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Abstract Multi-dimensional classification (MDC) aims to build classification models for multiple heteroge-

nous class spaces simultaneously, where each class space characterizes the semantics of an object w.r.t. one

specific dimension. Modeling dependencies among class spaces plays a key role in solving MDC tasks, where

most approaches work by assuming directed acyclic graph (DAG) structure or random chaining structure

over class spaces. Different from existing probabilistic strategies, a deterministic strategy named Seem for

dependency modeling is proposed in this paper via stacked dependency exploitation. In the first-level, pair-

wise dependencies are considered which can be modeled more reliably than modeling full dependencies among

all class spaces by DAG or chaining structure. In the second-level, the class label of unseen instance w.r.t.

each class space is determined by adaptively stacking predictive outputs from first-level pairwise classifiers.

Experimental results show that stacked dependency exploitation leads to superior performance against state-

of-the-art MDC approaches.
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1 Introduction

Multi-class classification is an important learning task in traditional supervised learning. Sometimes,

however, we need to classify the same object from different dimensions. For example, when conducting

demographic census, the Census Bureau needs to classify people from the occupation dimension (with

possible classes teacher, lawyer, farmer, salesman, etc.), from the marital-status dimension (with

possible classes unmarried, married, divorced, etc.), and from the education dimension (with possible

classes bachelor, master, doctor, etc.). This particular problem can be naturally formalized under multi-

dimensional classification framework [1–3]. Specifically, multi-dimensional classification deals with the

problem where each training example is represented by a single instance while associated with multiple

class variables. Here, each class variable corresponds to one specific class space which characterizes the

object’s semantics from one dimension. Multi-dimensional classification (MDC) techniques have been

widely utilized in real-world applications involving objects with rich semantics [4–12].

Formally speaking, let X = R
d be the d-dimensional input space, and Y = C1 × C2 × · · · × Cq be the

output space which corresponds to the Cartesian product of q class spaces. Here, each class space consists
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of Kj possible class labels, i.e., Cj = {cj1, c
j
2, . . . , c

j
Kj

}. Given an MDC training set D = {(xi,yi) | 1 6

i 6 m}, the task of MDC is to induce a multi-dimensional classification model f : X 7→ Y from D. For

each MDC training example (xi,yi), xi = [xi1, xi2, . . . , xid]
T ∈ X corresponds to a d-dimensional feature

vector, and yi = [yi1, yi2, . . . , yiq]
T ∈ Y corresponds to the class vector associated with xi. Here, each

class variable yij in yi takes one possible value in Cj , i.e., yij ∈ Cj . For unseen instance x, a class vector

f(x) ∈ Y is expected to be properly assigned by the induced MDC model.

It is widely acknowledged that modeling dependencies among class spaces is one of the core ways for

designing better MDC approaches. Most existing approaches solve MDC problems by fitting probabilistic

graphical model to MDC data, which can explicitly model dependencies among class spaces via assuming

directed acyclic graph (DAG) structure over class spaces [13–20]. Dependencies also can be modeled by

transformingMDC problem into a chain of multi-class classification problems [21,22], where chaining order

over class spaces is critical but difficult to be determined. Therefore, random chaining order is usually

used. Other attempt also includes partitioning class spaces into groups via a heuristic algorithm [1].

However, these existing MDC approaches aim at estimating the conditional joint probability P (y | x),

which is challenging due to huge number of possible values of y (i.e.,
∏q

j=1 Kj) to be modeled given

limited training examples. Moreover, there is randomness in the learning process (e.g., DAG structure

learning, random chaining order, heuristic partitions) of these approaches where the induced models

might be unstable even based on identical training set.

Different from existing probabilistic strategies, we focus on modeling dependencies among class spaces

via deterministic strategy for multi-dimensional classification. Accordingly, a novel multi-dimensional

classification approach named Seem, i.e., stacked dependency exploitation for multi-dimensional classifi-

cation, is proposed. Specifically, Seem models dependencies in a stacked way, where the whole process

is divided into two levels. In the first-level, pairwise dependencies are considered via training a total

of
(

q

2

)

classifiers, one per a pair of class spaces. In the second-level, with the help of kNN techniques,

the class label of unseen instance w.r.t. each class space is predicted via adaptively stacking q − 1 pre-

dictive outputs, which correspond to the class space from first-level pairwise classifiers. Overall, Seem

aims at modeling pairwise dependencies in the first-level and then considering full-order dependencies

in the second-level instead of directly estimating P (y | x) as existing approaches do. By doing this, we

expect that Seem is able to achieve better performance, and extensive experiments clearly validate the

superiority of Seem over state-of-the-art MDC approaches.

The rest of this paper is organized as follows. Firstly, existing studies related to multi-dimensional

classification are briefly discussed. Secondly, technical details of the proposed Seem approach are in-

troduced. Thirdly, experimental results of comparative studies are reported. Finally, we conclude this

paper.

2 Related work

In multi-dimensional classification, the output space includes multiple class spaces, where each class space

consists of multiple class labels. Obviously, if we independently consider each class space one by one,

then MDC can be regarded as a set of traditional multi-class classification problems. If we restrict the

number of class labels in each class space to be two, then MDC will degenerate to multi-label classification

(MLC) [23–25] as per the mathematical definition of MLC. However, class labels of MLC problem are

generally assumed to belong to the same class space, which differs from the heterogeneous class spaces

assumption made by MDC. Take news documents classification as an example, labels such as sports,

politics, economics, Sci&Tech are from the topic class space while labels such as good news, neutral

news, bad news are from the mood class space, where an MLC problem is unlikely to consider class labels

sports and good news simultaneously which are from different class spaces.

Intuitively, MDC problems can be solved in two basic ways. The first one converts the original MDC

problem into multiple multi-class classification problems by training an independent multi-class classifier

for each class space, while the second one converts the original MDC problem into a single multi-class



Jia B-B, et al. Sci China Inf Sci December 2020 Vol. 63 222102:3

classification problem by treating each class combination in training set as a new class. The first one

does not consider potential dependencies among class spaces and may lead to suboptimal MDC model,

while the second one cannot predict class combinations which do not appear in training set due to limited

training examples. Therefore, modeling dependencies among class spaces appropriately plays a key role

in designing good MDC learning approaches.

