈ N, j ∈ SS . (28)

Then we can obtain the following Corollary 3.

Corollary 3 (Renewal process case). Under Assumption 1 and conditions (26) and (28), if there exist
a function V ∈ C2, positive numbers c, p, µij , and constants βi > 0, λi ∈ R such that (5)–(8) and

∑

i∈SS

pi



λi +
∑

j∈SS

pj
m

lnµij − 0.5βi



 < 0 (29)

hold for all i, j ∈ SS , where E[τ(1)] = m, then stochastic system (1) switched by renewal process with
synchronous impulsive jumps is exponentially stable a.s..
Proof. From conditions (26) and (28), we can see that the stationary distribution of impulsive switching
signal σ(t) is π = (p1, p2, . . . , pr). Thus, the condition (9) reduces to condition (29). Then, Corollary 3
follows from Theorem 1.

Remark 2. (1) In Theorem 1, if there is no impulsive jump at switching instants and the esti-
mate of Lyapunov function at switching instants is independent on the transition subsystem mode,
i.e., h(x(t−), r(k)) = x(t−) and V (h(x(t−), i, j), j) 6 µiV (x(t−), i), then Theorem 1 reduces to the The-
orem 3.3 of [5].

(2) For system (1), if we do not take into account the effects of impulsive jumps and stochastic
noise, i.e., h(x(t−), r(k)) = x(t−) and g(x(t), σ(t)) = 0, then Theorem 1, Corollaries 1 and 3 reduce to
Corollaries 1–3 of [6], respectively.

4 Exponential stability a.s. of semi-Markovian switched stochastic systems
with asynchronous impulsive jumps

In this section, we consider the second situation that semi-Markovian switching and impulsive jumps
occur asynchronously. We assume that r(k), tk, σ(t) and W (t) are mutually independent. In this case,
we will study exponential stability a.s. for system (1). Firstly, we make some assumptions to describe the
randomness of impulsive jumps, including the types of impulsive jumps and the impulsive arrival time
sequence.

Assumption 2. The {r(k), k ∈ N
+} is an irreducible Markov chain taking values in SJ = {1, 2, . . . , q}.

Lemma 2 ([37]). Suppose that Assumption 2 holds, and then the Markov chain {r(k), k ∈ N
+} has a

unique stationary distribution π̃ = (π̃1, π̃2, . . . , π̃q) and

lim
n→∞

∑n

k=1 I(r(k) = l)

n
= π̃l, a.s., ∀l ∈ SJ . (30)

Assumption 3. The {ξ(k), k ∈ N
+} is a family of nonnegative independent identical distributed random

variables.

Remark 3. For the random impulsive signal, there are two ingredients, namely, the impulsive arrival
time sequence and the types of impulsive jumps. In [8], the impulsive arrival time sequence is driven by
a Poisson process, i.e., ξ(k), k ∈ N

+ are independently exponentially distributed, and the types of jump
maps are independently identically distributed. Compared with the case in [8], Assumptions 2 and 3 are
more general. However, Assumption 2 is not suitable to describe the situation that each of the types of
jump maps is driven by a different renewal process.

Lemma 3 (Renewal theorem [21]). Suppose that Assumption 3 holds, and then NJ(t) is a renewal
process and

lim
t→∞

NJ(t)

t
=

1

θ
, a.s., (31)
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where θ = E[ξ(k)], θ is a positive constant.

Theorem 2. Under Assumptions 2 and 3, if there exist a function V ∈ C2, positive numbers c, p, µij , αl,
and constants βi > 0, λi ∈ R such that (5)–(7) and

V (x(t), j) 6 µijV (x(t), i), (32)

V (h(x(t), l), i) 6 αlV (x(t), i), (33)

∑

l∈SJ

π̃l

lnαl

θ
+

∑

i∈SS

πi



λi +
∑

j∈SS

pij
mi

lnµij − 0.5βi



 < 0, (34)

hold for all i, j ∈ SS , l ∈ SJ , then semi-Markovian switched stochastic system (1) with asynchronous
impulsive jumps is exponentially stable a.s..
Proof. For any t ∈ [Tk, Tk+1) and σ(t) = σk, σ(Tk−1) = σk−1, k ∈ N

+, let {t̄1, t̄2, . . . , t̄m} be the impulse
arrival time sequence in the time interval [Tk, t) and {l1, l2, . . . , lm} be the corresponding types of jump
maps.

