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Abstract This paper introduces Jittor, a fully just-in-time (JIT) compiled deep learning framework. With

JIT compilation, we can achieve higher performance while making systems highly customizable. Jittor

provides classes of Numpy-like operators, which we call meta-operators. A deep learning model built upon

these meta-operators is compiled into high-performance CPU or GPU code in real-time. To manage meta-

operators, Jittor uses a highly optimized way of executing computation graphs, which we call unified graph

execution. This approach is as easy to use as dynamic graph execution yet has the efficiency of static graph

execution. It also provides other improvements, including operator fusion, cross iteration fusion, and unified

memory.
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1 Introduction

In recent years, deep learning has developed rapidly. With big data science, deep learning has become

a new paradigm for scientific research and engineering applications. As deep learning algorithms are

typically complicated to implement, various deep learning libraries and frameworks have been developed,

to provide researchers and developers with convenient ways to rapidly develop deep learning systems. The

first of these was Torch, a modular machine learning software library [1]. In 2008, the MILA Laboratory

of Montreal University, led by Yoshua Bengio, announced the Theano deep learning framework [2]. Its

conceptual organisation has been adopted by subsequent deep learning frameworks. Python is used as a

front-end language, while C, CUDA and other languages are used as back-end languages for acceleration,

and computational graphs (also called dataflow graphs) provide a bridge between them. Later, several

other frameworks were proposed, including Caffe [3], TensorFlow [4], and PyTorch [5]. Theano ceased to

be maintained in 2017, and Caffe was merged with PyTorch in 2018. Thus, TensorFlow and PyTorch are

the two main current frameworks used for deep learning; about 70% of CVPR 2020 deep learning papers

used PyTorch.

Over time, these frameworks have evolved to provide many new features, which have become very

popular and been widely used. These include hardware acceleration, automatic differentiation, dynamic
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binding, and eager execution. These features make the framework easier to use, or give it better per-

formance. In particular, just-in-time (JIT) compilation is a new direction for deep learning frameworks,

which is gradually becoming popular. TensorFlow provides an experimental back-end, XLA, which ut-

lizes JIT compilation for acceleration. PyTorch also comes with JIT suites for industrial deployment

and execution without the Python environment. There are also many compilers and libraries for JIT

compilation, such as Intel’s nGraph [6], Nvidia’s TensorRT, JAX [7], and TVM [8], which can help users

to easily develop fast kernels. JIT compilation technology not only improves the performance of deep

learning frameworks, but can also make them easier to use. Thus Jittor, the new deep learning framework

proposed in this paper, is fully JIT compilation based: all source code of Jittor is compiled at run-time

for a better experience.

To support a variety of complicated deep learning tasks, computational graphs are widely used in

deep learning frameworks. Each edge of a computational graph represents a dependency, and each node

represents an operator; different tasks require different operators. Deep learning frameworks usually

provide a wide selection of operators to support various tasks. This makes it easy for users to readily

build learning models based on operators. However, from the perspective of the framework developer, it

is tedious and difficult to ensure good performance for a large number of operators. From the perspective

of the user, operators that are not well-optimized cause performance degradation. We thus propose

a solution, via the concept of meta-operators and a fusion mechanism. Meta-operators are general

operators, which can be thought of as classes of specialized operators, whose common properties allow

the specialized operators to be optimized in a similar way. Operator fusion allows the combination of

multiple operators into a single operator, with the advantage that intermediate results do not need to be

stored in memory. Jittor has 3 types of meta-operators, which contain a total of 18 specialized operators.

Many common deep learning operators, such as convolution and deconvolution, can be fused by use of

these meta-operators. We only need to optimize the meta-operators and fusion strategy, to allow all

computations built upon them to be uniformly optimized for better performance.

To train a deep learning model, back-propagation algorithms are typically used; the gradient of the

training loss is propagated backwards to the parameters of the model. Each forward operator of the

model requires a corresponding backward operator to back-propagating the gradient. Our meta-operators

possess the useful property of backward closure, which means that backward propagation of a meta-

operator is still a meta-operator. Fused operators for deep learning also have backward closure. The

backward closure property furthermore allows for the use of higher order derivatives in back-propagation,

resulting in faster model convergence.

The computational graph is the basic data structure in a deep learning framework. It can be static or

dynamic. In the former case, the graph is first built, then executed, while in the latter case, the graph is

built on the fly, as it is executed. TensorFlow 1.0 uses static graph execution, which is efficient and easy to

optimize and deploy, but inflexible when changes to the graph are needed during execution or debugging

is to be carried out. PyTorch instead utilizes dynamic graph execution, which allows modification during

execution. This is more convenient for users, but is inefficient when training, and unsuited to reasoning

about deep learning. We propose a new approach to computational graphs execution, which we call

unified graph execution. It combines aspects of both static and dynamic graph execution, leading to

both flexibility and efficiency. In detail, unified graph execution splits the computational graph into

multiple sub-graphs. For each sub-graph, static graph execution is used, while for the global graph,

dynamic execution is used.

The rest of this paper is organized as follows. Section 2 considers design principles and the architecture

of Jittor. The front-end of Jittor, including meta-operators, their fusion and their back-propagation, is

considered in Section 3. The back-end of Jittor, including the JIT compiler and unified graph execution

is discussed in Section 4. Section 5 compares Jittor and PyTorch, both for inferencing, and for training

a generative adversarial network. Section 6 gives a conclusion and discusses future work.
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Figure 1 Jittor in use.

2 Design principles and architecture of Jittor

The development of deep learning frameworks revolves around improving human productivity and com-

putational performance. To achieve good performance from modern processors, developers often need to

write assembly language, use special instruction sets, or use specialised languages or libraries, such as

shaders for GPU programming, CUDA [9], and OpenCL [10]. Although these provide excellent perfor-

mance, they are difficult to use and debug, and furthermore, programmers need a good understanding

of the underlying hardware. Scripting languages such as Python and JavaScript are interpreted, giving

immediate feedback, further reducing the difficulty of programming, but this sacrifices performance.

To simultaneously improve productivity and performance, various scientific computing libraries and

deep learning frameworks have been developed. A widely used optimization method is static compilation

with dynamic binding. This optimization method uses C, C ++, CUDA [9], or other languages to

statically compile the operators needed in deep learning, while the user dynamically applies them via

scripting languages such as Python and Javascript. Many frameworks adopt this approach, including

Numpy [11], Matlab, Theano [2], TensorFlow [4], MXNet [12], and PyTorch [5].

