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Abstract Relative pose estimation has become a fundamental and important problem in visual simulta-

neous localization and mapping. This paper statistically optimizes the solution for the homography-based

relative pose estimation problem. Assuming a known gravity direction and a dominant ground plane, the

homography representation in the normalized image plane enables a least squares pose estimation between

two views. Furthermore, an iterative estimation method of the camera trajectory is developed for visual

odometry. The accuracy and robustness of the proposed algorithm are experimentally tested on synthetic

and real data in indoor and outdoor environments. Various metrics confirm the effectiveness of the proposed

method in practical applications.
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1 Introduction

Given a number of point correspondences between homogeneous vectors, relative pose estimation finds
the pose transformation of a view with respect to a different view. Relative pose estimation is a funda-
mental subroutine of various applications such as simultaneous localization and mapping [1], and target
localization and tracking [2, 3]. Efficient and accurate solutions to relative pose estimation have been
extensively pursued in recent years, culminating in the 5-point algorithm [4, 5], 7-point algorithm [6], 8-
point algorithm [7], 17-point algorithm [8], and n-point algorithm [9] among others. The noise sensitivity
of these algorithms can be reduced in two ways: developing a robust framework or finding a statistical
optimization solution. The random sample consensus (RANSAC) [10], which is usually employed as a
robust framework, iteratively obtains the camera pose from the minimal number of random point corre-
spondences and uses the remaining point correspondences for validation. The minimal number of point
correspondences is the least number of point correspondences needed by the corresponding pose estimation
algorithm; for example, the 5-point algorithm requires at least five point correspondences. Meanwhile,
statistical optimization of the camera pose is usually performed nonlinearly using methods such as the
Gauss-Newton (GN) or the Levenberg-Marquardt method, which obtains accurate pose estimations for
any set of point correspondences.

The complexity of the RANSAC process is exponentially related to the minimal number of point cor-
respondences necessary for the camera pose estimation; therefore, reducing the number of required point
correspondences is crucial for improving the computational efficiency and robustness of RANSAC. In
general, relative pose estimation within the robust framework can be tackled under some constraints [11].
When the intrinsic parameters of the camera are known, five point correspondences are sufficient to esti-
mate the essential matrix [4]. The essential matrix is then decomposed into a relative rotation matrix and
a translation vector, which describes the camera pose between two views. Using the general assumption
that all three-dimensional (3D) points lie on a plane, the homography can be estimated by four point
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correspondences [6]. The authors of [12] proposed an inverse projection ray-based iterative method for
relative pose estimation, which requires at least four point correspondences. When a common direction is
known, the camera pose can be estimated from just three point correspondences [13–16]. A closed-form
solution for three points was proposed in [17]. The authors represented rotation as unit quaternions, and
verified their solution using the autonomous aerial refueling system of a vision-based unmanned aerial
vehicle (UAV) [18]. Further, if the rotation between two views is provided by an inertial measurement
unit (IMU), the remaining translation can be recovered up to a scale using only two point correspon-
dences [19]. In summary, the number of point correspondences required in the relative pose estimation
can be reduced by enforcing some assumptions or providing additional information. In fact, a common
direction can be easily obtained by the IMU or inferred from the vanishing points [20]. The plane hypoth-
esis is reasonable because many typical plane scenarios such as indoor robots and self-driving cars are
possible in nature. Some studies have combined the common direction and dominant plane assumptions
to achieve relative pose estimation with a minimum of two point correspondences [21–23].

In [21–23], the minimal solution was obtained using prior knowledge of the reference plane used for
the homography estimation and the gravity vector used for image alignment between two views. Guan
et al. [21] decoupled the camera pose estimation by separating the point correspondences into two sets: a
far set for estimating the rotation, and a near set for estimating the translation. However, the distinction
between the far and near points is ambiguous, leading to a suboptimal estimation result. Although the
2-point method in [22,23] was identical to the two aforementioned hypotheses, the 2-point method based
on the three residual components of bearing vectors is redundant and even fails in some cases because
the covariance matrix of the bearing vectors is singular [24]. Moreover, the 2-point method allows two
possible solutions, and the subsequent verification is unclarified and difficult. As both hypotheses are
beneficial in decreasing the number of point correspondences, they are further extended in our method.
Our method also retains the homography scale factors, which are usually eliminated unnecessarily [21–23]
with noticeable consequences on the estimation accuracy.