Combing (10) with (33) yields that for any t ∈ [t̄m, Tk+1),

lnV (x(t), σ(t)) = lnV (x(t̄m), σk) +

∫ t

t̄m

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ t

t̄m

Υ(s)dW (s)

6 lnαlm + lnV (x(t̄−m), σk) +

∫ t

t̄m

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ t

t̄m

Υ(s)dW (s). (35)

Similarly, we have

lnV (x(t̄−m), σk) = lnV (x(t̄m−1), σk) +

∫ t̄m

t̄m−1

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ t̄m

t̄m−1

Υ(s)dW (s)

6 lnαlm−1
+ lnV (x(t̄−m−1), σk) +

∫ t̄m

t̄m−1

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ t̄m

t̄m−1

Υ(s)dW (s).

Iterating the above procedure, we can see that for any t ∈ [Tk, Tk+1), k ∈ N,

lnV (x(t), σ(t)) 6 lnV (x(Tk), σk) +

∫ t

Tk

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ t

Tk

Υ(s)dW (s) +

m
∑

n=1

lnαln

= lnV (x(Tk), σk) +

∫ t

Tk

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ t

Tk

Υ(s)dW (s)

+
∑

l∈SJ

lnαl

(

N l
J (t)−N l

J(Tk)
)

, (36)

whereN l
J(t), l ∈ SJ is the activated number of the lth impulsive jump map in the interval (0, t]. Similarly,

one has

lnV (x(T−
k ), σk−1) 6 lnV (x(Tk−1), σk−1) +

∑

l∈SJ

lnαl

(

N l
J (Tk)−N l

J (Tk−1)
)

+

∫ t

Tk−1

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ t

Tk−1

Υ(s)dW (s), k ∈ N
+. (37)

Combining (36) and (37) with (32) implies that

lnV (x(t), σk) 6 lnµσk−1,σk
+ lnV (x(Tk−1), σk−1) +

∑

l∈SJ

lnαl

(

N l
J (t)−N l

J(Tk−1)
)

+

∫ t

Tk−1

[

Φ(s)− 1

2
Ψ(s)

]

ds+

∫ t

Tk−1

Υ(s)dW (s), t ∈ [Tk, Tk+1). (38)

Repeating the above procedure, we have

lnV (x(t), σ(t)) 6 lnV0+
∑

i,j∈SS

Nij(t) lnµij+
∑

l∈SJ

lnαlN l
J(t)+

∫ t

0

[

Φ(s)− 1

2
Ψ(s)

]

ds+M(t), t > 0. (39)
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With the similar analysis used in Theorem 1, we can obtain that for any ε ∈ (0, 1), there exists an
integer N0 = N0(ω), such that ∀N > N0, 0 6 t 6 N ,

lnV (x(t), σ(t)) 6 lnV0 +
2

ε
lnN +

∑

i,j∈SS

Nij(t) lnµij +
∑

l∈SJ

lnαlN l
J(t) +

∑

i∈SS

(

λi −
1− ε

2
βi

)

Ti(t), a.s..

(40)
Consequently, if N − 1 6 t 6 N and N > N0, we can get that

1

t
lnV (x(t), σ(t)) 6

1

N − 1

(

lnV0 +
2

ε
lnN

)

+
∑

l∈SJ

lnαl

N l
J (t)

t

+
∑

i,j∈SS

Nij(t)

t
lnµij +

∑

i∈SS

(

λi −
1− ε

2
βi

) Ti(t)
t

, a.s.. (41)

By (30), we have that

lim
t→∞

∑NJ (t)
k=1 I(r(k) = l)

NJ(t)
= π̃l, a.s., l ∈ SJ .