Dynamic binding allows users to take full advantage of the underlying hardware performance when

using a scripting language, but it has a problem: all operations are statically compiled, making optimiza-

tions such as operator fusion difficult; this important optimization technique combines multiple operators

into one operator, so that intermediate results do not need to be stored. Dynamic binding with a scripting

language cannot use this optimization. For example, the user may need to calculate d = ab+ c, where a,

b, c are tensors. First, the scripting interpreter executes tmp = TensorMul(a,b) and then executes d =

TensorAdd(tmp,c). If we could compile the whole expression, rather than applying operators one by one,

we could execute d = TensorMulAndAdd(a,b,c) directly without the need for temporary storage. This is

significant, as on modern processors, memory access is often much slower than calculation. However, we

cannot guess what combinations of operators the user may require, and static compilation of all possible

combinations is obviously infeasible. To solve this problem, we may use JIT compilation technology to

dynamically compile and optimize the operators that the user needs.

Jittor is a completely new design of deep learning framework based on JIT compilation technology.

Following the above discussion, Jittor is designed based on the following principles.

• It should be highly customizable yet easy to use. Users should be able to define new operators and

models with just a few lines of code.

• It should separate coding from optimization. Users should be able to focus on coding using the

front-end interface, while the code is automatically optimized by the back-end. This improves readability

of the front-end code, while well-tested, standard optimization code in the back-end ensures robustness.

• Everything should be compiled JIT. This includes the back-end and operations. Users should be able

to change the source code at any time.

An overview of an application built with Jittor is provided in Figure 1. It has four layers, the middle

two being provided by Jittor.
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(1) Application layer. This layer is coded by the user in Python, using interfaces exposed by the

front-end layer.

(2) Jittor front-end. This layer is written in Python. All interfaces in this layer are visible to users. It

provides the meta-operator interface, allows manipulation of Jittor variables, and implements common

models. See Section 3 for more details.

(3) Jittor back-end. This layer provides interface support to the front-end layer, and also manages the

underlying hardware resources. It contains many modules, such as the operator fuser, which is used to

dynamically fuse operators for improving performance. Third party operators provided by libraries such

as CuDNN [13] and MKL can also be incorporated; the user can also define their own operators. It also

includes the JIT compiler and the unified computational graph. See Section 4 for more details.

(4) Hardware. The back-end layer communicates with this layer for hardware acceleration. The current

accelerator supports CPU and GPU hardware.

Our unified graph execution allows operators to be generated and automatic differentiation to be

performed on the fly, as for a dynamic graph. The graph is cut into multiple static sub-graphs for op-

timization. The system also uniformly manages a variety of resources, such as forward and backward

propagation operators, and computation graphs used in multiple iterations, allowing shared optimiza-

tions between these resources. For example, this permits optimization across successive iterations. This

approach provides increased opportunities for operator fusion. It also uniformly manages CPU and GPU

memory, swapping GPU memory into CPU memory when the former is insufficient. It schedules syn-

chronous and asynchronous operations to ensure data consistency while allowing data reading, memory

copying, and concurrent computing. Meta-operators called by Python are compiled into high-performance

C++ or CUDA code. The JIT compiler is compatible with LLVM [14] and automatically optimizes the

underlying source code.

3 The front-end

The front-end represents that part of Jittor which is visible to users. It is fully implemented in Python. It

provides an interface to the meta-operators, commonly used layers and models, and allows manipulation

of Jittor variables. We first explain the meta-operators in detail in Subsection 3.1. Then, we describe

how variables and data are manipulated inside Jittor in Subsection 3.4. Finally, we give an example in

Subsection 3.5 to illustrate the overall front-end interface.

3.1 Meta-operators

Meta-operators are a key concept in Jittor. In this subsection, we explain the concept of meta-operators,

and how they may be fused and back-propagated. They allow easy development of operators by the user

(a customized convolution example shown in Subsection 3.2 requires only 11 lines of code) while their

uniformity ensures that the JIT compilation can perform optimization.

A meta-operator is a general operator, which when specialized gives a class of operators with common

properties that make them particularly amenable to optimization. Deep learning frameworks usually

provide many operators to make it easy for users to build learning models. In fact, many of them do similar

things, and can be expressed as specializations of more general higher-level operators. In particular,

reindex is a very useful meta-operator which provides an arbitrary one-to-many mapping between its

input and output. Various specialized operators such as broadcast, pad, and slice are particular forms

of this operator, and belong to the reindex operator class. Another important meta-operator is reindex-

reduce, which provides a many-to-one mapping. Sum and product are particular examples of reindex-

reduce operators. The third meta-operator class comprises element-wise operators. Each has one or more

matrix inputs, which should all have the same shape; the output matrix also has this shape. Results are

computed element by element. Matrix addition is an example of a binary element-wise operator.

These meta-operator classes are shown in Figure 2, which also shows how Jittor provides common,
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Figure 2 Building models from meta-operators. Operators from the three meta-operator classes, reindex, reindex-reduce,

and element-wise, are fused to provide other common deep learning operators, which in turn are used to build the model.
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Figure 3 Three examples of different types of meta-operators. (a) The broadcast operator belongs to reindex type meta-

operators. Each element of the operator’s input vector will be broadcast to its corresponding row of output matrix. (b)

The sum operator belongs to reindex-reduce type meta-operators. Each row of the operator’s input matrix will be sum into

its corresponding element of output vector. (c) The add operator belongs to element-wise operators.

higher-level, deep learning operators (e.g., convolution, normalization, and pooling), by fusing meta-

operators.

In detail reindex, reindex-reduce and element-wise operators work as follows:

(1) Reindex. The interface of the reindex operator is defined as

reindex(I, SO, f) → O,

where I represents an N -dimensional input tensor, its input shape is defined as SI , and its n-th index is

defined as in ∈ 0, . . . , SIm − 1. SO represents the shape of an M -dimensional output tensor O. Its m-th

index is defined as om ∈ 0, . . . , SOn
− 1. Any N -dimensional tensor T has a total QT elements given by

QT = ST1
ST2

· · ·STN
. To locate a certain element Tt1,...,tN , a tuple of indices (t1, . . . , tN ) is required.

The function f : (o1, . . . , oM ) → (i1, . . . , iN ) maps a tuple of output indexes (o1, . . . , oM ) to a tuple of

input indexes (i1, . . . , iN). The reindex operator returns an output tensor O with given shape SO. Each

element of output tensor Oo1,...,oM is given by

Oo1,...,oM = Ii1,...,iN .

In short, the reindex operator rearranges the input and stores it in appropriate positions of the output.

Index bounds checking is also performed based on the indexing function.

For example, with suitable choice of f , the reindex meta-operator constitutes a broadcast operator.

In Figure 3, a 1-D vector is broadcast into a 2-D matrix. Here, the input dimension N = 1, the output
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dimension M = 2, and f : (o1, o2) → (o1), where i1 is defined as o1 in this mapping function. The output

matrix is thus determined by Oo1,o2 = Io1 ; in other words, the operator performs broadcast by row.