Therefore, we propose a least-squares solution to the relative pose estimation problem based on the
homography error in the normalized image plane by assuming a known gravity direction. This paper
makes three main contributions to the pose estimation literature. First, based on a known gravity
direction, it introduces constant and solvable homography scale factors that improve the calculation
accuracy. By contrast, traditional methods [21–23] ignore the scale factors because their values depend
on the point correspondences. Second, the homography error is formulated in the normalized image plane
ensuring a unique optimal solution. By contrast, traditional methods admit multiple solutions. Third,
an iterative estimation method of the camera trajectory is developed for visual odometry. According to
the gravity direction and the ground plane hypotheses, the proposed homography-based least squares
(HLS) solution computes the camera motion using at least two point correspondences between two views.
Finally, the accuracy and robustness of the proposed method is demonstrated by performing a variety of
experiments. The proposed method outperforms the compared methods and is suitable and robust for
practical applications.

The remainder of this paper is organized as follows: Section 2 formulates the homography-based pose
estimation problem between two views; Section 3 estimates the relative camera pose via a transformed
linear least squares formulation and proposes the iterative camera trajectory estimation algorithm for vi-
sual odometry; Section 4 quantitatively compares the performances of the proposed and classical methods
using synthetic and real data in indoor and outdoor environments. A conclusion is drawn in Section 5.

2 Problem formulation

The images for solving the camera pose estimation problem are taken by a monocular camera at different
time instants. Let xi = [xi, yi, zi]

T be the coordinates of a given 3D point or vector x = [x, y, z]T in the
real world camera coordinate system at time i, where i is a positive integer. The set of feature points
on the ground plane [25] extracted from the image at time i is denoted as Xi = {xk

i : k = 1, . . . ,m}
(m > 2), where xk

i is the k-th 3D point in the camera coordinate system at time i. The ground plane is
described by

NT
i xk

i + di = 0, (1)

where di > 0 is the distance between the origin of the camera and the ground plane at time i, and Ni is
the unit normal vector of the ground plane in the camera coordinate system at time i.
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Figure 1 (Color online) Camera coordinate systems aligned with the ground plane (called the ground coordinate system). The

detected 3D points lie on the ground plane.

From time i to j, we have
xk
j = Rjix

k
i + tji, (2)

where Rji and tji are the rotation matrix and the translation vector, respectively, owing to the motion
of the camera. By (1), we get

xk
j = Rjix

k
i − tji

NT
i xk

i

di
=

(

Rji −
tjiN

T
i

di

)

xk
i . (3)

In Figure 1, the gravity direction is assumed to be known (obtained by an IMU) [21–23]. Subsequently,
the camera coordinate system can always be rotated to coincide with the ground coordinate system with
the x-y plane parallel to the ground plane. The coordinates of xk

i in the ground coordinate system can
be represented as

xk
i′ = Ri′ix

k
i , (4)

where Ri′i is the corresponding rotation matrix. It holds that Ri′i = R−1ii′ = RT
ii′ and Ri′iNi = N =

[0, 0, 1]
T
. Note that the last entry of xk

i′ is exactly di which is the height of the camera and also the depth
of xk

i′ , and this property holds for all k. Combining (3) and (4), we get

xk
j′ = Rj′j

(

Rji −
tjiN

T
i

di

)

Rii′x
k
i′ =

(

Rj′i′ −
tj′i′N

T

di

)

xk
i′ , (5)

where

Rj′i′ , Rj′jRjiRii′ , tj′i′ , Rj′jtji. (6)

In reality, the normalized vector x̄k
i , xk

i /di + vki instead of the xk
i′ is measured, where di is the depth of

the ground point xk
i′ in the ground coordinate system of the camera at time i, and vki is the measurement

noise. The last entry of x̄k
i should be 1.0 for all k.

