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Abstract The sequential fusion estimation for multisensor systems disturbed by non-Gaussian but heavy-

tailed noises is studied in this paper. Based on multivariate t-distribution and the approximate t-filter,

the sequential fusion algorithm is presented. The performance of the proposed algorithm is analyzed and

compared with the t-filter-based centralized batch fusion and the Gaussian Kalman filter-based optimal cen-

tralized fusion. Theoretical analysis and exhaustive experimental analysis show that the proposed algorithm

is effective. As the generalization of the classical Gaussian Kalman filter-based optimal sequential fusion

algorithm, the presented algorithm is shown to be superior to the Gaussian Kalman filter-based optimal cen-

tralized batch fusion and the optimal sequential fusion in estimation of dynamic systems with non-Gaussian

noises.
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1 Introduction

Multisensor data fusion has been a hot topic in the last few years, primarily owing to its advantageous

performance in high precision estimation, strong reliability and robustness [1,2]. The aim of multisensor

fusion estimation is to make the best use of the local measurements or local estimators generated from

every single sensor, to get the fusion estimation, which has higher accuracy than any local estimator

that barely uses single sensor’s information [1,3]. It is first studied in military applications and has been

developed in many high-technology fields, such as aerospace, guidance, control, defense, navigation of

intelligent vehicles, positioning of robotics, target tracking, monitoring and fault detection [1, 4–7].

Most of the literatures that study state filtering estimation or fusion estimation are based on the

hypothesis that the process noise and the measurement noise meet Gaussian distribution. Ma et al. have

done some good work on the filtering estimation. Ref. [8] concerns the variance-constrained distributed

filtering problem for a class of time-varying systems subject to multiplicative noises, unknown but bounded

disturbances and deception attacks over sensor networks, and Ref. [9] aims to construct a filter such that

both the prespecified H∞ requirement and the envelope constraint are guaranteed simultaneously over

a finite horizon. While in some practical applications such as target tracking, where there are some

observation outliers generated by unreliable sensors or in the influence of unknown disturbances, the
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process noise and the measurement noise are non-Gaussian. An effective way to model non-Gaussian

noise is by using the student’s t-distribution [10, 11].

To deal with the problem of filtering and smoothing for linear or nonlinear systems with heavy-tailed

noises, some scholars have made many useful explorations and proposed some filters and smoothers

based on multivariate t-distribution and the variational Bayesian approach [12–18]. However, the fusion

estimation for systems with heavy-tailed noises is rarely considered. Ref. [10] proposes the centralized

batch fusion for a kind of linear time-invariant system with heavy-tailed noises. Based on a cubature

information filter, Ref. [11] presents the centralized fusion for a kind of nonlinear system with heavy-tailed

noises.

It is well known that for the Gaussian noise-driven system, the centralized batch fusion is usually

the globally optimal, which uses the original measurements directly by augmentation of measurement

equations [1, 3]. However, it has several disadvantages: (1) because of augmentation of measurements

and measurement matrices, etc., the computational burden is enlarged; (2) the batch fusion requires

dealing with all the measurements simultaneously at the fusion center, which has low efficiency as all the

measurements are unlikely to come to the fusion center at exactly the same time because of the network’s

limitation of transmitting information or other reasons. Therefore, sequential fusion is studied by a lot of

literature for the Gaussian noise-driven systems, by which the observations of each sensor are processed,

and the estimations are fused in a particular sequence in the fusion center [3, 19–25].

Through the above analysis, we find that there are many open problems for fusion estimation of

dynamic systems disturbed by heavy-tailed noises.

• The sequential fusion for dynamic systems with heavy-tailed noises is not derived.

• The performance evaluation of different fusion algorithms for dynamic systems with heavy-tailed

noises is not considered.

The main contributions of this paper are as follows:

• Because the characteristics of Gaussian and heavy-tailed noises are different, the formulation of the

system should be different, and the extension of sequential fusion estimation from Gaussian noise systems

to the heavy-tailed noise systems is non-trivial. In this article, we intend to present the sequential fusion

estimation algorithm for multisensor dynamic systems with heavy-tailed noises that is formulated using

multivariate t-distributions.

• The performance of different fusion algorithms will be analyzed theoretically and through simulation

examples as well. It is compared with the t-filter-based centralized fusion and the Gaussian Kalman filter-

based centralized fusion, in addition to the comparison between the local estimators that barely use a

single sensor’s information.