Because of powerful modeling capabilities of probabilistic graph model (PGM), most existing MDC

approaches model class dependencies by assuming different DAG structures over class spaces. These

models give rise to a family of PGMs for MDC called multi-dimensional Bayesian network classifiers [13,

15,18,20]. Nonetheless, learning and inference in PGMs are computationally demanding. Accordingly, the

resulting MDC learning approaches can only deal with tasks with discrete-valued features [14,16,17,19].

Following the idea of classifier chain (CC) for MLC [26], the MDC problem can be transformed into

a chain of multi-class classification problems, where the feature space is augmented with predictions

of preceding classifiers when training subsequent ones in the chain [21, 22]. Dependencies among class

spaces are considered by the chain and selecting a better chaining order is critical. However, it is difficult

to find an optimal chaining order and random ones are usually employed. By grouping class spaces as

super-classes, the MDC problem can be transformed into a new MDC problem with less number of class

spaces [1], where dependencies among class spaces will be modeled by super-class structure. However, the

super-classes partition process is heuristic which introduces randomness to the approach. Moreover, this

approach should be regarded as a meta-strategy which also needs an MDC learner to help accomplish

learning.

3 The SEEM approach

In this section, we present technical details of the Seem approach which models dependencies among

class spaces via deterministic strategy.

Following the same notations given in previous section, let D = {(xi,yi) | 1 6 i 6 m} be the

MDC training set where yi = [yi1, yi2, . . . , yiq]
T ∈ Y corresponds to the class vector associated with

xi. Generally speaking, dependencies among fewer class spaces can be modeled more reliably than

dependencies among many class spaces due to limited examples in training set. Therefore, Seem only

considers pairwise dependencies in the first-level by training a total of
(

q
2

)

classifiers, one per a pair of

class spaces, which are denoted as hrs (1 6 r, s 6 q, r < s) respectively. Specifically, classifier hrs is

trained over the following data set:

Drs = {(xi, φrs(yir , yis)) | 1 6 i 6 m}, (1)

i.e., hrs = L(Drs), where L corresponds to the employed multi-class training algorithm. Here, φrs(·, ·)

denotes some injective function from Cartesian product of Cr and Cs to natural numbers and φ−1
rs (·)

is the corresponding inverse function. In other words, the set of new classes in Drs corresponds to

Φ(Drs) = {φrs(yir, yis) | 1 6 i 6 m}. Accordingly, for any instance xi, its class labels w.r.t. the rth

and sth class space can be recovered by hrs and φ−1
rs (·), i.e., [ŷ

rs
ir , ŷ

rs
is ] = φ−1

rs (hrs(xi)), where ŷrsir (ŷrsis )

denotes the recovered class label in the rth (sth) class space for xi.

Example 1. Assume that the output space of D is Y = C1 × C2 × C3 × C4 (i.e., q = 4), where

C1 = {c11, c
1
2, c

1
3}, C2 = {c21, c

2
2}, C3 = {c31, c

3
2, c

3
3, c

3
4}, C4 = {c41, c

4
2, c

4
3}. Then, there are a total of six

differentDrs, i.e., D12, D13, D14, D23, D24, D34. TakeD12 as an example, the Cartesian product C1×C2 =

{(c11, c
2
1), (c

1
1, c

2
2), (c

1
2, c

2
1), (c

1
2, c

2
2), (c

1
3, c

2
1), (c

1
3, c

2
2)}, then φ12(·, ·) maps it into Φ(D12) = {1, 2, 3, 4, 5, 6} (i.e.,

φ12(c
1
1, c

2
1) = 1, φ12(c

1
1, c

2
2) = 2). Moreover, for instance xi, if h12(xi) = 6, then the recovered class labels

w.r.t. C1 and C2 are c13 and c22, respectively.

It is easy to know that there are q − 1 out of
(

q
2

)

pairwise classifiers which are related to one specific

class space. Without loss of generality, for instance xi, its q−1 predictive outputs from first-level pairwise
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classifiers w.r.t. the jth class space (1 6 j 6 q) are denoted as ŷij :

ŷij =
[

ŷ
1j
ij , . . . , ŷ

(j−1)j
ij , ŷ

j(j+1)
ij , . . . , ŷ

jq
ij

]T

. (2)

Here, each component in ŷij corresponds to the predictive output of one pairwise classifier which considers

the dependency between the jth class space and one of the other class spaces. In the second-level, these

outputs will be further stacked to consider high-order dependencies among class spaces in an adaptive

manner. Intuitively, the importance of one classifier might vary when it is used to classify different

examples. Therefore, Seem chooses to weight the outputs of first-level classifiers for second-level stacking

based on their abilities in classifying different examples.

To prepare for the following steps, the multi-class predictive output is transformed into a binary-valued

vector. Specifically, the predictive output of hrs on the rth class space of xi, i.e., ŷ
rs
ir , is transformed into

binary-valued vector δrsir with length Kr as follows:

δrsir = [δrsir (1), δ
rs
ir (2), . . . , δ

rs
ir (Kr)] , (3)

where δrsir (a) equals +1 if ŷrsir = cra, and −1 otherwise. At the same time, we identify xi’s k nearest

neighbors in D and store them in N (xi). Let nrs
ir and nrs

is be the number of examples in N (xi) which

are correctly predicted by hrs in the rth and sth class space respectively. Then, the accuracies of hrs in

classifying examples in N (xi) correspond to

ηrsir =
nrs
ir

k
, ηrsis =

nrs
is

k
. (4)

Conceptually, ηrsir and ηrsis can be approximately regarded as the generalization ability of classifier hrs

w.r.t. the rth and sth class space respectively. After that, we re-scale δrsir with its corresponding accuracy

ηrsir to yield the following vector:

ζrs
ir = ηrsir · δrsir . (5)

Then, the multi-class predictive vector for the jth class space, i.e., ŷij in Eq. (2), is transformed into a

new vector Zij with length (q − 1) ·Kj:

Zij =
[

ζ
1j
ij , . . . , ζ

(j−1)j
ij , ζ

j(j+1)
ij , . . . , ζ

jq
ij

]T

. (6)

After traversing all training examples in D, we can finally get the following data set for each class space,

based on which a second-level classifier gj can be trained:

Dj = {(Zij , yij) | 1 6 i 6 m} (1 6 j 6 q), (7)

i.e., gj = L(Dj). Here, gj can adaptively model dependencies among class spaces by considering the

classification abilities of first-level classifiers with kNN estimation.