From (5), we obtain

x̄k
j′ − vkj = µji

(

Rj′i′ −
tj′iN

T

di

)

(

x̄k
i′ − vki

)

, (7)

where µk
ji , zki /z

k
j is the homography scale factor which is positive. It can be simplified as

x̄k
j′ = Hj′i′ x̄

k
i′ + wk

ji, (8)

where

Hj′i′ , µji

(

Rj′i′ −
tj′iN

T

di

)

, wk
ji , vkj −Hj′i′v

k
i . (9)

To minimize the squared mismatching error ‖wji‖
2
, where wji

∆
= [w1

ji,w
2
ji, . . . ,w

m
ji ]

T, the relative pose
estimation is formulated as the following optimization problem:

min
Rji,tji

m
∑

k=1

∥

∥x̄k
j′ −Hj′i′ x̄

k
i′

∥

∥

2
. (10)

Because Rji is a matrix, Eq. (10) cannot be solved directly using the least squares method; however, it
can be simplified and transformed into a tractable problem as described in Subsection 3.1.
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3 Homography based iterative pose estimation

3.1 Least squares solution to relative pose estimation

In this subsection, we first simplify the optimization problem (10) into a standard linear least squares
optimization problem, and then derive the solutions of Rji and tji.

The rotation Rj′i′ has no effect on the z axis, which can be expressed as the yaw angle θj′i′ from the
ground coordinate system i′ to j′. Accordingly, Hj′i′ can be expanded by (9) as

Hj′i′ = µji

















cos θj′i′

sin θj′i′

0

− sin θj′i′
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0

0

0
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−
tj′i′

di









0

0

1









T







. (11)

Because we discuss the homography only from time i to j, we hereafter omit the indeces ji and j′i′

to simplify the derivations (with the exception of cases where the omission would cause confusion).
From (11), we obtain

H =









µ cos θ

µ sin θ

0

−µ sin θ

µ cos θ

0

−µtx
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µ(1− tz)
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0
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, (12)

where tj′i′/di , [tx, ty, tz]
T
and

hj′i′ , [h1, h2, h3, h4, h5]
T (13)

includes the variables to be solved. The above definitions imply that

h2
1 + h2

2 = µ2. (14)

Solving hj′i′ , we easily retrieve Rji and tji in (6) as follows:

Rji = Rjj′
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(15)

Here we must focus on the relative translation vector between two views, which is up-to-scale if di is
unknown. From (10) and (13), we get

x̄k
j′ −Hj′i′ x̄

k
i′ = Ak

i′Hj′i′ − bkj′ , (16)

where

Ak
i′ =









−x̄k
i′ ȳki′ −1 0 0

−ȳki′ −x̄k
i′

0 −1 0

0 0 0 0 −1









, bkj′ =









−x̄k
j′

−ȳkj′

−1









.

We further define the following augmented matrices:

Ai′ =















A1
i′

A2
i′

...

Am
i′















, bj′ =















b1j′

b2j′
...

bmj′















. (17)



Zhao C H, et al. Sci China Inf Sci January 2021 Vol. 64 112204:5

The problem in (10) is transformed into the following linear least squares problem:

min
Hj′i′

‖Ai′Hj′i′ − bj′‖
2
2 . (18)

The unique solution of (18) is then easily obtained as

Hj′i′ =
(

AT
i′Ai′

)−1
AT

i′bj′ . (19)

The detailed computational procedure is given in Algorithm 1.

Algorithm 1 The proposed HLS method

Input: General corresponding measurements X̄i and X̄j , and the known Ri′i and Rj′j at time i and j respectively.

Output: Rotation matrix Rji and translation vector tji .

1: Pre-rotate each measurement according to (4), and then normalize them to get X̄i′ and X̄j′ ;

2: Calculate the coefficient matrices Ai′ and bi′ for all point correspondences according to (17);

3: Obtain the closed-form solution Hj′i′ according to (19);

4: Acquire the estimation result Rji and tji according to (15);

5: Return Rji and tji .

Remark 1. The Rji directly solved by (15) may not be a valid rotation matrix because of the numerical
error. Thus, we compute the single value decomposition of Rji as

Rji = URDRV
T
R . (20)

The final rotation is then estimated by minimizing the Frobenius norm [6]:

Rji = URV
T
R . (21)

3.2 Iterative camera trajectory estimation

According to (15), di should be known for solving tji, which implies that monocular uncertainty can
be restored. However, this measurement may require extra sensors, such as height-finding radar or a
barometer equipped on the drone, which can easily estimate the initial camera height. If di is known,
then from the definition of µji and (14) we get

dj =
di

√

h2
1,j′i′ + h2

2,j′i′

, (22)

implying that di can be iteratively estimated given the initial height d0 of the camera. If possible, dj
should be combined with the barometer measurements to improve the robustness of the visual odometry.