(2) Reindex-reduce. The interface of the reindex-reduce operator is defined as

reindex reduce(I, SO, f) → O.

Arguments I and SO have similar meanings to those for reindex. In this case, I is anN -dimensional tensor

andO is anM -dimensional tensor. The n-th index of I is defined as in ∈ Xn, Xn = 0, . . . , SIn − 1. Them-

th index of O is defined as om ∈ Ym, Ym = 0, . . . , SOm
− 1. The function f : (i1, . . . , iN ) → (o1, . . . , oM )

maps a tuple of input indexes (i1, . . . , iN) to a tuple of output indexes (o1, . . . , oM ). The operation of a

reindex-reduce operator is given by

Oo1,...,oM =
∑

(i1,...,iN )∈X1×···×XN ∧ f(i1,...,iN )=(o1,...,oM )

Ii1,...,iN .

For example, by suitably specifying f , the reindex-reduce operator can sum a 2-D matrix into a 1-D

vector as shown in Figure 3. Here, input dimension N = 2, output dimension M = 1, and f(i1, i2) = i1.

The output matrix is given by: Oo1 =
∑

f(i1,i2)=o1
Ii1,i2 , so Oo1 =

∑
Io1,i2 . This is the common operator

that sums rows of a matrix to give a vector of sums.

(3) Element-wise operators. Element-wise operators may be unary (e.g., unary minus), binary

(e.g., +−×÷), or ternary (e.g., if-a-then-b-else-c). All input tensors must have the same shape, which is

also the shape of the output tensor. Each element of the output tensor is calculated using corresponding

elements in the same position in the input tensor(s).

3.2 Fusion of operators

In this subsection, we now explain fusion of operators from the meta-operator classes, using an example

of computing a convolution.

Listing 1 shows how a convolution operator can be implemented in terms of meta-operators. A general

reindex meta-operator is used, in addition to specialised broadcast and sum operators.

Listing 1 Python implementation of convolution using three operators: reindex, broadcast, and sum

1: def conv(x, p):

2: N,C,H,W = x.shape

3: o,i,h,w = p.shape

4: xx = x.reindex(

5: shape=(N,o,H,W,i,h,w),

6: indices=("i0", "i4", "i2-i5", "i3-i6")

7: )

8: pp = p.broadcast(xx.shape, dims=(0,2,3))

9: yy = xx*pp

10: y = yy.sum(dims=(4,5,6))

11: return y

Line 1 shows that conv takes two arguments: x is an image tensor, and p is a parameter tensor. Lines 2

and 3 unpack information about the shapes of the parameters. The layout of the image tensor x is:

number of batches (N), number of channels (C), image height (H), and image width (W). The layout of the

parameter tensor p is: number of output channels (o), number of input channels (i), kernel height (h),

and kernel width (w). Lines 4–7 call the reindex operator with input tensor x and output tensor xx. The

result is:

xx(i0, i1, i2, i3, i4, i5, i6) = x(i0, i4, i2–i5, i3–i6). (1)

Line 8 broadcasts the parameter tensor p to output tensor pp, with the same shape as xx. The

broadcast operator is a specialization of the reindex operator, equivalent to pp = p.reindex(x.shape,

indices=(i1,i4,i5,i6)). The result of this broadcast operator is

pp(i0, i1, i2, i3, i4, i5, i6) = p(i1, i4, i5, i6).
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Line 9 performs element-wise multiplication with result

yy(i0, i1, i2, i3, i4, i5, i6) = xx(i0, i1, i2, i3, i4, i5, i6)pp(i0, i1, i2, i3, i4, i5, i6).

Line 10 uses a sum operator, a specialization of reindex-reduce, to compute

y(i0, i1, i2, i3) =
∑

i4,i5,i6

yy(i0, i1, i2, i3, i4, i5, i6).

The above example shows how a convolution can be implemented in terms of 4 calls to meta-operators.

Jittor is able to fuse these 4 meta-operators into a single operator, such that intermediate variables xx,

pp, yy do not need to actually be calculated. Fusing all 4 meta-operators leads to the final expression:

y(i0, i1, i2, i3) =
∑

i4,i5,i6

x(i0, i4, i2–i5, i3–i6)p(i1, i4, i5, i6).

In a similar way, meta-operators can also be used to implement various convolution variants, such as

dilation convolution and group convolution.

3.3 Back-propagation of meta-operators

Back-propagation [15] is the foundation of neural network training, where errors in predictions are prop-

agated back to their sources to adjust the parameters of the model. In this subsection, we explain the

back-propagation mechanism for meta-operators, and backward closure.

During back-propagation, we need to do the following. Given an operator f(x) = y, and an error

ey in the output, we need to calculate the corresponding error ex in the input. This is done via the

corresponding backward operator: g(x, ey) = ex. To find g, we need to calculate the gradient of the

whole model. The chain rule is applied and each operator in the forward dataflow graph is mapped to

its gradient operator, where overall we have

f(x) = y ⇒
backward

ex = g(x, ey) = f ′(x) ey . (2)

Backward closure is an important property provided by our meta-operators. A set B of operators is

said to have backward closure if the backward operator of each operator in B is also in B. Backward

closure is especially important in training, when back-propagation is performed using a series of backward

operators of the model. If backward operators of those used in the model are unavailable, it will not be

possible to propagate the gradients back through the model. Normally, the user thus needs to implement

corresponding backward operators. With backward closure, however, derivatives, including higher-order

derivatives, can be determined automatically, saving manual effort.

Backpropagation of the reindex and reindex-reduce operators is performed as follows. Let x be the

input and Sx be the shape of x, and y be the output and Sy be the shape of y. Let ey be the output

error to be back-propagated, and f be the index mapping function. From Eq. (2), and noting that the

reindex-reduce operator is the backward operator of the reindex operator, we have

y = reindex(x, Sy, f) ⇒
backward

ex = reindex reduce(ey, Sx, f). (3)

Similarly, the reindex operator is the backward operator of the reindex-reduce operator:

y = reindex reduce(x, Sy, f) ⇒
backward

ex = reindex(ey, Sx, f). (4)

The backward operator of an element-wise operator is still an element-wise operator. For example, for

the operator f(x) = x2, the corresponding backward operator is g(x, ey) = f ′(x)ey = 2xey.

Thus all of our meta-operators are inside a backward closure. With backward closure, forward and

backward operators can be handled in the same way during unified graph execution, allowing more

opportunities for operator fusion and optimization.
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Figure 4 (Color online) Automatic differentiation of a convolution operator implemented using meta-operators.

Let us return to our forward convolution example given earlier in Listing 1, shown again in Figure 4.