Example 2. Following the setting in Example 1, for instance xi, assume its 3 predictive outputs from

first-level pairwise classifiers w.r.t. C1 are ŷi1 = [c11, c
1
3, c

1
1]

T and the corresponding 3 accuracies are 0.8,

0.9, 0.6, then Zi1 = [+0.8,−0.8,−0.8,−0.9,−0.9,+0.9,+0.6,−0.6,−0.6]T.

For unseen instance x∗, its input features Z∗j for the jth class space of second-level classifiers can

be obtained similarly according to Eqs. (2)–(6). Then, its class label w.r.t. the jth class space can be

predicted by classifier gj , i.e., y∗j = gj(Z∗j). After traversing all class spaces, finally we can obtain x∗’s

predicted class vector y∗ = [y∗1, y∗2, . . . , y∗q]
T.

In summary, Algorithm 1 presents the complete procedure of Seem. Firstly,
(

q
2

)

first-level classifiers

are trained (steps 1–6). Then, training sets which will be used to train the second-level classifiers are

constructed (steps 7–22). After that, the second-level classifier for each class space is induced one by

one (steps 23–25). Finally, class vector for unseen instance is predicted based on the stacked classifiers

(steps 26–31).
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Algorithm 1 The pseudo-code of Seem.

Input: D: the MDC training set {(xi,yi) | 1 6 i 6 m};

k: the number of nearest neighbors considered;

L: the employed multi-class training algorithm;

x∗: the unseen instance.

Output: y∗: the predicted class vector for x∗.

1: for r = 1 to q − 1 do

2: for s = r + 1 to q do

3: Construct training set Drs according to Eq. (1);

4: Train pairwise classifier hrs over Drs, i.e., hrs = L(Drs);

5: end for

6: end for

7: Initialize Dj (j = 1, 2, . . . , q) as empty set;

8: for i = 1 to m do

9: Identify k nearest neighbors of xi in training set D and store them in N (xi);

10: for r = 1 to q − 1 do

11: for s = r + 1 to q do

12: [ŷrs
ir
, ŷrs

is
] = φ−1

rs (hrs(xi));

13: Obtain δrs
ir and δrs

is according to Eq. (3);

14: Obtain ηrsir and ηrsis according to Eq. (4);

15: Obtain ζrs
ir

and ζrs
is

according to Eq. (5);

16: end for

17: end for

18: for j = 1 to q do

19: Obtain Zij according to Eq. (6);

20: Dj = Dj ∪ (Zij , yij);

21: end for

22: end for

23: for j = 1 to q do

24: Train classifier gj over Dj , i.e., gj = L(Dj);

25: end for

26: Identify k nearest neighbors of x∗ in training set D and store them in N (x∗);

27: for j = 1 to q do

28: Obtain Z∗j according to Eqs.(3)–(6);

29: y∗j = gj(Z∗j);

30: end for

31: Return y∗ = [y∗1, y∗2, . . . , y∗q]T.

Generally speaking, Seem embodies three major merits that any practically useful algorithm is desir-

able to have: (1) There is only one parameter (i.e., k) while most existing MDC approaches usually have

many parameters to be set; (2) As our approach is a deterministic strategy for dependency modeling,

Seem has no randomness in learning process while most existing MDC approaches have; (3) As to be

reported in the following experimental section, Seem achieves highly competitive performance against

state-of-the-art MDC approaches.

4 Experiments

4.1 Experimental setup

4.1.1 Data sets

A total of twelve benchmark MDC data sets are employed for performance evaluation1). Table 1 sum-

marizes detailed characteristics of these data sets, including number of examples (#Exam.), number of

class spaces (#Dim.), number of class labels per class space (#Labels/Dim.)2), and number of features

(#Features). Generally, it is rather costly to collect labeled MDC examples which have to be anno-

1) Here, only MDC data sets which have no less than 4 class spaces (12 pairs of class spaces) are employed.
2) If all class spaces have the same number of class labels, then only this number is recorded; Otherwise, the number of

class labels in each class space is recorded in turn.
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Table 1 Characteristics of the experimental data sets

Data set #Exam. #Dim. #Labels/Dim. #Featuresa)

WQplants 1060 7 4 16n

WQanimals 1060 7 4 16n

WaterQuality 1060 14 4 16n

Scm20d 8966 16 4 61n

Rf1 8987 8 4, 4, 3, 4, 4, 3, 4, 3 64n

Thyroid 9172 7 5, 5, 3, 2, 4, 4, 3 7n, 20b, 2x

Pain 9734 10 2, 5, 4, 2, 2, 5, 2, 5, 2, 2 136n

Scm1d 9803 16 4 280n

CoIL2000 9822 5 6, 10, 10, 4, 2 81x

Disfa 13095 12 5,5,6,3,4,4,5,4,4,4,6,4 136n

Adult 18419 4 7,7,5,2 5n, 5x

Default 28779 4 2,7,4,2 14n,6x

a) n, b, and x denote numeric, binary, and nominal features, respectively.

tated from several dimensions (class spaces). To the best of our knowledge, we have employed the most

comprehensive as well as largest publicly-available MDC data sets for experimental studies [1–3,15,27,28].