Combining this with (31), we obtain

lim
t→∞

N l
J(t)

t
=

π̃l

θ
, a.s., l ∈ SJ . (42)

Substituting (3), (20), (42) into (41), we have

lim sup
t→∞

1

t
lnV (x(t), σ(t)) 6

∑

l∈SJ

π̃l

lnαl

θ
+

∑

i∈SS

πi



λi +
∑

j∈SS

pij
mi

lnµij −
1− ε

2
βi



 , a.s..

Letting ε → 0 and then by conditions (5) and (34), we get that

lim sup
t→∞

1

t
ln ‖x(t;x0, σ0)‖ < 0, a.s..

Thus, the semi-Markovian switched stochastic system (1) with asynchronous impulsive jumps is expo-
nentially stable a.s..

Remark 4. Notice that there are three sources of randomness (i.e., stochastic noise, semi-Markovian
switching and randomly impulsive jumps) and two kinds of discrete-time random signals in system (1).
The effects of impulses, switches and noises are coupled and quantitated in (34). In other words, we
provided a design approach to balance impulses, switches and stochastic noises in order to guarantee
system stability. Moreover, Eq. (34) is different from these in existing results. For example, only
switches or impulses were discussed in [5–8], and switched systems with synchronous impulses were
studied in [16, 18, 19].

Remark 5. Theorems 1 and 2 discussed the exponential stability a.s. for semi-Markovian switched
systems with synchronous impulsive jumps and asynchronous impulsive jumps, respectively. For the case
that switches and impulses occur synchronously, the impulsive interval is equivalent to the sojourn time
of subsystem between consecutive impulses, which means that ξ(k), k ∈ N

+ may obey dependent and
different probability distribution. For the case that switches and impulses occur asynchronously, the
impulsive signal and switching signal are mutually independent; that is, there may be zero or multiple
impulsive jumps during the activation time of a subsystem. However, the impulsive intervals ξ(k), k ∈ N

+

are independently and identically distributed. Thus, these two cases cannot be determined that which is
more general.

In addition, Theorem 2 also can be used to analyze the exponential stability a.s. of the following
randomly impulsive systems with multiple jumps:

{

dx(t) = f(x(t))dt + g(x(t))dW (t), t 6= tk,

x(t) = h(x(t−), r(k)), t = tk, k ∈ N
+,

(43)

where tk and r(k) are the same as in system (1).
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Figure 1 (Color online) The state trajectories of the three subsystems of system (1). (a) σ(t) = 1; (b) σ(t) = 2; (c) σ(t) = 3.

Corollary 4. Under Assumptions 2 and 3, if there exist a function V ∈ C2, positive numbers c, p, αl,
and constants β > 0, λ ∈ R such that

c‖x(t)‖p 6 V (x(t)), (44)

LV (x(t)) 6 λV (x(t)), (45)

|HV (x(t))|2 > βV 2(x(t), i), (46)

V (h(x(t), l)) 6 αlV (x(t)), (47)
∑

l∈SJ

π̃l

lnαl

θ
+ λ− 0.5β < 0 (48)

hold, then randomly impulsive system (43) with multiple jumps is exponentially stable a.s..
Proof. In Theorem 2, if f(x(t), σ(t)) ≡ f(x(t)) and g(x(t), σ(t)) ≡ g(x(t)), that is, there is no subsystem
mode switching in system (1), then system (1) reduces to system (43). In this case, conditions (5)–(7),
(33), (34) become to conditions (44)–(48), respectively. Thus, Corollary 4 can be easily obtained by using
Theorem 2.

5 Numerical example

Example 1. Consider system (1) with the subsystems’ parameters:

f(x(t), 1) = (−2x1, x1 − 1.5x2)
T, g(x(t), 1) = (x1, x2)

T,

f(x(t), 2) = (−3x1 + 2x2, 4x1 − 5x2)
T, g(x(t), 2) = (0.5x2 cosx1, x1 sinx2)

T,

f(x(t), 3) = (0.5x1 − 0.125x2, 0.5x2 sin
2 x1 − 0.125x1)

T, g(x(t), 3) = (x1 cosx2, x2)
T.