It consists of four meta-operators, reindex, broadcast, multiplication and sum. We also show the corre-

sponding backward operation. The sum operator (green box) is replaced by the broadcast operator (red

box). erry is back-propagated to eyy by the broadcast operator. The corresponding formulation of the

broadcast operator is

yi0,i1,i2,i3 =
∑

i4,i5,i6

yyi0,i1,i2,i3,i4,i5,i6 ⇒
backward

eyy i0,i1,i2,i3,i4,i5,i6 = ey i0,i1,i2,i3. (5)

Because Figure 4 only shows error propagation from output to parameters, error propagation to the

input data is omitted. The back-propagation path does not pass through the reindex operator, so the

reindexing operator in forward graph is duplicated directly in the backward graph.

The backward operator corresponding to the element-wise multiplication operator is

yy = xx pp ⇒
backward

epp = xx eyy. (6)

The broadcast operator in the forward graph becomes a sum operator in the backward graph, as

follows:

ppi0,i1,i2,i3,i4,i5,i6 = pi1,i4,i5,i6 ⇒
backward

ep i1,i4,i5,i6 =
∑

i0,i2,i3,i4

epp i0,i1,i2,i3,i4,i5,i6 . (7)

Combining Eqs. (1), (5)–(7), the fused backward convolution operation is given by

yi0,i1,i2,i3=
∑

i4,i5,i6

xi0,i4,i2−i5,i3−i6 pi1,i4,i5,i6 ⇒
backward

ey i0,i1,i2,i3=
∑

i0,i2,i3,i4

xi0,i4,i2−i5,i3−i6 ep i1,i4,i5,i6. (8)

3.4 Variables

Variables are the basic elements used by Jittor to store data. The inputs and outputs of all operators

are variables. Variables are tensors with the following properties:

• A shape attribute.

• A data type attribute, dtype, e.g., float or int.

• A stop grad attribute to prevent gradient back propagation for this variable.

• A stop fuse attribute to prevent fusion of operators associated with this variable.

The stop grad attribute is usually used in testing or inferencing, while the stop fuse attribute pro-

vides control over operator fusion: the user may get better performance by careful use of these attributes.

For example, operator fusion will consume register resources in a GPU. With sufficient resources, fusion

will always improve performance, but fusing hundreds of operators will exhaust resources and cause

performance degradation.
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Figure 5 (Color online) Coding and timeline differences between synchronous and asynchronous interfaces.

Jittor allows synchronous and asynchronous data access. Synchronous access is simple to use and can

be used interactively from the command line in a similar way to access Numpy arrays. Asynchronous

access is more efficient as it does not generate synchronous instructions, and the computing pipeline is

not locked; a callback function is required to access the data. Figure 5 shows how the user writes code

in these two different ways, and diagrammatically indicates the difference in performance.

Line 1 loops over the entire dataset. Line 2 copies the data into the GPU. Line 3 executes the model

on the GPU. Line 4 copies the data back to the CPU and prints it. In the synchronous case, because the

print function is synchronous, it blocks iterations (see Subsection 3.4), so model execution and memory

copying cannot be overlapped. The asynchronous version instead uses print as a callback function of data

fetching. This callback is called after the data transfer is complete, allowing model execution and memory

copy to be overlapped. The timelines for the two approaches thus differ: overlaps in the asynchronous

version provide better performance.

3.5 End-user example

We now give an example in Listings 2–4 showing how an end-user would use Jittor to model a two-layer

neural network and train it, in just a few lines of Python code. In Listing 2, we define a linear layer

and a sigmoid activation function. (In practice, both are already provided by the Jittor framework, so

would not need to be defined. We do so here for the sake of a simple example.) In Listing 3, we define

our model, a two-layer fully connected neural network with sigmoid activation. Listings 2 and 3 provide

definitions for Listing 4, which creates and trains the model.

Listing 2 Layer definitions

1: import jittor as jt

2:

3: class Linear(jt.Module):

4: def init (n in, n out):

5: self.w = jt.random((n in, n out))

6: self.b = jt.random((n out,))

7:

8: def execute(self, x):

9: return jt.matmul(x, self.w) + self.b

10:

11: def sigmoid(x):

12: return jt.exp(x) / (jt.exp(x) + 1)

Listing 2 shows how to implement layers and functions in Jittor. It defines a linear layer class and a

sigmoid activation function. Layers are classes as their instances store their parameters. A linear layer is

a commonly used fully connected layer, with two parameters: weights W and bias B. Its input is X; its

output is XW +B. All of these quantities are matrices. In lines 5 and 6 self.w represents the weights

and self.b represents the bias. Both are initialized using a uniform random operator. Line 9 defines the

execution function of the linear layer, where jt.matmul performs matrix multiplication.
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Listing 3 Model definition

1: class Model(jt.Module):

2: def init (self):

3: self.net = jt.Sequential(

4: Linear(1, 10),

5: sigmoid,

6: Linear(10, 1)

7: )

8:

9: def execute(self, x):

10: return self.net(x)

Listing 4 Training with gradient descent

1: learning rate = 0.1

2: model = Model()

3: params = model.parameters()

4: for data, label in user defined data:

5: data, label = jt.array(data), jt.array(label)

6: predictions = model(data)

7: loss = (predictions - labels)**2

8: loss.fetch(print)

9: grads = jt.grad(loss, params)

10: for p,g in zip(params, grads):

11: p.update(p - g * learning rate)

A sigmoid is a commonly used activation function in neural networks: S(x) = ex/(ex + 1). If such a

definition were used in traditional imperative style deep learning, as used in PyTorch [5], four operators

would be executed to evaluate a sigmoid: exp (twice), + and /. Because intermediate values would need

to be stored in memory, and memory access consumes time, this would be slow, so PyTorch provides a

dedicated operator torch.sigmoid to eliminate the need for intermediate values, improving performance.

The user must use the provided function to avoid performance degradation. In Jittor, users do not need

to consider such performance issues. JIT compilation allows the Jittor back-end to automatically fuse

these operators into a single operator (see Section 4). This is a major contribution of Jittor: we provide

high performance and customization via user-defined functions at the same time.

Listing 3 defines our model, a two-layer neural network. jt.Sequential indicates that the model

is executed from the first item (layer or function) to the last item sequentially. In lines 4 and 6, the

arguments to Linear are the numbers of input and output channels. Thus, the size of the hidden layer

is 10, and a sigmoid activation function is used.

After defining the model class, we can now create an instance of it and train it, as shown in Listing 4.

Line 2 makes an instance of our model. Line 3 obtains its parameters, in this case the weight and bias of

each of the two Linear layers. Line 4 traverses the entire user defined dataset. In each iteration, line 5

converts data and label into Jittor variables, line 6 makes a prediction using the model, line 7 calculates

the L2 loss, line 8 prints the loss (asynchronously, rather synchronously, for reasons explained earlier),

and lines 9–11 train this model using simple gradient descent to update the parameters.

