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Abstract Nonlocal self-similarity (NSS) is one of the most commonly used priors in computer vision and

image processing. It aims to make use of the fact that a natural image often possesses many repetitive

local patterns, and thus a local image patch always has many similar patches across the image. Through

compensatively integrating these similar image patches, their insightful patterns hiding under corrupted

noises can be intrinsically extracted. However, for using this prior knowledge, current methods search the

similar patches by using simple block matching strategy with Euclidean distance, which largely ignores

those patches containing similar local patterns but with different texture-directions and colors. To more

sufficiently explore similar patches over an image, in this paper, we propose two new representations for image

patches, which facilitate an easy NSS prior for measuring direction-invariant and color-invariant nonlocal self-

similarity possessed by image patches. Specifically, based on this prior term, we formulate the color image

denoising problem as a concise Bayesian posterior estimation framework, and design an efficient expectation-

maximization (EM) algorithm to solve it. A series of experiments implemented on simulated and real noisy

color images demonstrate the superiority of the proposed method as compared with the state-of-the-arts both

visually and quantitatively, verifying the potential usefulness of this new NSS prior.

Keywords color image denoising, nonlocal self-similarity, Gaussian mixture model, maximum a posterior

(MAP) model, EM algorithm
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1 Introduction

In most conventional methods designed for various image processing tasks, the key point we need to

consider is to finely explore and encode the general prior structure knowledge underlying images. One

of the most commonly utilized priors in current research is the so called nonlocal self-similarity (NSS)

prior [1], referring to the fact that a natural image (both gray-scale and color ones) often has many

repetitive local patterns, and thus a local image patch always has some similar patches across the image.

Through compensatively integrating these similar image patches, the negative effects brought by noises

can be effectively suppressed and their insightful patterns can be intrinsically extracted. By taking

advantage of such NSS prior, various methods have been proposed for different image processing tasks.

Let’s take the well known image denoising task as an example. Multiple effective denoising methods

have been designed for gray-scale images by considering this NSS prior and achieved excellent effect,

like nonlocal means [1], BM3D [2], WNNM [3], and so on [4–7]. Afterwards, as natural extensions of the

BM3D and WNNM methods, the state-of-the-art methods for the color image denoising task, CBM3D [8]
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Figure 1 Illustration of the CDI-NSS in a color image. (a) A natural color image. (b) Image patches with similar structure

but different colors. (c) Image patches with similar structure but different texture directions. (d) Angel-adjusting results of

patches in (c). (e) The core structural patch of image patches in (b) and (d). (f) Several core patches obtained by adopting

the proposed method to the clean image in (a). (g), (h) Illustrations of color vectors cs and bs estimated by the proposed

method. Since they are H ×W 3-dimensional vectors, we illustrate them as H ×W × 3 RGB images. (i) Rotation angels

θ ∈ RH×W estimated by the proposed method, where the correspondence between angle and color is shown at the top left

corner. (j) The class labels of patches obtained by the proposed method, where different color refer to different class label.

and MCWNNM [9], respectively, also fully capitalize on such prior on 3-D color local patches instead of

2-D gray-scale ones.

However, for using this prior knowledge, current methods search the similar patches for a local patch

by using the simple block matching strategy with Euclidean distance imposed on the image pixel values.

Such simple regime largely under-estimates the insightful complexity and variety of similar patches on

an image, especially a color image. For example, most previous NSS techniques neglect the following two

prior similarity knowledge intrinsically possessed by a (color) image.

• Similarity among image patches with similar structure but different texture directions. In a natural

image, there always exist image patches with similar structural configurations while with different direc-

tions. This means that only after a proper angel adjusting they can be appropriately measured by block

matching, as can be easily seen in Figure 1(c). It should be noted that such similarity exists in both

gray-scale and color images, while in color images it is more expected to extract such similarity since

more channel information can be used.

• Similarity among image patches with similar structure but different color. A color image might

possibly contain many local patches with similar texture/edge structures, while in different colors, as

clearly shown in Figure 1(b). Traditional blocking matching way in NSS techniques cannot exploit such

similarity knowledge since those patches are with relatively large Euclidean distances caused by their

different RGB values.