Specifically, WaterQuality (including its two divisions WQplants and WQanimals), Scm20d, Rf1, Scm1d

are adapted from multi-target regression tasks3), Thyroid, CoIL2000, Adult, Default are adapted from

UCI data sets4), and Pain, Disfa are adapted from copula ordinal regression tasks [29, 30].

4.1.2 Evaluation metrics

Let S = {(xi,yi) | 1 6 i 6 p} be the test set and f : X 7→ Y be the induced MDC model which is to be

evaluated. For each test example xi, let yi = [yi1, yi2, . . . , yiq]
T ∈ Y be its ground-truth class vector and

ŷi = f(xi) = [ŷi1, ŷi2, . . . , ŷiq]
T be its predicted one by f . Then, the number of class labels of xi which

are correctly predicted can be defined as r(i) =
∑q

j=1 1yij=ŷij
, where predicate 1π returns 1 if π holds

and 0 otherwise. Based on these notations, the following three metrics which are employed in this paper

to measure the generalization abilities of MDC approaches can be given as follows:

• Hamming score:

HScoreS(f) =
1

p

p
∑

i=1

1

q
· r(i);

• Exact match:

EMatchS(f) =
1

p

p
∑

i=1

1r(i)=q;

• Sub-exact match:

SEMatchS(f) =
1

p

p
∑

i=1

1r(i)>q−1.

In a nutshell, hamming score measures the average accuracy of all class spaces, while exact match

measures the accuracy when considering all class spaces as a single one. Sub-exact match serves as a

relaxed version of exact match that allows at most one incorrectly predicted class space, because exact

match might be rather low when the number of class spaces is large. For all three metrics, the larger the

values the better the performance. Ten-fold cross-validation is conducted over all the benchmark data

sets, where both mean metric value and standard deviation are recorded for performance comparison5).

3) http://mulan.sourceforge.net/datasets-mtr.html.
4) http://archive.ics.uci.edu/ml/index.php.
5) In some literatures, hamming score and exact match are also termed as class accuracy and example accuracy [1], or

mean accuracy and global accuracy [15], respectively.

http://mulan.sourceforge.net/datasets-mtr.html
http://archive.ics.uci.edu/ml/index.php
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4.1.3 Comparing approaches

In this paper, we compare the performance of Seem with five state-of-the-art MDC approaches [1, 2]:

• Binary relevance (BR). This approach learns from MDC examples by training a number of inde-

pendent multi-class classifiers, one per class space. In other words, dependencies among class spaces are

completely ignored by BR.

• Class powerset (CP). This approach learns from MDC examples by training a single multi-class

classifier, where each distinct class combination in training set is treated as a new class. In other words,

any dependencies among class spaces existing in training set are considered by CP.

• Ensembles of classifier chains (ECC). This approach learns from MDC examples by training a chain

of multi-class classifiers, where the feature space is augmented with predictions of preceding classifiers

when training subsequent ones in the chain. Specifically, different random chaining orders are considered

to constitute an ensemble of classifier chains.

• Ensembles of super class classifiers (ESC). This approach learns from MDC examples by grouping

class spaces into super-classes according to the conditional dependencies among class spaces. Specifically,

random samples of training set are considered to constitute an ensemble of super-class classifiers.

• A metric learning approach for MDC (gMML). This approach learns from MDC examples by alter-

nately learning linear regression models for each class label as well as a Mahalanobis distance metric to

solve MDC problem effectively [2]. gMML is not dependent on one multi-class classifier, so the experi-

mental results in the following subsections are identical when different multi-class classifier is employed.

In this paper, support vector machine (SVM), logistic regression (LR) and classification & regression

trees (CART) are investigated as the multi-class classifier L to instantiate each MDC approach except

gMML6). Specifically, SVM is implemented by LIBSVM [31] with linear kernel, LR is implemented by

LIBLINEAR [32] with L2-regularized logistic regression (primal), and CART is implemented by MATLAB

built-in function fitctree with default parameters. For ensemble approaches ECC and ESC, a total of

10 base classifiers are used and predictive outputs from these 10 base models are combined via majority

voting. For gMML, recommended parameters in [2] are used. As shown in Algorithm 1, the only

parameter k (number of nearest neighbors considered) for Seem is set to be 10.

4.2 Experimental results

Tables 2–4 report the detailed experimental results. Additionally, pairwise t-test based on ten-fold cross-

validation (at 0.05 significance level) is conducted to show whether the performance of Seem is signif-

icantly different to the five comparing MDC approaches respectively. Accordingly, Table 5 summarizes

the resulting win/tie/loss counts over 12 data sets and 3 evaluation metrics.

Based on the above results, the following observations can be made:

• Among the 525 configurations7) (12 data sets × 5 comparing approaches × 3 multi-class classifiers

× 3 metrics), Seem achieves superior or at least comparable performance against the five comparing

approaches in 83.6% cases.

• BR solves MDC problems by independent decomposition, where dependencies among class spaces are

completely ignored by this approach. As shown in Table 5, Seem achieves superior or at least comparable

performance against BR in all configurations. These results clearly suggest that class dependencies should

be considered when inducing MDC models.

• ECC solves MDC problems by modeling class dependencies via specifying a random chaining order

over class spaces. It is interesting to notice that Seem also achieves superior or at least comparable

performance against ECC in all configurations when SVM and LR are utilized as the multi-class classifier.