The rest of the paper is organized as follows. In Section 2, the problem is formulated. Section 3 derives

the sequential fusion algorithm for the multisensor linear time-variant dynamic systems with heavy-tailed

noises. Section 4 is the simulation and Section 5 draws the conclusion.

2 Problem formulation

The multisensor dynamic system that has N sensors observing a single target can be described as follows

[1, 26, 27]:

xl+1 = Flxl + wl, l = 0, 1, . . . , (1)

yi,l = Hi,lxl + vi,l, i = 1, 2, . . . , N, (2)

where i denotes the i-th sensor. xl ∈ R
n is the system state at the l-th time instant. Fl ∈ R

n×n is the

state transition matrix. yi,l ∈ R
mi is the measurement of sensor i at time l. Hi,l is the measurement

matrix of sensor i. The system noise wl and the measurement noise vi,l are heavy-tailed noises, which

can be modeled by the multivariate t-distribution as follows:

p(wl) = St(wl; 0, Ql, νw), (3)
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p(vi,l) = St(vi,l; 0, Ri,l, νi), i = 1, 2, . . . , N, (4)

where St(·; x̄, P, ν) denotes a multivariate t-distribution whose mean is x̄, scale matrix is P and degree of

freedom (dof) is ν.

Similarly, it is assumed that the system state initial value x0 is also heavy-tailed and meets the

multivariate t-distribution with mean x̂0|0, the scale matrix P0|0 and the dof ν0, i.e.,

p(x0) = St(x0; x̂0|0, P0|0, ν0). (5)

It is assumed that x0, vi,l and wl are uncorrelated.

Our study aims to estimate state xl by sequentially using the multisensor observations, i.e., to find

x̂l|l = E[xl|Yl] =

∫

xlp(xl|Yl)dxl, (6)

Pl|l =
ν − 2

ν
E[x̃l|lx̃

T
l|l|Yl] =

ν − 2

ν

∫

x̃l|lx̃
T
l|lp(xl|Yl)dxl, (7)

where

p(xl|Yl) = St(xl; x̂l|l, Pl|l, ν), (8)

Yl = {yi,t, t = 1, 2, . . . , l; i = 1, 2, . . . , N}. (9)

3 The sequential fusion algorithm

In this section, it is assumed that the dofs of the initial state, the process noise, and the measurement

noises are equal, namely, νw = νi = ν for i = 0, 1, 2, . . . , N . The unequal case will be addressed in

Remark 2.

Before presenting the sequential fusion algorithm, we introduce a lemma first. All the results of Lemma

1 can be found in [17,28,29], and the detailed proof of the last property of Lemma 1 can be found in [30].

Lemma 1. x meets the multivariate t-distribution St(x; x̄, P, ν) whose mean is x̄, scale matrix is P ,

and dof is ν. Its probability density function (pdf) is

p(x) =
Γ(ν+2

2 )

Γ(ν2 )

1

(νπ)
d
2

1
√

det(P )

(

1 +
∆2

ν

)− ν+2

2

, (10)

where ∆2 = (x− x̄)TP−1(x− x̄).

It has the following properties:

• The covariance of x is Σ = ν
ν−2P .

• When ν tends to infinity, the distribution of x reduces to Gaussian.

• Let y = Ax+ b, and then p(y) = St(y;Ax̄ + b, APAT, ν), where A and b are the matrix and vector

of proper dimensions, respectively.

• If x1 ∈ R
d1 and x2 ∈ R

d2 meet joint t-distribution whose pdf is

p(x1, x2) = St

([

x1

x2

]

;

[

µ1

µ2

]

,

[

P11 P12

P21 P22

]

, ν

)

, (11)

where Pii ∈ R
di×di is the scale matrix of xi, Pij ∈ R

di×dj is the joint scale matrix of xi and xj , i = 1, 2,

then the marginal pdfs of x1 and x2 are
{

p(x1) = St(x1;µ1, P11, ν),

p(x2) = St(x2;µ2, P22, ν).
(12)

The conditional pdf p(x1|x2) is given by

p(x1|x2) = St(x1;µ1|2, P1|2, ν1|2), (13)
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where

ν1|2 = ν + d2, (14)

µ1|2 = µ1 + P12P
−1
22 (x2 − µ2), (15)

P1|2 =
ν +∆2

2

ν + d2
(P11 − P12P

−1
22 PT

12), (16)

and ∆2
2 = (x2 − µ2)

TP−1
22 (x2 − µ2).