Actually, in more general cases, for a local patch in a (color) image, there are always many patches

sharing similar intrinsic structures while with both different colors and structure directions from it, as

clearly depicted in Figure 1. Making a similarity measure color-invariant and direction-invariant among

patches is thus very helpful to facilitate finding more insightfully similar local patch groups and further

prompt the performance of subsequent image processing tasks. For convenience, we call such expected

similarity as color and direction invariant nonlocal self-similarity, or CDI-NSS briefly.

To the best of our knowledge, the previous image processing techniques have not yet considered such

CDI-NSS priors in their methods, albeit the general NSS prior has been commonly used in various

applications. Actually, such CDI-NSS is not easy to be mathematically formulated in a concise way.

For example, to measure the CDI-NNS of two patches with different texture directions, one generally

needs to first rotate a local patch possibly close to the other one, and do interpolation to image grids on

the rotated pixels (possibly not located in the image grids). Such implementation is toilsome and with

relatively high computational cost, and thus is generally not employed in practice.
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To the aforementioned issue, this paper attempts to develop two concise formulations to facilitate a

direction-invariant and a color-invariant similarity measure on local patches of an image (the latter one

is especially considered for a color image). Specifically, we consider the color image denoising task as a

typical example, and combine the proposed prior term to construct a new maximum a posterior (MAP)

model for the task. In summary, this work mainly contains the following three-fold contributions.

Firstly, we propose a new representation manner GDI(a ; θ) for a local image patch Z under the

polynomial fitting bases, where a denotes the polynomial coefficients and θ denotes an angle to rotate.

Such a representation can help easily measure the direction-invariant similarity among different patches

of an image. Specifically, if two patches can be approximately represented as GDI(a ; θ1) and GDI(a ; θ2),

respectively, we then know the patches are with similar shapes after a rotation operators imposed on

them. Besides, to alleviate the unexpected edge effect on similar patches with different directions, we

first suggest to use the circle patches instead of the traditional square ones, which further helps improve

the searching accuracy of direction-invariant similar patches.

Secondly, we design a new representation scheme GCI(µ; c, b) for representing a color image patch,

where c and b denote the color-rendering and color-shifting transformation parameters, of the transformed

patch GCI(µ; c, b), respectively, against its intrinsic structure µ. Specifically, this representation helps

easily measure color-invariant similarity between two patches. That is, if two patches are with expressions

GCI(µ; c1, b1) and GCI(µ; c2, b2), we can know that the two patches share a similar intrinsic structure

depicted as µ, with only different imposed colors.

Thirdly, through combinationally considering two aforementioned representations for image patches,

we formulate a concise prior form to encode CDI-NSS structure inside local patches of a color image.

A complete MAP framework can then be naturally constructed for the color image denoising task. An

expectation-maximization (EM) algorithm [10] is readily designed for solving the model. Each step in

the algorithm can be efficiently implemented, and all parameters involved in the model, including the

rotation angel (θ), the color transformation parameters (c, b), the core structure patches (µ) and to-

be-recovered image can be easily solved (Figure 1(f)–(j) show examples for easy understanding of these

parameters). Experiments on simulated and real noisy color images demonstrate the superiority of the

proposed method as compared with the stat-of-the-art methods along this line, substituting the potential

usefulness of the proposed NSS prior representations.

The paper is organized as follows. Section 2 introduces the related works on generally used priors for

image processing and typical image denoising methods. Section 3 proposes the necessary notations and

preliminaries utilized in describing our designed priors and color image denoising method. Section 4 pro-

vides the constructed CDI-NSS representations for measuring similarity between local patches. Section 5

presents the color image denoising method by employing the designed prior representations. Section 6

demonstrates the experimental results for performance evaluation of the proposed method as compared

with other competing ones. The paper is finally concluded.