Choose Lyapunov functions: V (x, 1) = 0.5x2
1 + x2

2, V (x, 2) = x2
1 + 0.5x2

2, V (x, 3) = 0.5(x2
1 + x2

2). We
can calculate that λ1 = −1, λ2 = −1.5, λ3 = 2.25 and β1 = 4, β2 = 0, β3 = 4. We can see that there are
both stable subsystems (σ(t) = 1, 2) and an unstable subsystem (σ(t) = 3) in the whole system. The
state trajectories of three subsystems are given in Figure 1.

Firstly, we consider the case that the semi-Markovian switching and impulsive jumps occur syn-

chronously. The types of jumps are given by h(x(t), 2, 1) = h(x(t), 3, 1) = (
√
2x1,

√
2
2 (x1 − x2))

T,

h(x(t), 1, 2) = h(x(t), 3, 2) = (
√
6
2 x2,

√
3x1)

T and h(x(t), 1, 3) = h(x(t), 2, 3) = (12x1,
√
2
2 x2)

T. For the
impulsive jumps, we can get that µ12 = 3, µ13 = 0.25, µ21 = 2, µ23 = 0.5, µ31 = 4, µ32 = 3 based on (8).
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Figure 2 (Color online) The switching signals (a) and state trajectories (b) of semi-Markovian switched system (1) with syn-

chronous impulsive jumps.

For the semi-Markovian switching signal σ(t), let the transition probability matrix of σk be

P =









0 0.2 0.8

0.6 0 0.4

0.7 0.3 0









,

and m1 = 0.5,m2 = 0.6 and m3 = 0.8. Then, we calculate that the stationary distribution of σ(t) is
π = [0.3125, 0.1875, 0.5]. Thus, we have

∑

i∈SS
πi(λi +

∑

j∈SS

pij

mi
lnµij − 0.5βi) = −0.7938 < 0 and the

semi-Markovian switched stochastic system (1) with synchronous impulsive jumps is exponentially stable
a.s.. The switching signals and state trajectories are shown in Figure 2.

Next, we study the case that the semi-Markovian switching and impulsive jumps occur asynchronously.
The switching signal, Lyapunov functions and subsystem parameters are the same as those above. We can
get that µ12 = 2, µ13 = 1, µ21 = 2, µ23 = 1, µ31 = 2, µ32 = 2 based on (32). For the asynchronous impul-
sive jumps, let r(k) be a discrete-time Markov chain taking values in SJ = {1, 2, 3} and the types of jumps

are given by h(x(t), 1) = (
√
2
2 x1,

√
2
2 x2)

T, h(x(t), 2) = (
√
2x1,

√
2x2)

T and h(x(t), 3) = (
√
3x1,

√
3x2)

T.
A simple calculation shows that α1 = 0.5, α2 = 2 and α3 = 3. Let the transition probability matrix of
r(k) be

Π =









0.5 0.4 0.1

0.3 0.4 0.3

0.2 0.3 0.5









and have a unique invariant distribution π̃ = [ 2162 ,
23
62 ,

18
62 ]. The impulsive interval in the mean is θ = 1.5.

Thus, we can get
∑

l∈SJ
π̃l

lnαl

θ
+

∑

i∈SS
πi(λi +

∑

j∈SS

pij

mi
lnµij − 0.5βi) = −0.2164 < 0 and the semi-

Markovian switched stochastic system (1) with asynchronous impulsive jumps is exponentially stable a.s..
The switching signals, impulsive jumps and state trajectories of system (1) are shown in Figure 3.

6 Conclusion

The exponential stability a.s. was discussed for semi-Markovian switched systems with synchronous
impulsive jumps and asynchronous impulsive jumps, respectively. By applying the multiple Lyapunov
function approach and the ergodic properties of semi-Markovian process and discrete-time Markov chain,
sufficient conditions of exponential stability a.s. were obtained. Theorem 1 presents a unified framework
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Figure 3 (Color online) The switching signals and impulsive jumps (a), and state trajectories (b) of semi-Markovian switched

system (1) with asynchronous impulsive jumps.

to study exponential stability a.s. for impulsive switched stochastic systems driven by Markovian process
or renewal process. Theorem 2 can be regarded as a general result of the semi-Markovian switched
stochastic systems and randomly impulsive systems. Future work will focus on applying our results to
real-world complicated systems such as networked systems [28].
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