Let

yal =















y1,l

y2,l
...

yN,l















, Ha
l =















H1,l

H2,l

...

HN,l















, val =















v1,l

v2,l
...

vN,l















. (17)

From (17), Eq. (2) has a new form:

yal = Ha
l xl + val . (18)

From Lemma 1,

p(val ) = St(val ; 0, R
a
l , ν), (19)

where

Ra
l = diag{R1,l, R2,l, . . . , RN,l}. (20)

For system (1) and (18), by the use of the properties listed in Lemma 1, the state estimation by the

centralized fusion of sensors 1 to N can be computed by [17, 18, 31]



























































































x̂c,l|l−1 = Fl−1x̂c,l−1|l−1,

Pc,l|l−1 = Fl−1Pc,l−1|l−1F
T
l−1 +Ql−1,

x̂c,l|l = x̂c,l|l−1 +Kc,lỹc,l,

Pc,l|l =
(ν−2)(ν+∆2

c,l)

ν(ν+m−2) (I −Kc,lH
a
l )Pc,l|l−1,

Kc,l = P
x̃ỹ

c,l|l−1(P
ỹỹ

c,l|l−1)
−1,

P
ỹỹ

c,l|l−1 = Ha
l Pc,l|l−1H

a,T
l +Ra

l ,

P
x̃ỹ

c,l|l−1 = Pc,l|l−1H
T
l ,

∆2
c,l = ỹTc,l(P

ỹỹ

c,l|l−1)
−1ỹc,l,

ỹc,l = yal − ŷc,l,

ŷc,l = Ha
l x̂c,l|l−1,

(21)

where m =
∑N

i=1 mi, and the subscript c denotes the centralized fusion.

To avoid augmentation of matrices and vectors, and to improve the efficiency of fusion estimation, we

will deduce the sequential fusion algorithm in the sequel.

Theorem 1. For the linear dynamic system (1)–(5), the state estimation by sequential fusion of sensors

1 to N can be computed by















x̂s,l|l = x̂s,l|l−1 +
N
∑

i=1

Ki,l[yi,l −Hi,lx̂i−1,l|l],

Ps,l|l = (ν−2
ν

)N
i=N
∏

1
(

ν+∆2
i,l

ν+mi−2 )(I −Ki,lHi,l)Ps,l|l−1,

(22)
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where for i = 1, 2, . . . , N ,


































































Ki,l = P
x̃ỹi

l (P ỹiỹi

l )−1,

P
x̃ỹi

l = Pi−1,l|lH
T
i,l,

P
ỹiỹi

l = Hi,lPi−1,l|lH
T
i,l +Ri,l,

∆2
i,l = ỹTi,l(P

ỹiỹi

l )−1ỹi,l,

ỹi,l = yi,l − ŷi,l,

ŷi,l = Hi,lx̂i−1,l|l,

x̂0,l|l = x̂s,l|l−1 = Fl−1x̂s,l−1|l−1,

P0,l|l = Ps,l|l−1 = Fl−1Ps,l−1|l−1F
T
l−1 +Ql−1,

(23)

and
∏i=N

1 Di = DNDN−1 · · · D1 is the product of N terms from the largest index N to the smallest

index 1. Note that
∏i=N

1 Di 6=
∏N

i=1Di = D1D2 · · · DN because matrix multiplication does not commute.

Proof. Step 1: Time update. From Lemma 1 and (1)–(5), we have

p(xl−1, wl−1|Yl−1) = St

([

xl−1

wl−1

]

;

[

x̂s,l−1|l−1

0

]

,

[

Ps,l−1|l−1 0

0 Ql−1

]

, ν

)

. (24)

From (1) and Lemma 1, we have

p(xl|Yl−1) = St(xl; x̂s,l|l−1, Ps,l|l−1, ν), (25)

where

x̂s,l|l−1 = Fl−1x̂s,l−1|l−1, (26)

Ps,l|l−1 = Fl−1Ps,l−1|l−1F
T
l−1 +Ql−1. (27)

Step 2: Measurement update—step by step. From

p(xl, v1,l|Yl−1) = St

([

xl

v1,l

]

;

[

x̂s,l|l−1

0

]

,

[

Ps,l|l−1 0

0 R1,l

]

, ν

)

, (28)

the following equation can be obtained:

p(xl, y1,l|Yl−1) = St

([

xl

y1,l

]