The procedure for an iterative linear HLS estimation of the camera pose is described in Algorithm 2.

Algorithm 2 Iterative camera trajectory estimation

1: Initialize d0 and set R00 = I, t00 = 0;

2: i = 0;

3: j = i + 1;

4: Estimate Rji and tji by Algorithm 1;

5: Updata camera pose by R0j ← R0iR
T

ji and t0j ← t0i −R0iR
T

jitji ;

6: Update dj according to (22);

7: Return camera trajectory {[R0j |t0j ]};

8: Iterate time sequence i← i + 1;

9: Repeat from step 3 to step 8.

4 Experimental results

In this section, we evaluate the performance of the proposed method primarily by assessing the errors in
the relative pose estimation method (Subsection 3.1). We also determine the error in the homography
scale factor between two views. It is noteworthy that the feasibility of our algorithm is verified by a plain
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and heuristic visual odometry. First, the efficiency of the algorithm is tested in the presence of synthetic
image noise and/or IMU noise. Second, to evaluate the robustness of the proposed method in the presence
of real noise, the algorithm is evaluated on real data from the ETH dataset [26], and its performance is
compared with that of the 2-point method [22]. Third, a UAV based navigation experiment is performed
to validate the applicability of the proposed method. The proposed method is then fully validated by the
synchronous application of various error metrics.

4.1 Experiment with synthetic noise

To evaluate the algorithms on synthetic noise, the following experimental procedure is conducted. The
average distance between the ground plane and the center of the first camera center is set to 1 m. The
baseline between two cameras is set to 0.1 m, the focal length is fixed at 1000 pixels, and the field of
view is 120◦. The ground plane is constructed from m = 400 randomly sampled 3D points, 100 of which
are placed close to the periphery of the imaging plane (i.e., far from the camera). The accuracy of the
proposed method is evaluated on synthetic data subjected to different image noise and increasing IMU
noise, and subsequently compares with those of 2-point [22] and 5-point [5] methods. Each algorithm is
evaluated either along the x- or y-axis of the first camera, which represents the forward and sideways
camera motions, respectively. Meanwhile, the second camera is rotated around each axis. Each data
point in the plots represents the first two intervals of the 5-partitions (quintiles) of 1000 measurements
with points randomly generated from the ground plane.

To evaluate the robustness of the proposed relative pose estimation method, we compare the relative
translation and rotation between times j and i, respectively. The rotational error compares the angle
difference between the true and estimated rotations. When di is unknown, the estimated translation from
time i to j is known only up to a scale, i.e., only the translational direction is obtained, so we compare
the angle difference between the true and estimated translations. The rotational and translational errors
are computed as follows [21].

(1) Rotational error:

eR=arccos
((

Tr
(

R
gt
ji R̂

T
ji

)

− 1
)/

2
)

;

(2) Translational error:

et = arccos
((

t
gt
ji

T
t̂ji

)/

(∥

∥t
gt
ji

∥

∥

∥

∥t̂ji
∥

∥

)

)

,

where R
gt
ji , t

gt
ji denote the ground-truth transformations and R̂ji, t̂ji are the corresponding estimated

transformations.
Figure 2 shows the results for forward and sideways motion with varying image noise and precise

IMU measurements. Both the HLS and 2-point methods outperform the 5-point method in terms of
accuracy, and the HLS method performs slightly better than the 2-point method in terms of precision.
Figure 3 compares the results dering forward and sideways motions under different IMU noise and constant
image noise (0.5 pixels standard deviation). As shown in Figures 3(a), (b), (e), and (f), the precision of
the estimation rotation decreases slightly for HLS with GN optimization (depicted as HLS+GN), and the
HLS method and the 2-point method for rotation estimation are decreasing slightly. Figures 3(c), (d),
(g), and (h) clearly demonstrate the higher translation estimation performances of the HLS and HLS+GN
methods compared to the 2-point method. Additionally, the HLS method is more robust for distant 3D
points compared to other methods in the presence of varying image and IMU noise. Figure 4 shows the
estimation error in the homography scale factor under different noise. In these experiments, 1000 scale
estimation errors are recorded at each error level. Although the uncertainty of the scale estimation error
increases with the noise level, the proposed method is robust toward image and IMU noise.