6) Similar to BR, CP, ECC and ESC, the proposed Seem can also be regarded as a problem transformation approach,

which works by transforming the MDC problem into some well-established learning problem (e.g., multi-class classification

problem for Seem). Accordingly, Seem needs to be instantiated by employing certain multi-class classifier.
7) A total of 15 configurations are excluded where the experimental results of CP and ESC (multi-class classifier: SVM)

over Scm1d, Scm20d and Disfa (only for CP) cannot be returned due to “out of memory” error caused by the combinatorial

nature of CP and ESC.
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Table 2 Experimental results (mean±std. deviation) of each comparing MDC approach (multi-class classifier: SVM). In

addition, •/◦ indicates whether Seem is significantly superior/inferior to other comparing MDC approaches on each data

set (pairwise t-test at 0.05 significance level). (a) Hamming score; (b) exact match; (c) sub-exact match

(a)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem .666±.014 .634±.013 .647±.011 .783±.006 .962±.001 .967±.003 .962±.003 .861±.002 .955±.004 .925±.002 .714±.002 .669±.003

BR .657±.016• .630±.014• .644±.013 .666±.006• .891±.002• .965±.002• .953±.003• .829±.004• .944±.004• .901±.002• .710±.004• .666±.003•

CP .647±.015• .629±.013• .626±.012• – .928±.003• .965±.002• .954±.003• – .935±.005• – .707±.005• .665±.003•

ECC .654±.016• .630±.014• .643±.013• .665±.005• .888±.004• .965±.002• .952±.004• .824±.003• .944±.003• .900±.002• .710±.004• .668±.003

ESC .651±.017• .631±.014• .641±.013• – .919±.003• .965±.002• .954±.003• – .957±.004◦ .904±.003• .708±.004• .667±.003•

gMML .655±.015• .630±.015• .643±.013• .600±.007• .730±.007• .960±.002• .948±.004• .697±.007• .894±.004• .884±.003• .705±.004• .666±.004•

(b)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem .102±.035 .061±.023 .006±.007 .129±.011 .736±.009 .791±.016 .788±.013 .224±.009 .815±.015 .495±.013 .262±.007 .188±.006

BR .097±.033 .058±.022 .007±.008 .065±.008• .428±.014• .773±.015• .759±.015• .175±.010• .767±.016• .401±.009• .247±.009• .179±.007•

CP .093±.028 .063±.018 .000±.000• – .612±.013• .776±.014• .771±.016• – .757±.016• – .307±.012◦ .186±.006•

ECC .093±.037 .061±.023 .006±.008 .101±.010• .438±.017• .772±.014• .761±.016• .197±.013• .770±.016• .402±.010• .260±.008 .181±.008•

ESC .093±.037 .064±.024 .006±.008 – .580±.011• .771±.014• .769±.015• – .832±.011◦ .427±.011• .310±.009◦ .182±.008•

gMML .092±.035 .062±.023 .006±.008 .052±.007• .138±.011• .741±.015• .750±.018• .102±.009• .576±.015• .379±.011• .230±.009• .177±.007•

(c)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem .294±.044 .239±.029 .058±.024 .266±.011 .964±.005 .982±.004 .895±.010 .438±.016 .964±.006 .752±.009 .679±.007 .595±.007

BR .287±.055 .229±.034• .051±.024• .131±.008• .785±.006• .982±.004 .863±.009• .348±.018• .956±.006• .652±.012• .669±.009• .593±.008

CP .281±.049 .230±.031 .034±.017• – .867±.012• .981±.005 .867±.008• – .934±.011• – .637±.007• .589±.006•

ECC .283±.049 .229±.032• .050±.023• .171±.007• .769±.010• .981±.004 .859±.010• .358±.014• .956±.007• .652±.011• .662±.009• .596±.007

ESC .282±.049 .232±.032 .046±.022• – .842±.012• .982±.004 .864±.008• – .960±.007• .668±.013• .638±.008• .595±.007

gMML .286±.053 .227±.033• .049±.024• .100±.009• .375±.014• .982±.005 .846±.010• .198±.015• .903±.010• .590±.009• .669±.008• .593±.008

Table 3 Experimental results (mean±std. deviation) of each comparing MDC approach (multi-class classifier: LR). In

addition, •/◦ indicates whether Seem is significantly superior/inferior to other comparing MDC approaches on each data

set (pairwise t-test at 0.05 significance level). (a) Hamming score; (b) exact match; (c) sub-exact match

(a)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem .661±.023 .635±.015 .646±.014 .749±.006 .954±.001 .967±.002 .962±.003 .835±.005 .955±.004 .919±.001 .721±.004 .672±.003

BR .658±.014 .631±.013 .644±.011 .649±.005• .835±.004• .965±.002• .953±.003• .762±.004• .924±.005• .896±.002• .721±.004 .669±.003•

CP .649±.016• .628±.013• .625±.011• .618±.010• .885±.004• .963±.003• .952±.004• .703±.009• .936±.005• .886±.003• .709±.004• .669±.004•

ECC .654±.016 .629±.013 .642±.012 .635±.006• .834±.003• .964±.002• .952±.003• .741±.005• .923±.004• .893±.002• .720±.003 .670±.003•

ESC .653±.016 .631±.014 .642±.014 .637±.008• .864±.005• .963±.002• .952±.004• .733±.005• .952±.003• .890±.003• .710±.005• .672±.004

gMML .655±.015 .630±.015 .643±.013 .600±.007• .730±.007• .960±.002• .948±.004• .697±.007• .894±.004• .884±.003• .705±.004• .666±.004•

(b)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem .096±.034 .049±.022 .009±.006 .105±.006 .700±.008 .791±.015 .788±.013 .192±.010 .817±.014 .469±.010 .289±.010 .190±.009

BR .092±.033 .058±.017 .005±.008 .058±.008• .288±.015• .769±.014• .755±.015• .121±.009• .686±.018• .396±.009• .275±.008• .181±.007•

CP .093±.031 .065±.018 .000±.000• .132±.010◦ .509±.011• .762±.014• .760±.017• .180±.015• .767±.016• .403±.012• .317±.010◦ .194±.008

ECC .092±.034 .059±.017 .005±.008 .076±.009• .288±.012• .764±.013• .757±.015• .126±.008• .685±.017• .392±.011• .287±.007 .185±.006•

ESC .093±.036 .064±.019 .005±.008 .095±.009• .425±.017• .761±.013• .758±.017• .170±.016• .821±.010 .393±.012• .312±.011◦ .187±.007

gMML .092±.035 .062±.023 .006±.008 .052±.007• .138±.011• .741±.015• .750±.018• .102±.009• .576±.015• .379±.011• .230±.009• .177±.007•