;

[

x̂s,l|l−1

ŷ1,l

]

,

[

Ps,l|l−1 P
x̃ỹ1

l

P
x̃ỹ1,T
l P

ỹ1ỹ1

l

]

, ν

)

, (29)

where

ŷ1,l = H1,lx̂s,l|l−1, (30)

P
x̃ỹ1

l = Ps,l|l−1H
T
1,l, (31)

P
ỹ1ỹ1

l = H1,lPs,l|l−1H
T
1,l +R1,l. (32)

From the last property of Lemma 1, the conditional probability

p(xl|Yl−1, y1,l) = St(xl; x̂
′
1,l|l, P

′
1,l|l, ν

(1)) (33)

can be obtained by

ν(1) = ν +m1, (34)

x̂′
1,l|l = x̂s,l|l−1 +K1,lỹ1,l, (35)

P ′
1,l|l =

ν +∆2
1,l

ν +m1
[Ps,l|l−1 − P

x̃ỹ1

l (P ỹ1ỹ1

l )−1P
x̃ỹ1,T
l ], (36)
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∆2
1,l = ỹT1,l(P

ỹ1ỹ1

l )−1ỹ1,l, (37)

ỹ1,l = y1,l − ŷ1,l. (38)

Let

K1,l = P
x̃ỹ1

l (P ỹ1ỹ1

l )−1. (39)

Substituting (39) and (31) to (36), we obtain

P ′
1,l|l =

ν +∆2
1,l

ν +m1
(I −K1,lH1,l)Ps,l|l−1. (40)

To preserve the heavy-tailed property, by using the moment matching approach, we have the approxi-

mate t-distribution [17, 18, 31]:

p(xl|Yl−1, y1,l) ≈ St(xl; x̂1,l|l, P1,l|l, ν), (41)

where

x̂1,l|l = x̂′
1,l|l = x̂s,l|l−1 +K1,l[y1,l −H1,lx̂s,l|l−1], (42)

P1,l|l =
ν(1)(ν − 2)

ν(ν(1) − 2)
P ′
1,l|l

=
(ν − 2)(ν +∆2

1,l)

ν(ν +m1 − 2)
(I −K1,lH1,l)Ps,l|l−1. (43)

Similarly, from

p(xl, v2,l|Yl−1, y1,l) = St

([

xl

v2,l

]

;

[

x̂1,l|l

0

]

,

[

P1,l|l 0

0 R2,l

]

, ν

)

, (44)

we have

p(xl, y2,l|Yl−1, y1,l) = St

([

xl

y2,l

]

;

[

x̂1,l|l

ŷ2,l

]

,

[

P1,l|l P
x̃ỹ2

l

P
x̃ỹ2,T
l P

ỹ2ỹ2

l

]

, ν

)

, (45)

where

ŷ2,l = H2,lx̂1,l|l, (46)

P
x̃ỹ2

l = P1,l|lH
T
2,l, (47)

P
ỹ2ỹ2

l = H2,lP1,l|lH
T
2,l +R2,l. (48)

The conditional probability

p(xl|Yl−1, y1,l, y2,l) = St(xl; x̂
′
2,l|l, P

′
2,l|l, ν

(2)) (49)

can be obtained by

ν(2) = ν +m2, (50)

x̂′
2,l|l = x̂1,l|l +K2,lỹ2,l, (51)

P ′
2,l|l =

ν +∆2
1,l

ν +m2
(I −K2,lH2,l)P1,l|l, (52)

K2,l = P
x̃ỹ2

l (P ỹ2ỹ2

l )−1, (53)

∆2
2,l = ỹT2,l(P

ỹ2ỹ2

l )−1ỹ2,l, (54)

ỹ2,l = y2,l − ŷ2,l. (55)
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By using the moment matching approach, the approximate t-distribution can be obtained by

p(xl|Yl−1, y1,l, y2,l) ≈ St(xl; x̂2,l|l, P2,l|l, ν), (56)

where

x̂2,l|l = x̂′
2,l|l = x̂1,l|l +K2,l[y2,l −H2,lx̂1,l|l], (57)

P2,l|l =
ν(2)(ν − 2)

ν(ν(2) − 2)
P ′
2,l|l

=
(ν − 2)(ν +∆2

2,l)

ν(ν +m2 − 2)
(I −K2,lH2,l)P1,l|l. (58)