Jittor applies graph- and operator-level optimizations via the back-end. In this example, these opti-

mizations include the following. Operator fusion allows the activation function and loss function to be

fused. Parallelism improves the performance of compute-intensive operations on multi-core CPUs and

GPUs. Concurrency: for example, the jt.array operation copies the CPU host memory into GPU device

memory if the GPU is used, and memory copy and execution can be concurrent and overlapped.

3.6 Other features

Jittor also provides a code operator, a JIT compilation operator based on a high-performance language,

allowing users to directly inline C++ or CUDA code in Python. Jittor also provides distributed operators
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for distributed training, based on MPI [16] and NCCL1). NCCL is a dedicated communication library

for Nvidia GPUs. Data parallel distributed training can be achieved via use of an appropriate command

line.

4 The back-end

This section gives details of the back-end. The back-end is responsible for resource management, process

scheduling and compilation optimization. It includes the operator fuser, which decides the fusing strategy

used for the meta-operators, external operators, which are customized operators provided by users or

third-party libraries, the JIT compiler, the integrated compiler used to optimize meta-operators, and the

unified graph execution, which unifies static and dynamic graphs execution.

4.1 Operator fuser

The operator fuser is an important part of the back-end of Jittor. It is responsible for operator fusion

optimization in arbitrary computational graphs. In Subsection 3.2, we showed an example of operator

fusion using a convolution computation. In real applications, the computational graph produced by the

front-end is much more complicated. To optimize arbitrarily cases, we consider the computational graph

as a directed acyclic graph of vertices and edges, G = (V,E), in which each node v represents an operator,

while each edge e represents a variable. We wish to partition G into multiple sub-graphs G′
i ⊆ G, where

each sub-graph G′
i = (V ′

i , E
′
i) represents a fused operator, each node belongs to exactly one sub-graph,

and each edge may belong to a sub-graph or link two sub-graphs. The aim is to select one partitioning for

which the cost of executing all sub-graphs is minimised. However, accurate prediction of actual execution

costs is infeasible: they depend on many aspects of the hardware and other factors. So we use a simplified

approach to determine the sub-graphs by defining the cost C as

C =
∑

e∈E ∧ ∀i(e/∈E′

i
)

we, (9)

where we is simply the size of the variable represented by edge e. Eq. (9) sums the weight of each edge e

that links two different sub-graphs, and so does not belong to any sub-graph G′
i. This cost is equivalent

to the total number of read and write instructions. This approach is justified as most deep learning

models are constrained by memory bandwidth. Fusion can improve performance by reducing memory

operations. While minimizing the cost, the following rules need to be met.

• Rule 1. Reindex operators may not be fused with preceding meta-operators, as such fusion usually

causes performance degradation. For example, consider two operators, an element-wise add operator

(Eq. (10)), and a reindex broadcast operator (Eq. (11)). The fusion of those two operators is defined in

Eq. (12).

∀i ∈ [0, n) ci = ai + bi, (10)

∀j ∈ [0,m), ∀i ∈ [0, n) dj,i = ci, (11)

fused : ∀j ∈ [0,m), ∀i ∈ [0, n) dj,i = ai + bi, (12)

Eq. (10) has n addition instructions, 2n read instructions and n write instructions. Eq. (11) has nm

read instructions and nm write instructions. However, Eq. (12) has nm addition instructions, 2nm read

instructions and nm write instructions. The cost of Eq. (12) is greater than the sum of costs of Eqs. (10)

and (11), illustrating why such fusion is forbidden.

• Rule 2. Reindex-reduce operators may not be fused with following meta-operators. Such fusion

does not improve performance. For example, consider two operators, a reindex-reduce sum operator

1) https://docs.nvidia.com/deeplearning/nccl/.

https://docs.nvidia.com/deeplearning/nccl/
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Figure 6 (Color online) Fused operation for a classic network combination, convolve-normalize-activate. Note how oper-

ators are fused across convolution, normalization and activation layers.

(Eq. (13)), and an element-wise add operator (Eq. (14)). The fusion of these two operators is defined in

Eq. (15).

∀i ∈ [0, n) bi =
∑

j∈[0,m)

aj,i, (13)

∀i ∈ [0, n) di = bi + ci, (14)

fused : ∀i ∈ [0, n) di =
∑

j∈[0,m)

aj,i + ci. (15)

Eq. (13) has nm addition instructions, nm read instructions and n write instructions. Eq. (14) has

n addition instructions, 2n read instructions and n write instructions. However, Eq. (15) has nm + n

addition instructions, nm + n read instructions and n write instructions. While the cost of Eq. (15) is

slightly smaller than sum of costs of Eqs. (13) and (14), in our experiments, we find that such fusion does

not improve performance. Furthermore, the more complicated the fused operator is, the more difficult it

is for the compiler to optimize it. So, such fusion is forbidden.

• Rule 3. Fusion should not create directed cycles between sub-graphs. For example, given a graph

with three nodes and three edges: (1 → 2), (2 → 3), (1 → 3), if the third edge were to be fused, it would

produce a cycle between sub-graph (1, 3) and (the trivial) sub-graph 2 in the result: (1, 3) ⇌ 2.

A greedy algorithm is used to minimize cost: in each iteration, we select an edge e = (vstart, vend) that

satisfies Rules 1–3, and fuse vstart, vend into the sub-graph G′
i that vstart belongs to, repeating until no

edge satisfying Rules 1–3 can be found. In practice, a dynamic programming labeling algorithm is used

to avoid repeatedly searching for an edge that satisfies the rules. This algorithm works well and achieves

competitive performance for most neural networks.

Figure 6 illustrates operation fusion for a classic network combination, convolve-normalize-activate.

The convolution layer is composed of two reindex operators, one element-wise operator and one reindex-

reduce operator. The normalization layer is composed of one reindex operator, one element-wise operator

and one reindex-reduce operator. The activation layer is composed of multiple element-wise operators.

In this case, operators can be fused across convolution, normalization and activation layers.

4.2 JIT compiler

The JIT compiler is the built-in compiler used to optimize fused meta-operators. After the operator fuser

does its work, the JIT compiler compiles the fused operators into high-performance C++ code.

Listing 5 shows a Jittor Python implementation of instance norm, which normalizes an input tensor x

into an output tensor norm x. The memory layout is [N,C,H,W], N denotes the batch size, C denotes the

number of channels, H is the image height, and W is the image width. We calculate mean and variance by

reducing the first, third, and fourth dimensions.

Listing 6 gives the corresponding C++ code output by the JIT compiler. (This is only one possible

compilation result. Actual results may vary due to the runtime environment.)