(c)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem .287±.042 .241±.029 .050±.025 .224±.011 .942±.005 .981±.003 .894±.011 .375±.014 .963±.007 .724±.008 .680±.006 .604±.007

BR .286±.044 .229±.030 .047±.019 .115±.009• .624±.011• .983±.004 .862±.011• .234±.015• .937±.008• .632±.012• .685±.009 .601±.006•

CP .285±.052 .232±.032 .034±.017• .209±.011• .758±.013• .982±.005 .858±.010• .284±.017• .934±.008• .605±.010• .637±.007• .594±.008•

ECC .285±.053 .226±.026 .048±.022 .135±.007• .632±.011• .982±.004 .859±.010• .230±.014• .936±.009• .625±.011• .679±.008 .600±.007•

ESC .282±.049 .231±.029 .048±.019 .162±.010• .703±.014• .982±.004 .858±.011• .275±.016• .953±.005• .614±.011• .644±.007• .604±.008

gMML .286±.053 .227±.033 .049±.024 .100±.009• .375±.014• .982±.005 .846±.010• .198±.015• .903±.010• .590±.009• .669±.008• .593±.008•

These results show that the stacked dependency exploitation strategy serves as a promising dependency

modeling mechanism for MDC tasks.
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Table 4 Experimental results (mean±std. deviation) of each comparing MDC approach (multi-class classifier: CART).

In addition, •/◦ indicates whether Seem is significantly superior/inferior to other comparing MDC approaches on each data

set (pairwise t-test at 0.05 significance level). (a) Hamming score; (b) exact match; (c) sub-exact match

(a)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem .569±.019 .554±.020 .557±.020 .826±.003 .978±.002 .991±.001 .950±.003 .851±.004 .946±.003 .901±.004 .672±.007 .619±.003

BR .561±.026 .561±.014 .561±.015 .769±.006• .975±.002• .990±.001• .940±.003• .814±.003• .946±.004 .888±.003• .669±.006 .592±.004•

CP .586±.024◦ .556±.018 .559±.015 .663±.013• .971±.002• .990±.002• .938±.006• .706±.009• .921±.005• .882±.004• .663±.006• .605±.004•

ECC .634±.026◦ .622±.023◦ .634±.017◦ .831±.004◦ .980±.001◦ .991±.002 .960±.004◦ .864±.003◦ .957±.004◦ .922±.002◦ .711±.003◦ .649±.004◦

ESC .645±.015◦ .630±.022◦ .641±.012◦ .793±.006• .982±.001◦ .991±.001 .959±.003◦ .835±.005• .956±.004◦ .918±.003◦ .707±.005◦ .649±.004◦

gMML .655±.015◦ .630±.015◦ .643±.013◦ .600±.007• .730±.007• .960±.002• .948±.004 .697±.007• .894±.004• .884±.003• .705±.004◦ .666±.004◦

(b)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem .039±.021 .033±.020 .002±.004 .139±.005 .835±.009 .947±.007 .700±.012 .194±.016 .781±.011 .416±.019 .221±.009 .137±.005

BR .033±.023 .029±.011 .003±.005 .062±.008• .816±.014• .941±.007• .636±.018• .120±.008• .781±.014 .352±.014• .212±.007• .118±.005•

CP .048±.028 .025±.016 .000±.000 .156±.007◦ .826±.008• .946±.012 .705±.018 .175±.014• .725±.013• .411±.011 .244±.012◦ .132±.004

ECC .069±.033◦ .046±.023◦ .005±.005 .193±.013◦ .851±.006◦ .950±.009 .782±.018◦ .233±.012◦ .819±.014◦ .494±.009◦ .293±.009◦ .172±.008◦

ESC .075±.026◦ .050±.026◦ .005±.007 .200±.016◦ .859±.008◦ .951±.007 .787±.017◦ .230±.012◦ .818±.016◦ .496±.012◦ .288±.009◦ .169±.006◦

gMML .092±.035◦ .062±.023◦ .006±.008 .052±.007• .138±.011• .741±.015• .750±.018◦ .102±.009• .576±.015• .379±.011• .230±.009◦ .177±.007◦

(c)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem .146±.026 .140±.030 .019±.015 .326±.012 .990±.004 .991±.004 .872±.012 .406±.014 .952±.004 .675±.013 .608±.013 .503±.006

BR .141±.042 .119±.025• .012±.012 .178±.010• .986±.004• .991±.003 .851±.012• .280±.012• .952±.007 .630±.010• .605±.012 .460±.006•

CP .177±.052 .133±.017 .022±.017 .279±.014• .970±.005• .983±.004• .824±.018• .299±.017• .899±.009• .616±.016• .573±.009• .480±.008•

ECC .224±.044◦ .213±.055◦ .041±.020◦ .375±.008◦ .991±.003 .991±.003 .888±.011◦ .444±.013◦ .966±.007◦ .743±.007◦ .656±.007◦ .559±.003◦

ESC .262±.038◦ .225±.045◦ .044±.026◦ .364±.014◦ .993±.002◦ .988±.004 .884±.008◦ .417±.011◦ .964±.007◦ .727±.011◦ .645±.011◦ .561±.011◦

gMML .286±.053◦ .227±.033◦ .049±.024◦ .100±.009• .375±.014• .982±.005• .846±.010• .198±.015• .903±.010• .590±.009• .669±.008◦ .593±.008◦

Table 5 Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between Seem and each MDC approach in terms

of hamming score (HScore), exact match (EMatch), and sub-exact match (SEMatch)