Generally speaking, for 2 6 i 6 N , we have the approximate t-distribution:

p(xl|Yl−1, y1,l, y2,l, . . . , yi,l) ≈ St(xl; x̂i,l|l, Pi,l|l, ν), (59)

where

x̂i,l|l = x̂i−1,l|l +Ki,l[yi,l −Hi,lx̂i−1,l|l], (60)

Pi,l|l =
(ν − 2)(ν +∆2

i,l)

ν(ν +mi − 2)
(I −Ki,lHi,l)Pi−1,l|l, (61)

Ki,l = P
x̃ỹi

l (P ỹiỹi

l )−1, (62)

∆2
i,l = ỹTi,l(P

ỹiỹi

l )−1ỹi,l, (63)

ỹi,l = yi,l−ŷi,l, (64)

ŷi,l = Hi,lx̂i−1,l|l. (65)

When i = N , the state estimation by sequential fusion of sensors 1, . . . , N can be deduced:

x̂s,l|l = x̂N,l|l = x̂N−1,l|l +KN,l[yN,l −HN,lx̂N−1,l|l]

= x̂s,l|l−1 +

N
∑

i=1

Ki,l[yi,l −Hi,lx̂i−1,l|l], (66)

Ps,l|l = PN,l|l =
(ν − 2)(ν +∆2

N,l)

ν(ν +mN − 2)
(I −KN,lHN,l)PN−1,l|l

=

(

ν − 2

ν

)N i=N
∏

1

(

ν +∆2
i,l

ν +mi − 2

)

(I −Ki,lHi,l)Ps,l|l−1, (67)

where

{

x̂0,l|l = x̂s,l|l−1,

P0,l|l = Ps,l|l−1.
(68)

This completes the proof.

It is well known that for the state estimation of Gaussian driven linear dynamic systems, the Kalman

filter-based centralized batch fusion and the optimal sequential fusion are equivalent in the sense of

least mean square error (LMSE) [1, 20, 32]. For the t-distribution-based filter, to preserve the heavy-

tailed property, a moment matching technique is used to generate the state estimation, so it is actually

an approximate filter. Therefore, unlike the Gaussian driven system, for the system with heavy-tailed

noises, the approximate t-filter-based centralized fusion estimation given by (21) and the sequential fusion

estimation computed by Theorem 1 are inequivalent. In fact, we have the following theorem.
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Theorem 2. The sequential fusion estimation given in Theorem 1 is not equivalent to the centralized

fusion estimation result given in (21) in the sense of LMSE, and any of them could be better, which is

determined by the dof of the noise, the dimension of the measurements, and the quantity of the residuals.

Proof. Let

ac,l =
(ν − 2)(ν +∆2

c,l)

ν(ν +m− 2)
, (69)

as,l =

(

ν − 2

ν

)N i=N
∏

1

(

ν +∆2
i,l

ν +mi − 2

)

. (70)

Similar to the proof of the equivalence property of Kalman filter-based optimal centralized fusion and

the optimal sequential fusion [1, 20, 32], it can be easily verified that

1

ac,l
Pc,l|l =

1

as,l
Ps,l|l. (71)

Therefore,

Ps,l|l =
as,l

ac,l
Pc,l|l. (72)

Let

bsc,l =
as,l

ac,l
. (73)

Substituting (69) and (70) into (73), we have

bsc,l =

(

v − 2

v

)N−1 N
∏

i=1

(

v +∆2
i,l

v +mi − 2

)(

ν +m− 2

ν +∆2
c,l

)

. (74)

From (72)–(74), it can be easily seen that when bsc,l > 1, Ps,l|l > Pc,l|l; otherwise, when bsc,l < 1,

Ps,l|l < Pc,l|l. Only when bsc,l = 1, we have Ps,l|l = Pc,l|l. Thus, which of Ps,l|l and Pc,l|l is larger depends

on the dof of the noise ν, mi (i.e., the dimension of yi,l), and the residual of the measurements (i.e., ỹi,l
and ỹc,l).

Remark 1. It can be easily verified that when ν tends to infinity, the algorithm given in (21) and Theo-

rem 1 reduce to the classical Gaussian driven Kalman filter-based optimal centralized fusion and optimal

sequential fusion, respectively. Therefore, the algorithms derived in this study are the generalization of

the traditional ones that based on Gaussian distribution. It is well known that the t-distribution is quite

similar to Gaussian when the dof is large enough. So, to better formulate the heavy-tailed noises, the dof

of the t-distribution should not be too large. That is part of the reason why we use the moment match-

ing approach in generating the approximate t-filter and fusion algorithms for systems with heavy-tailed

noises.