The time consumptions of the HLS and the 2-point methods are of the same order of magnitude in all
experiments. In both methods, the camera pose between two views is estimated in approximately 0.1 ms,
which is sufficiently fast for real-time applications. In conclusion, it is easier to acquire a more accurate
relative pose estimation using the HLS method.

4.2 Experiment on the ETH dataset

We compare the performance of the HLS and 2-point [22] methods using the ETH dataset [26]. The ETH
dataset is an indoor dataset comprising a quadrotor with a downward-looking camera with a 130-degree
field of view. The dataset contains n = 1361 monochrome sequences recorded by the quadrotor flying
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Figure 2 (Color online) Evaluation of the HLS, 2-point (2pt), and 5-point (5pt) methods during forward ((a) and (c)) and

sideways ((b) and (d)) motions with varying image noise.

with a circular trajectory in an office-size environment. The single ground-plane scene and real-time
IMU data present an ideal scenario for testing our method. In this experiment, we extract 1000 SIFT
(scale invariant feature transform) features [27] from each image and match them based on the epipolar
geometry [28] between consecutive frames. Note that these features lie directly on the ground because of
the nature of the dataset. Using the IMU data of the sequences, we pre-rotate the features to align them
with the ground plane. The camera trajectory is then estimated by the proposed method.

For the error evaluation, we assume that the proposed method computes a sequence of camera poses
between consecutive frames:

{

T1,2, . . . ,Tn−1,n ∈ SE (3) | Ti,i+1 =

[

R̂i,i+1

0

t̂i,i+1

1

]

, i = 1, . . . , n− 1

}

,

and their corresponding ground-truth camera trajectories are

{

Q1, . . . ,Qn ∈ SE(3) | Qi =

[

R
gt
wi

0

t
gt
wi

1

]

, i = 1, . . . , n− 1

}

,

where R̂i,i+1 and t̂i,i+1 are the estimated rotation and translation transformations from the (i + 1)th

camera coordinate system to the ith camera coordinate system, respectively, and R
gt
wi and t

gt
wi are the true

rotation and translation transformations from the ith camera coordinate system to the world coordinate
system w, respectively. To estimate the trajectory drift error, the relative pose error (RPE) [29] between
the ith and the (i+ 1)th frames is introduced as follows:

Ei,i+1 =
(

Q−1i Qi+1

)−1
Ti,i+1.
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Figure 3 (Color online) Evaluation of the HLS, HLS+GN, and 2-point methods during forward ((a)–(d)) and sideways ((e)–(h))

motions with increasing IMU noise from 0◦ to 1◦. The image noise is fixed at 0.5 pixels standard deviation.

From n − 1 RPEs obtained between consecutive frames, the root mean squared error (RMSE) is
calculated as

RMSE (E1:n−1) =

√

√

√

√

1

n− 1

n−1
∑

i=1

‖trans (Ei,i+1)‖
2,

where trans (Ei,i+1) represents the translational component of the RPEEi,i+1, i.e., the first three elements
of the fourth column of Ei,i+1.

Figure 5 shows some matched feature points in the images taken from the trajectory estimated by
the HLS method. The RPEs of the HLS and 2-point methods with RMSEs of 19.3 mm and 22.7 mm,
respectively, are compared in Figure 6. The RPE gradually increases after 300 frames, possibly owing to
severe image distortion and/or image blurring. These results confirm the higher performance of the HLS
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Figure 4 (Color online) Accuracy of our method in estimating the homography scale factor. We increase image noise from 0 to 1

shown in (a). Also, (b) and (c) report the effect of pitch/roll noise from 0◦ to 1◦, and the image noise is fixed at 0.5 pixels standard

deviation.

method compared to the 2-point method.

4.3 UAV navigation experiment

In the practical application experiment, a drone flies in a circular trajectory heading parallel to the
tangent of the circle. This setup is used to validate the applicability of the proposed method in practice
because when a drone flies horizontally at a constant slow speed, its roll, pitch and yaw angles can be
obtained by airborne IMUs and magnetometers. Starting from the origin of the world coordinate system,
an ordinary visual odometry [30] is performed incrementally relative to the beginning frame, and this
process is relatively affected by cumulative errors. As shown in Figure 7, the trajectory twi of the ith
frame with a scale is roughly obtained from the estimated yaw angle θ̂wi and flying radius r, given that
the initial estimated translation t̂wi is known up to a scale:

twi =
r · sin(θ̂wi)

sin(arccos(NT
y t̂wi) + θ̂wi)

· t̂wi,

where Ny = [0, 1, 0]T is the unit y-axis coordinate.
Because rotational errors in moving camera images manifest as translational errors, they can be consid-

ered as translational errors [29]. To assess the global consistency of the proposed method, we calculate the
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Figure 5 (Color online) A few matched feature points in the images taken from the trajectory estimated by the HLS method.