In Listing 5, operators created by lines 2–4 are fused into a single nested C++ loop (lines 1–15 in

Listing 6). Line 2 in Listing 5 specifies that this operator is to take averages along the three dimensions

(batch, image height and image width). keepdims indicates that the shape of the output is [1,C,1,1]
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Listing 5 Jittor implementation of instance norm in Python

1: def instance norm(x, eps=1e-5):

2: xmean = jt.mean(x, dims=[0,2,3], keepdims=True)

3: x2mean = jt.mean(x*x, dims=[0,2,3], keepdims=True)

4: xvar = x2mean-xmean*xmean

5: norm x = (x-xmean)/jt.sqrt(xvar+eps)

6: return norm x

Listing 6 Results of JIT compilation

1: for (int i1=0; i1<x.shape(1); i1++) {

2: xmean(i1) = 0;

3: x2mean(i1) = 0;

4: for (int i0=0; i0<x.shape(0); i0++) {

5: for (int i2=0; i2<x.shape(2); i2++) {

6: for (int i3=0; i3<x.shape(3); i3++) {

7: xmean(i1) += x(i0,i1,i2,i3);

8: x2mean(i1) += sqr(x(i0,i1,i2,i3));

9: }

10: }

11: }

12: xmean(i1) /= x.shape(0)*x.shape(2)*x.shape(3);

13: x2mean(i1) /= x.shape(0)*x.shape(2)*x.shape(3);

14: xvar(i1) = x2mean(i1) - sqr(xmean(i1));

15: }

16: for (int i0=0; i0<x.shape(0); i0++) {

17: for (int i1=0; i1<x.shape(1); i1++) {

18: for (int i2=0; i2<x.shape(2); i2++) {

19: for (int i3=0; i3<x.shape(3); i3++) {

20: norm x(i0,i1,i2,i3) =

21: (x(i0,i1,i2,i3)-xmean(i1))/

22: sqrt(xvar(i1)+eps);

23: }

24: }

25: }

26: }

rather than [C], for the convenience of subsequent operations. In Listing 6, the outermost loop variable

is x.shape(1), and inner loop variables are x.shape(0), x.shape(2), and x.shape(3), as this order

provides the best memory continuity in the jt.mean operator. Line 5 in Listing 5 creates 4 element-wise

operators: subtraction, division, square root and addition, which are fused into one nested C++ loop

(lines 16–26 in Listing 6). The order of nesting of loops in this case is 0,1,2,3, unlike the previous nested

loop, as this is the order with the best memory continuity for these element-wise operators.

The C++ code is further optimized by LLVM compatible passes, based on the specific hardware

environment. Common optimizations provided here include loop reordering, loop fission, loop fusing,

data packing, vectorizing, and CUDA / OpenMP parallelization.

The JIT compiler and meta-operators make development of custom operators a much easier process.

To develop a high-performance custom operator in a traditional deep learning framework, a developer

typically needs to develop a CPU forward operator, a CPU backward operator, a GPU forward operator,

a GPU backward operator, with possibly separate float32 and float64 versions, and so on. This is a huge

programming workload. Jittor can do all of this automatically for the developer.

4.3 Unified graph execution

Unified graph execution is another major contribution of Jittor. According to the execution method of

computational graphs, deep-learning frameworks can be based either on a static graph execution (also

called a define-and-run approach) or a dynamic graph execution (define-by-run, eager execution). Static

graph based frameworks are efficient and easy to optimize, and dynamic graph based frameworks are
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Figure 7 (Color online) A comparison of execution methods using (a) static graphs, (b) dynamic graphs, and (c) unified

graphs.

easy-to-use and flexible. Most current frameworks, including TensorFlow 2.0’s eager mode, PyTorch, and

Chainer, support dynamic graphs.

As an alternative, we propose our unified graph execution approach. Unified graph execution provides

an imperative style interface which has the same flexibility as a dynamic graph. And it is also as efficient

as a static graph. Figure 7 compares the different execution methods of static graphs, dynamic graphs

and unified graphs.

Static graph execution defines the model before running, and then executes the plan with batches

of data. In Figure 7(a), line 1 uses a placeholder method to represent input of the data needed for

the whole computational graph. Most static execution frameworks use this method, e.g., TensorFlow’s

tf.placeholder(). The operator is added to the computational graph G first (lines 1–6), and then the

graph G is optimized and executed in multiple runs (lines 7 and 8). Line 4 is invalid: x2 cannot be

printed as nothing is executed until session.run is called. The advantage of static graphs is that they

are simple, and easy to optimize and deploy. The graph in Figure 7(a), for example, is built from all four

operators before execution, allowing operator fusion to be performed first. The disadvantage is lack of

flexibility: debugging a static graph is difficult; e.g., we cannot print intermediate results during building

as suggested by line 4. While there are workarounds to this problem, they are unnatural. It is even

harder to change the model according to intermediate results found during training. To do so, the user
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must rebuild the whole graph, and the resultant performance degradation is unacceptable.

To solve these problems, dynamic graphs were proposed [5,17], using eager execution. Using dynamic

graphs, the graph is rebuilt and executed on each iteration, allowing the graph to be changed during

execution. Eager execution executes each operator immediately when it is added to the graph. Because

addition of operators is performed on the CPU while they are executed on the GPU, eager execution will

lower the latency between CPU and GPU, thus reducing overheads, allowing this approach to achieve

competitive performance with the static graph approach. As shown in Figure 7(b), this furthermore

allows the user to manipulate intermediate results during model building. This provides users with a

great deal of flexibility: for example data can be printed, and the model can be changed according to

the intermediate results obtained, which is hard to do with static graphs, and is essential in applications

such as generative adversarial networks (GANs) [18] and reinforcement learning [19]. For example, when

training a GAN, the computation graph keeps changing between the discriminator and generator. This

flexibility has made dynamic graphs popular, and most frameworks (such as TensorFlow 2.0’s eager mode,

PyTorch, and Chainer) currently support them.

However, dynamic graphs preclude graph optimization as each operation is executed as it is built. This

prevents operations from being inter-operator optimized, such as operator fusion. When static graphs are

used, the entire graph is available before execution, allowing operator fusion for more efficient execution.

To obtain the benefits of both approaches, without their drawbacks, we use a unified graph execution

approach. It provides the full flexibility of a dynamic graph, and the graph can be rebuilt frequently

without performance degradation, yet operator fusion is still possible. This is achieved by lazy execution.

See Figure 7(c). Operators interpreted by Python are not executed immediately, but delayed until their

results are needed. op1 in line 3 is not executed until x2 is printed: x2 is needed at that point, and it

depends on x1 which in turn requires op1 to be executed. During printing in line 5, three things happen.