Remark 2. If the dof of the process noise, the measurement noises, and the initial state are different

in the problem formulation, we may use the moment matching method to realize the centralized fusion

and the sequential fusion algorithms. For example, under the following formulation:














p(x0) = St(x0; x̂0|0, P0|0, ν0),

p(wl) = St(wl; 0, Ql, νw),

p(vi,l) = St(vi,l; 0, Ri,l, νi), i = 1, 2, . . . , N,

(75)

to best preserve the heavy-tailed property, let ν = min{νi, i = w, 0, 1, 2, . . . , N} [17]. By the use of the

moment matching approach, p(x0), p(wl) and p(vi,l) can be approximated by














p(x⋆
0) = St(x0; x̂0|0, P

⋆
0|0, ν),

p(w⋆
l ) = St(w⋆

l ; 0, Q
⋆
l , ν),

p(v⋆i,l) = St(v⋆i,l; 0, R
⋆
i,l, ν),

(76)
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where P ⋆
0|0 = (ν−2)ν0

(ν0−2)νP0|0, Q
⋆
l = (ν−2)νw

(νw−2)νQl and R⋆
i,l =

(ν−2)νi
(νi−2)νRi,l. Then, w

⋆
l and wl, v

⋆
i,l and vi,l, x

⋆
0 and

x0 have the same mean and covariance, respectively. By using Q⋆
l , P

⋆
0|0 and R⋆

i,l to replace Ql, P0|0 and

Ri,l, respectively, in (21) and Theorem 1, we obtain the t-distribution filter-based centralized fusion and

sequential fusion algorithms, respectively, for systems with heavy-tailed noises of different dofs.

4 Numerical example

An example is used to show the effectiveness and the robustness of the presented algorithms in this

section.

Consider a two-dimensional linear target tracking system observed by three sensors [20]:

xl+1 = Fxl + wl, (77)

yi,l = Hixl + vi,l, i = 1, 2, 3, (78)

where

F =

[

0.95 T

0 0.95

]

. (79)

T denotes the sampling interval that takes value as 1 s. State vector xl = [sl ṡl]
T, where sl and ṡl denote

position and velocity of the target, respectively. H1 = [1 1], H2 = [0.9 0.7], H3 = [0.8 0.5]. The initial

state and the scale matrix are x̂0|0 = [10 0]T and P0|0 = diag[2 2]. In this example, the heavy-tailed

process noise wl and measurement noise vi,l are generated according to

p(wl) = St(wl; 0, Q, ν), (80)

p(vi,l) = St(vi,l; 0, Ri, ν), i = 1, 2, 3, (81)

where Q = diag[1 1], R1 = 8, R2 = 16, R3 = 20 and ν = 3. To analyze the filtering performance, the

root mean square errors (RMSEs) of position and velocity are utilized:







RMSEp = 1
L

√

∑L

i=1(sl − ŝl|l)2,

RMSEv = 1
L

√

∑L

i=1(ṡl −
ˆ̇sl|l)2.

(82)

To get the RMSE of the state estimates, L = 200 Monte Carlo simulations are run.

Figure 1 shows the true values and the estimates of position and velocity by using different fusion

algorithms in one Monte Carlo simulation, where the Gaussian centralized fusion (G-CF) denotes the

state estimate obtained by using the centralized batch fusion based on Kalman filter that regards the

heavy-tailed noises as Gaussian noises with covariances being Q′ = ν
ν−2Q and R′

i =
ν

ν−2Ri, respectively.

The centralized fusion (CF) denotes the estimate by using the heavy-tailed centralized fusion algorithm

for linear systems and the sequential fusion (SF) denotes the estimate by using the sequential fusion

proposed in Section 3. From Figure 1, one can get that no matter in position or in velocity, the estimate

by the presented SF best matches the original signal, followed by the CF, and then the G-CF, which

shows the superiority of the presented sequential fusion among different fusion algorithms.