(a) The 1st frame; (b) the 400th frame; (c) the 800th frame; (d) the 1200th frame.
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Figure 6 (Color online) Evaluating the trajectory drift errors via the RPE of the HLS method and the 2-point (2pt) method

based on the ETH dataset.

absolute trajectory error (ATE) [29] as the absolute distance between the true and estimated trajectories
in each frame:

ζi =
∥

∥t
gt
wi − twi

∥

∥ .

Similarly to the RPE, the RMSE over all frames is calculated as follows:

RMSE (ζ1:n) =

√

√

√

√

1

n

n
∑

i=1

ζ2i ,

where n represents the number of consecutive frames.
The testing platform of our UAV experiments is an Intel Aero RTF Drone1) (see Figure 8(a)), flying

at a height of 5 m (on average) above ground at approximately 0.6 m/s. The control frequency of the

1) Intel aero ready to fly drone. 2018. https://software.intel.com/enus/aero/drone-kit.
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Figure 8 (Color online) Experimental platform (a) and its environment (b): (1) UWB receiver, (2) downward-looking camera,

(3) flight controller with IMU, magnetometer, and other components, (4) four UWB anchors, (5) Intel drone, and (6) start point.

flight controller is 25 Hz and the yaw angle θgtwi of the drone is measured by the airborne IMU and
magnetometer. A downward-looking OmniVision OV7251 VGA camera2) with a resolution of 630× 470
and an 80◦ field of view is attached to the bottom of the drone. The true position of the drone is revealed
by an ultra-wideband (UWB) wireless localization system3) (see Figure 8(b)), which delivers stable and
accurate positioning performance by virtue of its 50 Hz update frequency and positioning accuracy below
10 cm. The UWB anchors are fixed on tripods at the four vertices of a 15 m× 15 m square deployment
region, and the UWB receiver is fixed on the drone (see Figure 8). In this setup, the t

gt
wi of the ith frame

can be obtained by a calibrated rigid-body transformation and by synchronizing the timestamps between
the UWB and the IMU module. Considering the size of the deployed UWB wireless localization system
and the influence of the field of view and flight altitude, we set r ≈ 3.5 m to achieve a balance between
the sufficient number of overlaps and movements.

The top views of the estimated and true flight trajectories are qualitatively compared in Figure 9.
The trajectory begins in the counterclockwise direction from the origin of the coordinate system. The
estimated trajectory is in strong agreement with the real trajectory at the initial stage, but later drifts
from the real trajectory as incremental errors accumulate in the rough visual odometry and the flight
environment is interfered by breezes, textureless grass, and other disturbances. Note that the RMSE
of the proposed method (0.7 m) is mainly caused by cumulative errors in the middle and late stages.
Overall, the effectiveness of the proposed method is verified in practice.

5 Conclusion

We proposed a least squares solution to the relative pose estimation problem based on the homography
error in the normalized image plane. Our method improves not only the accuracy of the estimated relative
pose, but also the solvability of the homography scale factor. Furthermore, we developed an iterative

2) OmniVision. Ov7251. 2018. https://www.ovt.com/sensors/OV7251.

3) Ku Y. I-uwb-lps. 2017. http://www.inffuture.com/products/i-uwb-lps/.
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Figure 9 (Color online) Top views of the estimated and the true flight trajectories.

estimation method for the camera trajectory in visual odometry applications. Assuming a known gravity
direction and a dominant ground-plane environment, the relative pose in the homography representation
can be solved by linear least squares estimation, followed by a fast iterative Gauss-Newton optimization.
The environmental assumptions of the proposed method are commonly met in ground-based UAVs and
self-driving scenarios. Finally, synthetic as well as real data experiments in various metrics demonstrate
that the proposed method not only outperforms the existing methods with respect to accuracy and
robustness, but also is suitable for practical applications.
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