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Dear editor,
With the development of silicon-based processes,
a variety of RF devices have become possible to
be designed at frequencies above 100 GHz [1]. Be-
sides, sub-terahertz systems operating in D-Band
have the potential to be applied to a wide range of
applications, such as high-resolution radar, energy
detection, and broadband ultra high-speed com-
munication [2]. However, for these applications,
the generation of a D-Band signal source with mil-
liwatt level output power, better phase noise, and
wider tuning range remains a big challenge.

Various researches have been carried out for
the implementation of the D-Band signal source.
Among them, three methods are widely used, and
they are the fundamental oscillator, the harmonic
oscillator, and the multiplier with low-frequency
signal source. The fundamental oscillator has been
widely used, while the tuning range is limited ow-
ing to parasitic capacitance introduced by layout.
The harmonic oscillator is relatively easy to im-
plement wide tuning range, but the output power
is limited. The more traditional approaches are
still based on multiplier chain with low-frequency
oscillator [1].

However, as we all know, the multiplier chains
have many unwanted harmonic components.
These harmonic signals would create multiple in-
termodulation components in the D-Band signal
source and distort the phase noise. Therefore, it is

necessary to suppress these unwanted harmonics
for better phase noise [3].

In this study, we present a D-Band signal source
that demonstrates 5.6 dBm peak output power at
159 GHz, as shown in Figure 1(a). By applying
high pass matching networks in tripler and doubler
design, the signal source achieves a comparable un-
wanted harmonics suppression of over 30 dBc in
the whole output tuning range. Also, by analyz-
ing the influence of the input power level (which
was detected at the output of the E-Band tripler
through power detector) and the base bias volt-
age on the output power of the D-Band doubler,
implementation of the doubler has been carefully
designed for higher output power.

24–28 GHz VCO and divide-by-4 design. This
VCO is based on our previous study reported
in [4]. Differential topology is adopted owing
to the advantage of the virtual RF ground node
for better phase noise and higher output power.
Special attention is paid to symmetry during the
VCO layout design to obtain better fundamental
signal suppression, which in turn leads to better
phase noise. Static topology frequency divider is
adopted owing to the strict requirements of low in-
put power level and high sensitivity. The divide-
by-4 is achieved by cascading two stages of D-latch
topology-based static divide-by-2 in an ac-coupled
manner.

E-Band tripler design. The third harmonic en-
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Figure 1 (Color online) (a) Block diagram of the D-Band signal source; (b) schematic of the E-Band tripler; (c) schematic
of the D-Band doubler; (d) simulated output power of the D-Band doubler versus input power and base bias voltage at
78 GHz; (e) die micrograph of the signal source; (f) measured output frequency and phase noise vs. the tuning voltage
Vtune of VCO; (g) measured output power and harmonic suppression vs. the tuning voltage Vtune of VCO.

hanced tripler is adopted owing to its wide tun-
ing range and relatively low input power require-
ment [5], as depicted in Figure 1(b). Transformers
(TFs) are used for the tripler impedance matching.
In E-Band, the majority of the TF has character-
istics that are single-turn coil and stacked coupling
structure [6,7]. However, in the design of cascaded
cascode topology differential circuits, the real part
of the next stage input impedance is usually sev-
eral times or a fraction of the previous stage out-
put impedance. So it is difficult to well match the
cascaded cascode topology with a single-turn TF
according to the impedance transformation the-
ory. One effective approach to well match these
impedances with large difference is to use TF with
metals turn ratio of 1:n (n > 2). However, this
method will greatly increase the parasitic resis-
tance and capacitance of the TF, thereby deteri-
orating the quality factor of the TF and affecting
the operating bandwidth.

In our design, the methodology to co-design a
single turn TF with a series inductance is pre-

sented. The output impedance of the tripler
can be well transferred into a conductance circle
with the adopted tuning inductance L3 where the
impedance matching can be implemented by a sin-
gle turn TF easily [8]. The output of the tripler
is designed along with a passive 15 dB coupler, al-
lowing for accurate detection of its output power.

D-Band doubler design. The D-Band doubler is
the most critical component in this D-Band signal
source design because it directly determines the
output power and the quality of the final output
signal. Figure 1(c) shows the circuit schematic of
the proposed D-Band doubler. As presented in [9],
the base bias voltage of the doubler core will af-
fect the output power. In the design process, we
found that not only the base bias voltage but also
the input power has a great influence on the out-
put power. Figure 1(d) shows the output power of
the doubler as a function of the input power and
the base bias voltage Vb4 at 78 GHz. It is obvious
that the optimal output power of the doubler cor-
responds to different base bias point at different in-
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put power level. Besides, as the input power level
increases, the dc bias voltage Vb4 that corresponds
to the optimal output power gradually decreases.
Therefore, the output power of the E-Band tripler
must be carefully detected at different frequency,
to obtain an optimum dc bias voltage for maxi-
mizing the output power of the D-Band doubler.
Thus, an passive RF power detector is inserted be-
tween the E-Band tripler and the D-Band doubler
to accurately detect the RF signal power level that
entering the D-Band doubler. Then, the dc bias
voltage of the D-Band doubler is determined based
on the output dc voltage of the power detector for
optimum output power at different frequencies.

Fabrication and measurement. Chip micrograph
of the D-Band signal source is shown in Fig-
ure 1(e). The size of the chip including pads is
2 mm ×1.2 mm. The chip is tested through on
wafer probing with dc pads bonded to printed cir-
cuit board to provide dc power. For output fre-
quency test, the OML WR05 harmonic mixer with
Keysight spectrum analyzer N9030A is used. The
corresponding ×3, ×4 and ×5 harmonics are mea-
sured using N9030A with the OML WR08 har-
monic mixer. The measured output frequency
vs. the tuning voltage Vtune is illustrated in Fig-
ure 1(f). When the tuning voltage Vtune is tuned
from 0 to 1.6 V, the measured output frequency of
the VCO is from 23.8 to 28.1 GHz and correspond-
ing output frequency of the signal source is from
143.2 to 168.8 GHz. Harmonic signal suppression
is obtained by the difference between the harmonic
signal (×3,×4,×5,×7 and ×8) output power and
the effective RF signal (×6) output power on the
spectrum analyzer. Figure 1(g) plots the measured
output power of the unwanted harmonics rejec-
tion. Benefit from the proposed unwanted har-
monics suppression technique in the tripler and
doubler design, the unwanted harmful harmonics
rejection are better than 30 dBc over the entire
tuning range.

For output power test, the VDI Erickson PM4
power meter with the WR05-to-WR10 waveguide
transition are adopted to detect the output power.
The measured output power vs. the tuning range
is plotted in Figure 1(g). The signal source
achieves a measured peak output power of 5.6 dBm
at 159 GHz, and the output power is higher than
0 dBm when the tuning voltage Vtune changes from
0.1 to 1.6 V. The phase noise of the signal source is
measured at the divide-by-4 output by RS FSUP50
spectral analyzer, because it is difficult and inac-

curate to measure the phase noise directly at the
D-Band doubler output port. The measured phase
noise of the signal source is shown in Figure 1(f).
As illustrated in Figure 1(f), the measured phase
noise is around −93 dBc/Hz @ 1 MHz between
142–168 GHz frequency range.
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