First, unified execution will select all those operators in graph G that are required by printing, and split

them off into a new sub-graph G′; in Figure 7 this is op1 and op2. The sub-graph G′ is then optimized

using the operator fusion process in Subsection 4.1: the operator fuser takes G′ as input, and partitions

G′ into multiple sub-graphs G′′
i , where each sub-graph represents one fused operator. Finally, sub-graph

G′ is executed. In this very simple example, as op1 and op2 are executed together, there is an opportunity

to fuse them before doing so. While addition and execution of operators is coupled in the dynamic graph,

it is decoupled in the unified graph.

Note that if there is no dependency between two sub-graphs, then they can be executed concurrently,

if hardware resources permit. Jittor’s algorithm for concurrency control keeps track of the state (running,

pending or finished) for each executing sub-graph.

In addition to lazy execution, unified graph execution also provides two other features: cross iteration

fusion and asynchronous operation. As operators for different iterations may exist in the unified graph G

at the same time, this allows operators be fused across different iterations. For synchronous interfaces,

the CPU will start all operators of G′ on the GPU and then wait until the GPU finishes its job. However,

for an asynchronmous interface using a callback, the CPU does not have to wait, and instead the GPU

will call the callback when finishing its job. This reduces the time the CPU spends for waiting, thereby

improving efficiency.

Figure 8 illustrates the differences between dynamic graph execution and unified graph execution.

The top part explains the symbols used. The three types of meta-operators are given different colors.

Two operator pipelines are shown: ovals indicate addition of operators to the graph in the order users

create them, where operators are added when Python interprets a line containing them; boxes indicate

optimization and execution of operators, and show the order in which operators are executed.

The second part shows part of a computational graph dynamically created by the user. op1 is an

element-wise operator, whose input is the output of previous operators, omitted here. op2 is a reindex

operator, whose input is also from previous operators. op3 is an element-wise operator, with input from

op2. op4 is a reindex-reduce operator with input from op3. op5 has two inputs, which come from previous

operators and op1. The input for op6 comes from op5. op7’s inputs come from op4 and op6. op8’s input

comes from op7, and its output is used by upcoming operators.
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Figure 8 (Color online) Execution pipelines for dynamic and unified graphs. The unified graph can be executed out

of order; addition and execution of operators are decoupled. This permits optimization and fusion of operators in static

sub-graphs.

The third part shows the execution pipeline for a dynamic graph. This pipeline is very simple and

straightforward. op1 is executed immediately after it is created, and so are op2, op3, . . .. Creation and

execution are coupled, so there is no scope for optimization.

The fourth part shows the execution pipeline for a unified graph. Those operators are executed out

of order: the addition and execution orders differ. With this improvement, unified graph execution can

optimize and fuse operators on the fly. First, op1 is created, but it is not executed immediately because

of lazy evaluation. In turn op2, op3, op4 are also created in order. However, using our previous methods,

op2, op3, and op4 can be fused before execution. The static sub-graph is further optimized by the JIT

compiler. After op2, op3, op4 have been executed, op5 and op6 are created, and they can be fused with

op1 and executed with it. While op1 was created before op2, it ends up being executed after op2. This

out-of-order execution or lazy evaluation approach allows op1 to be fused with subsequent operators.

Similarly, op7 and op8 are also not evaluated until needed by upcoming operators.

In summary, our unified graph execution approach has the following characteristics.

• It unifies dynamic and static computational graph approaches, making it simultaneously easy to use

and efficient.

• Backward closure of meta-operators allows the fusion of the forward and backward computational

graphs.

• It uniformly manages computational graphs across multiple iterations, i.e., cross iteration fusion can

be achieved. This optimization is especially useful in certain inferencing scenarios, such as fusing multiple

small batches into one big batch.

• It uniformly manages CPU and GPU memory, swapping GPU memory into CPU memory when

there is insufficient GPU memory. This is especially useful in certain training scenarios. Users can do

training tasks using larger batch sizes beyond the GPU memory limit, and using CUDA unified memory.

• Synchronous and asynchronous interfaces are both provided. Synchronous and asynchronous oper-

ations are scheduled to ensure data consistency during concurrent data reading, memory copying, and

computing.

These improvements enable unified graph execution to maximize the advantage of JIT optimization,

while providing an easy-to-use interface for users.
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Figure 9 (Color online) Components of ResNet34 and the way it is fused and optimized.

4.4 Analysis on ResNet34

In this subsection, we will take ResNet34 [20] as an example, and analyze how unified graph execution

improves performance. ResNet34 model has 33 convolution layers and 1 fully connected layer in total.

The header of ResNet34 consists of one convolution layer (7×7 kernel size, 64 output channels) and one

pool layer. The tail of ResNet34 consists of one average pool layer and a fully connected layer (the

number of output channels is 1000). All five ResNets (ResNet18, 34, 50, 101, 152) share the same header

and tail. In a classification task, an extra softmax layer is also added in the tail of ResNet. The number

of layers in the header and tail is much smaller than the number of layers in the body. So the body is

the most time-consuming part of the whole ResNet. The body of ResNet34 consists of 16 ResBlocks with

different channel sizes. ResBlock is a basic component of ResNet. One ResBlock consists of 2 convolution

layers, 2 batch norm layers, 2 ReLU activation functions, and one residual learning addition. When the

ResNet34 is implemented by Jittor, the unified graph will analyze it and split it into multiple sub-static

graphs. In Figure 9, the first batch norm and the first ReLU will be fused; the second batch norm, the

addition, and the second ReLU will be fused. The fusion is impossible when eager execution is used, but

easy to achieve when lazy execution is used. In this example, 7 operators per block will be executed in

eager execution. However, in lazy execution, only 4 operators per block will be executed after operator

fusion. This saves lots of memory I/O and makes the model more efficient and execute faster.

Because of the backward closure of meta-operators, back-propagation can also get the performance

improvement brought by operator fusion. In Jittor, this improves the performance of training and testing

at the same time.

5 Evaluation

Recently, PyTorch has become the most popular deep learning platform because of its use of dynamic

graphs, making it convenient for users to design and debug deep learning models. About 70% of works

published in CVPR 2020 were based on PyTorch. Because Jittor adopts unified graph execution and

operator fusion strategies, it provides advantages over PyTorch in both performance and convenience, as

we now show in two experiments in this section. The first experiment considers evaluation of backbone

networks (i.e., inferencing), which are the most important part of deep learning models: most of the

computational cost of a model comes from its backbone network. The second experiment concerns image

generation with a GAN [18], a very popular research field.