Figures 2 and 3 show the RMSEs of the position and the velocity by using single sensors and different

fusion algorithms. Figures 2(a) and 3(a) compare the RMSEs of position and velocity of different fusion

algorithms, respectively. From these two subgraphs, we can find that the presented sequential fusion

has higher estimation accuracy on both position and velocity compared to the G-CF, and the CF shows

nearly the same performance as the SF. Figures 2(b) and 3(b) compare the RMSEs of the position and

the velocity between single sensors and the SF algorithm. There are three sensors observing the target

with different accuracy. The proposed SF has the smallest RMSEs in position and velocity than any

single sensor and the effectiveness of the presented sequential fusion algorithm has been illustrated.
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Figure 1 (Color online) True values and the fusion estimates of (a) position and (b) velocity.
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Figure 2 (Color online) RMSEs of the position by using the presented SF algorithm compared with (a) other fusion

algorithms and (b) single sensors.

To better compare the performance of different fusion algorithms, the time average RMSEs (RMSEp

for position and RMSEv for velocity) by single sensors and by different fusion algorithms are listed in

Table 1.

Table 1 shows that the proposed SF is most effective in RMSE of the velocity, and the CF shows a

better performance in RMSE of the position. The G-CF gives the worst results among these three fusion

algorithms. From the first row of Table 1, one finds that the average RMSEp by using G-CF is larger than

that by single sensor S1. Because the RMSEs by single sensors are obtained by using the approximate t-

filter, which is more effective than Gaussian Kalman filter when dealing with the state estimation problem

for linear systems with heavy-tailed noises. Thus, the sensor with the highest accuracy is more reasonable



Yan L P, et al. Sci China Inf Sci December 2020 Vol. 63 222202:11

0

Time (s)

1.5

2.0

2.5

3.0

3.5

R
M

S
E

 o
f 

v
el

o
ci

ty
G-CF CF SF

Time (s)

2

3

4

R
M

S
E

 o
f 

v
el

o
ci

ty

S1 S2 S3 SF

10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

100

100

(a)

(b)

Figure 3 (Color online) RMSEs of the velocity by using the presented SF algorithm compared with (a) other fusion

algorithms and (b) single sensors.

Table 1 Average RMSEs by using single sensors and different fusion algorithms

Sensor RMSEp RMSEv Algorithm RMSEp RMSEv

S1 2.6945 2.0883 G-CF 4.1684 2.4537

S2 3.9596 2.4450 CF 2.3128 1.9949

S3 5.0342 2.6874 SF 2.3677 1.9840

Table 2 Average CPU time per Monte Carlo run of single sensors and different fusion algorithms

Sensor CPU time (ms) Algorithm CPU time (ms)

S1 1.94 G-CF 5.24

S2 1.93 CF 9.52

S3 1.96 SF 5.87

to show superiority than the Gaussian Kalman filter-based centralized fusion in state estimation. The

CF and the SF based on approximate t-filter show better performance than all single sensors.

To make a further performance evaluation of different fusion algorithms, we show the CPU time of

three single sensors and three fusion algorithms in Table 2. It is shown from Table 2 that the G-CF has

the fastest computation speed among the three fusion algorithms, followed by the proposed SF with a

little bit more computing time. The CF is the most time consuming. These results are consistent with

our theory analysis that the computation of heavy-tailed algorithms is a little bit more complex than

that of the Gaussian algorithms, so it is reasonable for it to take more computation time. From Tables 1

and 2, one can find that the proposed SF is the best among these three fusion algorithms in considering

of both estimation accuracy and computation efficiency.

5 Conclusion

The sequential fusion estimation algorithm for linear multisensor dynamic systems with heavy-tailed pro-

cess noise and measurement noise is presented. Through theoretical proof and experimental analysis, the

following conclusion can be drawn: for the heavy-tailed multisensor system, (1) the presented sequential

fusion algorithm is effective, which is superior to the Gaussian-based classical optimal centralized batch
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fusion; (2) the t-filter-based sequential fusion algorithm and the centralized batch fusion algorithm are

not equivalent, and either of them could be better; (3) the traditional optimal sequential fusion algorithm

that is based on the classical Kalman filter under Gaussian assumption is a special case of the given

algorithm. Thus, the proposed algorithm has promising application values in many fields, such as target

tracking, defense, control systems, the surveillance, robotics and localization.

There are still many good research topics concerning the fusion estimation for the systems with heavy-

tailed noises that can be studied in the future, such as the fusion estimation for nonlinear systems

with heavy-tailed noises, the fusion problem in multirate multisensor systems, the filter and the fusion

estimation for the systems with correlated heavy-tailed noises. Solving these problems will be more

practical.
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