Seem Multi-class classifier: SVM Multi-class classifier: LR Multi-class classifier: CART
In total

against HScore EMatch SEMatch HScore EMatch SEMatch HScore EMatch SEMatch

BR 11/1/0 9/3/0 9/3/0 8/4/0 9/3/0 7/5/0 7/5/0 8/4/0 7/5/0 75/33/0

CP 9/0/0 6/2/1 6/3/0 12/0/0 7/3/2 9/3/0 9/2/1 3/7/2 9/3/0 70/23/6

ECC 11/1/0 8/4/0 9/3/0 8/4/0 8/4/0 7/5/0 0/1/11 0/2/10 0/2/10 51/26/31

ESC 9/0/1 5/3/2 6/4/0 8/4/0 6/5/1 7/5/0 2/1/9 0/2/10 0/1/11 43/25/34

gMML 12/0/0 9/3/0 9/3/0 9/3/0 9/3/0 8/4/0 6/1/5 6/1/5 7/0/5 75/18/15

In total 52/2/1 37/15/3 39/16/0 45/15/0 39/18/3 38/22/0 24/10/26 17/16/27 23/11/26 314/125/86

• As shown in Table 5, when SVM and LR are utilized as the multi-class classifier, Seem significantly

outperforms CP in 49 out of 63 configurations and outperforms ESC in 41 out of 66 configurations

respectively. Among the 7 configurations that Seem is inferior to CP or ESC, 6 of them are in terms of

exact match. This might be attributed to the class space powerset transformation made by CP and ESC,

which makes them suitable for maximizing the exact match metric (though computationally demanding).

• When CART is utilized as the multi-class classifier, the prominent advantage of Seem over BR and

CP (with only 3 loss cases with CP) clearly validate the effectiveness of Seem, while there are 61 out of 72

configurations where Seem is inferior to ECC and ESC. This might be due to that CART is not a suitable

classifier for adaptive stacking in the second-level, which will be further analyzed in Subsection 4.3.1.

• Note that there are less significant differences between the baselines and Seem for exact match

and sub-exact match over WaterQuality. For this data set, there are 989 distinct class combinations

appearing within the 1060 examples where the number of examples w.r.t. one specific class combinations

is rather small. Specifically, there are 942 class combinations each with only one example appearing

in the data set. This might lead to the fact that the value of exact match is very low for all MDC

approaches, and thus it is hard to achieve statistically superior performance for one approach than other

approaches based on pairwise t -test. Sub-exact match is a relaxed version of exact match, and WQplants
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and WQanimals are two divisions of WaterQuality [33], so similar observations can be made on these

cases.

4.3 Further analysis

4.3.1 Effectiveness of Seem’s design

We also compare the performance of Seem with its three simplified versions to verify the effectiveness of

Seem’s design. The three variants are denoted as Pair, Vote, and Stack, respectively.

• Pair. This variant simply partitions all the q class spaces into ⌊ q

2⌋ pairs (and a single one when q is

odd) according to the value of Cramér’s V [34] between each pair of class spaces. Specifically, the pair

of class spaces which has the largest Cramér’s V is selected out as a pair, and then the same process is

done in the remaining class spaces repeatedly until all class spaces have been selected. For each pair of

class spaces, a data set is formed according to Eq. (1) and then a multi-class classifier is trained over it.

• Vote. This variant simply makes majority voting based on Eq. (2) instead of training a second-level

classifier for each class space.

• Stack. This variant simply substitutes the following vector ∆ij :

∆ij =
[

δ
1j
ij , . . . , δ

(j−1)j
ij , δ

j(j+1)
ij , . . . , δ

jq
ij

]T

for Zij in Eq. (7), which will be employed as input features by the second-level classifiers.

Detailed experimental results are shown in Figure 1. Besides, to show overall statistical relationships

among Pair, Vote, Stack, and Seem over all data sets, Wilcoxon signed-ranks test [35] is employed to

serve this purpose. Table 6 summarizes the statistical test results where the p-values for the corresponding

tests are also shown in the brackets.

Based on the experimental results, the following observations can be made:

• It is no doubt that Pair achieves the worst performance no matter which multi-class classifier is

used, which validates the effectiveness of our two levels dependency modeling strategy.

• Stack can achieve superior performance against Vote in terms of hamming score when SVM is

utilized as the multi-class classifier and all evaluation metrics when LR is utilized as the multi-class

classifier. Furthermore, when SVM and LR are utilized as the multi-class classifier, Seem can achieve

superior performance against Vote in terms of all evaluation metrics, and Stack over hamming score

and sub-exact match. These results suggest that it is effective to improve classification performance by

adaptively stacking predictive outputs from first-level pairwise classifiers as Seem does.

• When CART is utilized as the multi-class classifier, Vote achieves superior performance against

Stack and Seem which might lie in the fact that CART is more suitable for handling discrete features,

while the features used in the second-level of Seem are numeric ones (i.e., the vector in Eq. (6)).

Therefore, multi-class classifiers like SVM, LR are more recommended for Seem.

4.3.2 Sensitivity analysis

As shown in Algorithm 1, the only parameter k, i.e., the number of nearest neighbors considered, is

used by Seem for adaptive stacking. Figure 2 illustrates how the performance of Seem (with SVM as

multi-class classifier) changes as the value of k increases from 5 to 15. In terms of each evaluation metric,

it is shown that the performance of Seem is relatively stable with varying values of k. Insensitivity w.r.t.

the only parameter serves as a desirable property. In this paper, the value of k is moderately fixed to

be 10.

4.3.3 Computational complexity

Given a multi-class classification algorithm L, let F(m, d,N) and F ′(m, d,N) be the training and testing

complexity of L, where m, d, N corresponds to the number of examples, number of features and number

of class labels, respectively. Furthermore, the complexity of identifying k nearest neighbors is O(m(d +

ln(m))). Then, the time complexity of the proposed Seem approach corresponds to O(q(qF(m, d,K2) +
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Figure 1 (Color online) Performance comparison of Pair, Vote, Stack, and Seem. (a) Hamming score (SVM); (b) exact

match (SVM); (c) sub-exact match (SVM); (d) hamming score (LR); (e) exact match (LR); (f) sub-exact match (LR);

(g) hamming score (CART); (h) exact match (CART); (i) sub-exact match (CART).