2 Related work

Designing rational prior terms is one of the most important and necessary steps in handling conventional

image processing tasks, especially for most low-level computer vision ones. We take the typical image

restoration task as an example. From a probability-based perspective, this task can be formulated as a

Bayesian posterior estimation problem: p(x|y) = p(y|x)p(x)/p(y), where p(y|x) is the data model, p(x)

is the prior distribution of the to-be-estimated image x and p(y) is a constant once the input image y

is given. As aforementioned, the most general technique for the task is to design proper prior forms to

help possibly deliver the intrinsic structure underlying the to-be-estimated image. Most representative

priors are described as follows. The classic total variation (TV) based method assumes that natural

image gradients are depicted as heavy-tail distributions, and models this prior by Laplacian or hyper-

Laplacian distributions [11, 12]. Many statistical prior models assumed on wavelet coefficients have also

been proposed, such as generalized Gaussian [13] and Gaussian scale mixture [14] models. By exploiting
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the NSS prior, nonlocal means [1] and nonlocal regularization [15] methods achieve good performance for

image denoising. Other methods exploiting NSS in different ways also achieve great success for various

image restoration tasks [5–7]. The BM3D method [2] is a typical example along this line, which is

verified to be effective and has become a benchmark in image denoising. Zoran and Weiss [16] modeled

the categorical property of patches in clean natural image patches using mixture of Gaussian models,

and reconstructed the latent image by maximizing the expected patch log likelihood (EPLL). Recently,

low-rank approximation methods have exhibited exciting performance on image recovery [4, 17, 18]. For

example, WNNM [3] adopted a weighted nuclear norm minimization on the grouped similar patches and

has obtained excellent denoising and super-resolution results. Some discriminative denoising methods

have also been developed by learning discriminative priors from pairs of clean and noisy images [19, 20].

Since we adopt color image denoising to evaluate the performance of the proposed method, we also

introduce the related developments of this task. RGB color image denoising is the most direct extension

of the gray-scale image denoising, aiming to recover the latent clean RGB color image from its noise-

corrupted version. In recent years, there are many denoising methods raised for handling gray-scale image,

by employing various techniques [20, 21], including dictionary learning [22], low-rank approximation [3],

collaborative fieltering [2], and most recently, deep neural networks [19, 23–25]. As a comparison, the

techniques specifically designed for color image denoising have been attracted relatively less attention

since those gray-scale image techniques are supposed can be easily extended to color cases.

Specifically, nowadays there are mainly three categories of techniques utilized for constructing unsu-

pervised color image denoising models [9,26–32]. The first category is to easily apply a gray-scale image

denoising method to each channel of an RGB image. The shortcoming of this approach is that it ignores

the spectral correlation among RGB channels of a color image, while such prior structure is one of the

most insightful characteristics possessed by color images beyond gray-scale ones. This line of methods

thus always cannot perform sufficiently satisfactory for the task. The second category of methods is

to transform the RGB image into a less correlated color space, such as YCbCr [33], and then perform

denoising in each channel of the transformed space [8, 34]. The CBM3D method [8] is a representative

one among these methods, which is a natural extension of BM3D [2]. In CBM3D method, an RGB image

is first transformed into a luminance-chrominance space (e.g., YCbCr) and patch groups for all three

channels are obtained by the group matching on only the luminance channel (Y channle). In this way,

CBM3D takes effect on using the NSS prior knowledge and reduce the patch color effect to a certain

extent, while still cannot take full use of the CDI-NSS.

The state-of-the-art model for unsupervised color image denoising is represented by the third category

of methods along this research line, which intrinsically takes spectral correlation among RGB channels of

a color image into account [27–29]. The commonly used strategy is to concatenate the RGB channels by

rearranging a local 3-D patch of a color image as a long vector and performing low-rank approximation

on similar patch groups across the image space. For example, MCWNNM [9] extends the weighted

nuclear norm minimization designed on gray-scale patch groups to color patch groups, and achieves good

results. In this manner, the correlation among RGB channels can be finely utilized, naturally leading to

the better performance of this approach. However, these methods still have not considered full use the

intrinsic CDI-NSS prior structures underlying a color image. There is thus still room to further improve

performance for the current methods along this line.

3 Notations and preliminaries

In this paper, we denote scalar, vector, matrix, and tensor as non-bold lower case, bold lower case, bold

upper case, and calligraphic upper case letters, respectively.

A tensor of order N is denoted as A ∈ R
I1×I2×···×IN . An element of A is denoted as ai1,...,in,...,iN where

1 6 in 6 In. We denote the vectorization of tensor A (or matrix A), as a = vec(A) (or a = vec(A) for

matrix case). Specially, the ith elements of a vector a is denoted as ai. We denote identity matrix as I.

