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Dear editor,
With the rapid development of network and com-
munication technology, group systems interrelated
in terms of both time and space are commonly
encountered, such as sensor networks, multi-agent
systems, and smart power grids. How to save com-
munication resources among systems has become
a very important and urgent issue. The thought
of “event-trigger” has come into being, where an
“event” is defined to determine whether the mea-
sured data are “useful enough” for a particular
purpose. Only when the event is triggered, the
data will be sent to an estimation/control cen-
ter over a communication network. Several stud-
ies have demonstrated the distinct advantages of
the event-triggered mechanism in the optimiza-
tion and utilization of communication resources
because the additional information is provided by
the event-trigger condition despite having no com-
munication at the un-triggered time [1].

However, when the estimation/control center
does not receive data, it is unable to judge which
situation happens: the “event” is not triggered; or
the “event” is triggered but the data is lost dur-
ing the communication. This may lead to the im-

proper use of the triggered condition, which poses
new challenges. To address this problem, this
study proposes a deviation compensation tech-
nique for system identification with binary-valued
observations. An identification algorithm is con-
structed, and its strong convergence and commu-
nication rate are given as well. Numerical simu-
lation is also included to illustrate the obtained
results.

Recently, related studies have achieved signifi-
cant developments. For example, Ref. [2] used the
maximum likelihood method to study identifica-
tion of ARMA systems based on finitely quantized
output observations with packet dropouts. Under
both the binary-valued quantization and the com-
munication unreliability, Ref. [3] investigated re-
cursive identification of FIR systems. Ref. [4] han-
dled parameter estimation under event-triggered
binary-valued observations for FIR systems. Inter-
ested readers can also refer to [5–7] and the refer-
ences therein. Most of the existing work focused on
at most two of the following three factors: quan-
tization, event-triggered scheme, and communica-
tion uncertainty. This study essentially proposes
an attempt to deal with all three simultaneously
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Figure 1 (Color online) System set-up and simulation results. (a) System set-up; (b) convergence of θ̂k; (c) communication
rate.

for system identification.
System set-up. Consider the system

yk = G(uk; θ) + dk,

where uk is the input, θ is the unknown parameter,
and dk is the noise. yk is the system output, which
is measured by a binary-valued sensor, and it can
be expressed by the following indicator function:

sk = I{yk6C} =

{
1, if yk 6 C,

0, otherwise,
(1)

with a fixed threshold C ∈ (−∞,∞).
As shown in Figure 1(a), a prediction-based

event-triggered scheme is employed to decide
whether sk should be sent to the remote estimation
center. Let γe

k ∈ {0, 1} denote the transmission in-
dicator, which can be given by

γe
k =

{
1, sk 6= ŝk,

0, sk = ŝk,
(2)

where ŝk = I{G(uk;θ̂k−1)6C} can be seen as the pre-

diction of sk based on the estimate θ̂k−1 of θ at
time k − 1, which can be broadcasted by the re-
mote estimator or computed by the sensor itself.
Here γe

k = 1 means sk is transmitted; otherwise,
there is no communication at this time.

The communication unreliability may lead to
the packet loss during the transmission. Let γd

k

represent whether this packet is lost, i.e.,

γd
k =

{
1, no packet loss,

0, packet loss.

The data received indicator γk = γe
kγ

d
k is acces-

sible to the estimator, but γe
k or γd

k is unknown sep-
arately. Hence, the available information is {γk}
and {γksk}.

To express the thought clearly, this study con-
structed a deviation compensation algorithm to es-
timate θ and established the convergence proper-
ties for the following gain system:

yk = ukθ + dk. (3)

Without loss of generality, let uk ≡ 1. In fact, the
results can be readily extended to the identifica-
tion of FIR systems, rational transfer functions,
Wiener models, and Hammerstein models, as they
can be reduced to identify a group of gain systems
under appropriately designed periodic inputs [8].

Assumption 1. The system noise sequence {dk}
is independent and identically distributed (i.i.d.).
Its accumulative distribution function, denoted by
F (·), is invertible, and its moment generating func-
tion exists. Moreover, the inverse function of F (·)
is twice continuously differentiable.

Assumption 2. The packet loss sequence {γd
k}

is i.i.d., which follows Bernoulli distribution with a
known fixed parameter p < 1, i.e., Pr(γd

k = 0) = p.
In addition, {γd

k} is independent of {dk} and {γe
k}.

Remark 1. (i) For a fixed network structure and
communication payloads, the packet loss probabil-
ity p is often constant when employed in practical
applications. Some methods have been developed
to estimate the unknown p [9]. (ii) The cumula-
tive distribution function F (·) of the noise is as-
sumed to be known in Assumption 1. One can
refer to the method of joint identification in [8]
if it is unknown. (iii) This study only considers
the binary-valued observation. In fact, the results
can be readily extended to cases of multiple-level
quantization as it is possible to view a multi-level
quantized observation as a group of binary-valued
observations with different thresholds [8].
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Identification algorithm. The following devia-
tion compensation algorithm is proposed to esti-
mate θ:

ηk = γksk − γkŝk + (1− p)ŝk, (4)

ξk =

(
1−

1

k

)
ξk−1 +

1

k
ηk, (5)

θ̂k = C − F−1

(
ξk

1− p

)
, (6)

where the distribution function F (·) and the
packet loss rate p is given by Assumptions 1 and 2.
C is the threshold in (1). The initial values are
ŝ0 = 0 or 1 and ξ0 = 1/2.

Convergence. The proposed theorem establishes
the convergence performance of the estimation al-
gorithm.

Theorem 1. Consider the system (3) with
binary-valued observation (1), trigger mechanism
(2), and a packet loss communication environment

under Assumptions 1 and 2. The estimator θ̂k
given by (4)–(6) is convergent to the true value
θ with probability 1, i.e.,

θ̂k → θ, w.p.1 as k → ∞.

Communication rate. For convenience, define

F̃ (z) = I{z<0}F (z) + I{z>0}(1− F (z)), z ∈ R,

where the function F (·) comes from Assumption 1.

Theorem 2. If the conditions in Theorem 1
hold, then we have

(i) The average transmission rate before the
communication channel from the event trigger (2)
is convergent, i.e.,

1

k

k∑

i=1

γe
i → F̃ (C − θ) := γe, w.p.1 k → ∞; (7)

(ii) The average receiving rate after the channel
is also convergent, i.e.,

1

k

k∑

i=1

γe
i γ

d
i → (1−p)F̃ (C−θ) := γ, w.p.1 k → ∞.

The proofs of Theorems 1 and 2 can be found
in Appendix A.

Simulation. We consider the system yk = ukθ+
dk with the binary-valued observation sk given by
(1), where uk ≡ 1, C = 8, and θ = 10. {dk} is i.i.d.
and obeys normal distribution, where the mean is

0 and the standard deviation is 40. The event-
trigger scheme (2) is used to determine whether
sk is sent to the estimation center over a com-
munication network whose packet loss probability
is p = 0.6. The estimation algorithm (4)–(6) is

employed to obtain the estimate θ̂k of unknown
parameter θ. Figure 1(b) shows that the algo-
rithm is convergent, and the packet loss deviation
can be overcome efficiently. Figure 1(c) illustrates
the communication rate. The average transmis-
sion rate converges to γe = 0.4734, and the average
receiving rate converges to γ = 0.1894. Other de-
tails regarding our simulation results can be found
in Appendix B.
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