F(m, (q − 1)K,K)) + m2(d + ln(m) + q2F ′(m, d,K2))). Here, q represents the number of class spaces

(dimensions) and K represents the maximum number of class labels in each class space. Conceptually,



Jia B-B, et al. Sci China Inf Sci December 2020 Vol. 63 222102:12

Table 6 Wilcoxon signed-ranks test among Pair, Vote, Stack, and Seem in terms of hamming score (HScore), exact

match (EMatch), and sub-exact match (SEMatch) (significance level α = 0.05; p-values shown in the brackets)

Multi-class Evaluation Vote against Stack against Seem against

classifier metric Pair Pair Vote Pair Vote Stack

HScore tie[6.40e−2] win[4.88e−4] win[3.42e−3] win[9.77e−4] win[9.77e−4] win[4.88e−3]

SVM EMatch tie[8.98e−1] win[2.69e−2] tie[1.75e−1] win[3.22e−2] win[1.86e−2] tie[7.71e−2]

SEMatch win[3.42e−2] win[4.88e−4] tie[3.39e−1] win[2.44e−3] win[4.88e−3] win[2.44e−3]

HScore win[2.00e−2] win[4.88e−4] win[6.84e−3] win[4.88e−4] win[4.88e−4] win[4.88e−4]

LR EMatch tie[5.69e−1] win[2.10e−2] win[4.00e−2] win[1.27e−2] win[1.61e−2] win[2.69e−2]

SEMatch win[9.77e−3] win[2.93e−3] win[1.12e−2] win[2.44e−3] win[7.32e−3] win[9.28e−3]

HScore win[4.88e−4] win[4.25e−2] loss[4.88e−4] tie[2.04e−1] loss[4.88e−4] loss[1.46e−3]

CART EMatch win[4.88e−4] win[2.44e−3] loss[9.77e−4] win[2.69e−2] loss[4.88e−4] loss[3.91e−3]

SEMatch win[4.88e−4] win[1.37e−2] loss[4.88e−4] win[9.77e−3] loss[4.88e−4] tie[5.22e−2]
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Figure 2 (Color online) Performance of Seem changes as k ranges from 5 to 15 in terms of each evaluation metric.

(a) Hamming score; (b) exact match; (c) sub-exact match.

each class space in MDC problem corresponds to one heterogeneous semantic space. Therefore, it is

generally impractical to assume too many semantic spaces and the number of class spaces handled by

MDC is at moderate size. Table 7 shows the time costs of Seem and all comparing approaches over each

data set. Among BR, CP, ECC, ESC and Seem who are dependent on certain multi-class classifier, BR

is undoubtedly the most efficient approach while ESC is usually the most computationally demanding

one. Seem usually consumes less execution time than ESC and comparable execution time to CP (ECC)

when LR (CART) is utilized as the multi-class classifier.

5 Conclusion

In this paper, a novel MDC approach named Seem is proposed by focusing on deterministic strategy
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Table 7 The time costs (unit: s) of Seem and all comparing approaches over each data set. Multi-class classifier:

(a) SVM; (b) LR; (c) CART

(a)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem 31 27 135 24299 2241 548 5896 56719 10607 35685 4677 15694

BR 3 3 5 1254 262 27 372 2986 1173 1545 480 2486

CP 10 12 33 – 74 28 432 – 777 – 348 1179

ECC 39 46 168 5658 1251 176 1703 12474 7017 8077 2236 10477

ESC 202 746 7557 – 4742 622 8702 – 23463 37242 7824 36479

gMML 6 6 9 105 44 44 48 118 69 115 96 110

(b)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem 8 7 20 2630 634 138 1515 10328 855 4400 326 834

BR 1 1 1 68 28 6 61 468 66 160 11 21

CP 8 9 16 4750 295 6 338 19917 896 3649 203 229

ECC 5 5 10 658 279 58 490 2298 377 1001 112 165

ESC 33 36 61 9684 1148 74 1650 51570 2861 10784 661 263

gMML 6 6 9 105 44 44 48 118 69 115 96 110

(c)

Algo. WQpla. WQani. WQ Scm20d Rf1 Thyroid Pain Scm1d CoIL2000 Disfa Adult Default

Seem 16 16 58 2051 238 137 1173 11288 429 4288 378 967

BR 4 4 8 244 40 7 212 1386 60 553 31 119

CP 6 8 12 4773 37 4 224 34750 2509 3014 230 122

ECC 32 32 72 2175 359 66 1322 9481 636 3415 286 1038

ESC 65 70 150 35591 438 101 2054 120133 2820 10997 1180 1191

gMML 6 6 9 105 44 44 48 118 69 115 96 110

while most existing approaches focus on probabilistic strategy. Specifically, Seem works in a stacked

way, where pairwise dependencies are considered in the first level, and high-order dependencies are

further considered by adaptively stacking the predictive outputs from first-level pairwise classifiers. The

effectiveness of Seem is thoroughly validated via comprehensive experiments on ten real-world MDC data

sets.

Seem needs to train a total of
(

q
2

)

pairwise classifiers which leads to quadratic (i.e., O(q2)) computa-

tional complexity. On the other hand, better generalization performance is expected to be achieved in

the second-level with more predictive outputs from first-level classifiers. In the future, for MDC tasks

with large number of class spaces, a compromising solution to computation and performance is to just

select part of the class space pairs according to some well-designed criteria or the exploitation of domain

knowledge [36].
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11 Fernandez-Gonzalez P, Bielza C, Larrañaga P. Multidimensional classifiers for neuroanatomical data. In: Proceedings

of ICML Workshop on Statistics, Machine Learning and Neuroscience, 2015

12 Muktadir A H A, Miyazawa T, Martinez-julia P, et al. Multi-target classification based automatic virtual resource

allocation scheme. IEICE Trans Inf Syst, 2019, 102: 898–909

13 van der Gaag L C, de Waal P R. Multi-dimensional Bayesian network classifiers. In: Proceedings of the 3rd European

Workshop in Probabilistic Graphical Models, 2006. 107–114
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