5.1 Backbone networks

Ten of the most successful and popular backbone networks for image recognition were chosen for this

experiment: AlexNet [21], VGG [22], ResNet50, ResNet152 [20], Wide ResNet50, Wide ResNet101 [23],

SqueezeNet [24], ResNEXT50, ResNEXT101 [25], and Res2Net [26]. Res2Net50 [26] is the newest, and
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Figure 10 (Color online) Inferencing speed comparison of Jittor and PyTorch.

Table 1 Inferencing speed comparison (FPS) between Jittor and PyTorcha)

Model

Batch size

1 2 4 8 16 32 64 128

PT JT PT JT PT JT PT JT PT JT PT JT PT JT PT JT

ResNet50 [20] 185 220 353 357 492 548 575 667 643 773 668 810 680 829 692 836

ResNet152 [20] 64 86 126 132 209 231 251 287 273 321 283 335 288 346 296 354

Wide ResNet50 2 [23] 134 131 204 202 275 288 310 335 353 397 379 426 391 441 397 437

Wide ResNet101 2 [23] 73 72 111 112 162 169 180 194 203 225 220 243 228 254 230 253

ResNEXT50 32×4d [25] 118 132 236 216 310 341 393 445 458 536 484 572 495 579 503 586

ResNEXT101 32×8d [25] 50 53 78 81 123 136 149 162 166 185 178 198 183 204 185 205

Res2Net50 [26] 79 149 152 240 299 355 399 451 441 507 460 547 468 553 468 559

AlexNet [21] 865 818 1562 1500 2626 2622 3553 3745 5070 5546 6736 7431 6836 7531 6856 7551

VGG11 [22] 303 315 201 208 322 337 593 665 741 855 808 873 818 883 820 885

SqueezeNet1 1 [24] 404 842 769 1461 1619 2102 2656 2700 3035 3382 3258 3628 3406 3658 3407 3631

a) The boldface represents the faster framework for the same model and batch size.

the state-of-the-art model for most image recognition tasks. AlexNet [21] won first place in ImageNet

ILSVRC-2012; its performance far exceeded that of the second placed method. ResNet [20] won first

place in ImageNet ILSVRC-2016, by a large margin. These ten networks summarize the development of

convolution backbone networks from 2012 to the present.

Figure 10 shows an inferencing speed comparison between Jittor and PyTorch. The horizontal axis

shows different batch sizes, while the vertical axis is number of frames processed per second (FPS). A

quantitative assessment is given in Table 1; PT means PyTorch and JT means Jittor. The experimental

environment is an 11 GB Nvidia 1080ti GPU, an Intel i7-6850K CPU, 32 GB RAM, FP32, PyTorch

benchmark switch on. Taking an average over the above 10 networks, the frame rate of Jittor is 26%

higher than that of PyTorch for small batches and 13% higher for large batches. More noteworthy,

the frame rate of Jittor is 101% higher for a small batch with Res2Net50. Because of the operator

fusion optimization in Jittor, small batches are processed much faster than in PyTorch. For some classic

networks like AlexNet, the frame rate of Jittor is 10% higher for large batches but 5% lower for small

batches. This is because the architecture of AlexNet is much simpler than that of Res2Net50, so Jittor has

less opportunities for optimization, and furthermore, AlexNet is well optimized by underlying libraries

like CUDNN.

5.2 Generative adversarial networks

We compared the training speed of Jittor and PyTorch for four GAN models: WGAN-GP [27], DC-

GAN [28], LSGAN [29], and CycleGAN [30]. Table 2 shows the number of iterations per second, and

relative speed of Jittor on two different datasets, MNIST [31] and cityscapes [32], for 4 GAN models.
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Table 2 Training speed comparison (number of iterations per second) of 4 GAN models

WGAN-GP DCGAN LSGAN CycleGAN

Dataset MNIST MNIST MNIST cityscapes

PyTorch 52.35 37.73 38.61 10.08

Jittor 149.25 78.74 78.74 13.96

Jittor relative speed 2.9 2.1 2.0 1.4

Table 3 Ablation studies about asynchronous interface, cross iteration fusion, unified memory and lazy execution

FPS Speedup ratio

PyTorch 253.1 0.965

Without asynchronous interface 254.9 0.972

Without cross iteration fusion 260.4 0.993

Without unified memory 264.7 1.009

Without lazy execution 73.2 0.279

All-features-on 262.2 1.000

Benefiting from meta-operators and unified graph execution, with these GANs, Jittor achieves a max-

imum relative speed of 2.9 and a minimum of 1.4, with an average relative speed of 2.1.

The performance improvement of WGAN-GP is the most significant. This is because WGAN-GP

requires second-order back-propagation, which means the back-propagation of the model requires back-

propagation again. The backward closure feature makes our second order back-propagation operators

perform better.

All test results are public, and a high-performance GAN library has been released on our website2).

5.3 Ablation study

In this subsection, four ablation studies are performed on ResNet50 training. The experimental envi-

ronment is a 24 GB Nvidia RTX Titan, 64 GB RAM, FP32, and the batch size is 64. Table 3 shows

the training FPS of PyTorch and different modes of Jittor, and the speedup ratio compared to the

all-features-on mode of Jittor.

The asynchronous interface improves performance by overlapping communication and computation.

During ResNet50 training, communication between CPU and GPU is not heavy compared to computation,

so this only has 3% performance loss on FPS compared to the all-features-on mode.

Cross iteration fusion improves performance by fusion operators across iterations. However, during

ResNet50 training, only a part of the batch norm layer can be fused across iterations. So this only has

1% performance loss on FPS.

Unified memory makes memory of CPU and GPU can be swapped. This feature can keep the

program running even when there is not enough memory. It costs about 1% performance loss, but it is

worthy.

Lazy execution is the fundamental feature of Jittor. Without this feature, all operators cannot be

fused at all. Because most operators of Jittor build upon meta-operators, turning off this feature will

greatly reduce performance.

6 Conclusion and future work

This paper presents the deep learning framework Jittor, with two major contributions: meta-operators

and unified graph execution. Jittor has been released online3). Use of meta-operators makes development

and optimization of deep learning operators much easier, and unified graph execution is both easy to use

and efficient.

2) https://github.com/Jittor/gan-Jittor.
3) https://github.com/Jittor/.

https://github.com/Jittor/gan-Jittor
https://github.com/Jittor/
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In future, we plan to develop further libraries for object detection, image segmentation, 3D point cloud

processing, 3D mesh processing and related topics. We hope to further optimize performance, usability,

and scalability of Jittor. We also note that differentiable programming is gradually gaining attention

as a new paradigm to solve machine learning problems, in areas such as differentiable Monte Carlo ray

tracing [33], differentiable rasterizers [34] for reverse rendering problems, and DiffTaichi [35] for trainable

physical simulation. Future versions of Jittor will support differentiable programming to better solve

learning problems in visual computing and geometry.
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