We further denote the Frobenius norm a tensor X as ‖X‖F =
√

∑

i1,...,iN
x2
i1,...,iN

.
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Figure 2 (a) An example of circle-like patch with diameter m = 9 and p = 4. (b) Illusion of fitting function z(·, ·), whose

polynomial coefficients is a. (c) Illusion of function z̃(·, ·), whose polynomial coefficients is fθ(a). (d) Rotated result of the

patch shown in (a).

The product between matrices can be generalized to the product of a tensor and a matrix. The mode-n

product of a tensor A ∈ R
I1×I2×···×IN by a matrix B ∈ R

Jn×In , denoted by A×nB, is an N -order tensor

C ∈ R
I1×···×Jn×···×IN with entries: ci1×···×in−1×jn×in+1×···×iN =

∑

in
ai1,...,in,...,iN bjnin .

We denote the Kronecker product between A ∈ R
m×n and B ∈ R

p×q by

A⊗B =









a11B . . . a1nB
...

...

am1B . . . amnB









. (1)

We further denote the convolution of a filter F ∈ R
m×m and a matrix X ∈ R

H×W by F ∗ X ∈
R

(H−m+1)×(W−m+1).

4 Constructing representations for measuring direction and color invariant

similarities

In this section, we aim to formulate two representations for local patches of an image to easily conduct

the direction-invariant and color-invariant similarity among patches, respectively.

4.1 Representation for measuring direction-invariant similarity

We first discuss the case of gray-scale image for facilitating an easy understanding of readers, and then

extend it to more general color image case latter. Firstly, we introduce a specific basis set, the polynomial

bases, for representing an image patch.

Represent an image patch by polynomial bases. For an image patch Z ∈ R
m×m with its

odd number diameter m = 2p + 11), as shown in Figure 2(a) and (b). Our aim is then to achieve

the optimal polynomial approximation to represent all image pixels in Z, i.e., finding a polynomial

function that satisfies z(ui, vj) ≈ zij , where z(·, ·) is a polynomial function, zij is a pixel in Z and

u = v = [−p,−(p− 1), . . . , 0, . . . , p− 1, p] denote the grid axes. For easy calculation, we normalize this

axis as [−1, −(p−1)
p

, . . . , 0, . . . , (p−1)
p

, 1] in the following.

Without loss of generality, we first take the 2-order polynomial bases as an example for easy under-

standing. Denoting the vector [ui; vj ] as wij , the 2-order polynomial approximation z(ui, vi) can be

represented as

zij ≈ z(ui, vj) = a11u
2
i + a12uivj + a21viuj + a22v

2
j + a1ui + a2vj + a0

= wT
ijA2wij + aT

1 wij + a0, (2)

1) If m is a even number, the deduction is the same except that m = 2p.



Xie Q, et al. Sci China Inf Sci December 2020 Vol. 63 222101:6

where A2 = [a11, a12; a21, a22], a1 = [a1; a2] and a0 are the coefficients imposed on the 2-order, 1-order,

and 0-order polynomial basis functions, respectively. Note that albeit having manifold values only on its

grids position (ui, vj) (i, j = 1, . . . , 2p+ 1), after we calculate all representation coefficients A2, a1, and

a0, we can then get the approximate expression for the latent manifold and attain values in any positions

on the manifold.

It is easy to see that when a patch contains few textures/edges and with few variations, it can be finely

approximated by a 0-order polynomial expression; when it contains even color change from one side to

the other, it can then be well expressed by a 1-order one. 2-order one can evidently represent patches

with more complex and various configurations.

By vectoring both sides of Eq. (2), it is easy to find that it is equitant to the following concise form:

z ≈ Da, (3)

where D ∈ R
m2×K , K is the total number of polynomial basis functions with order less than 2,

z = vec(Z) =





















z11
...

zij
...

zmm





















, D =





















u1u1 u1v1 v1u1 v1v1 u1 v1 1
...

...
...

...
...

...
...

uiui uivj viuj vjvj ui vj 1
...

...
...

...
...

...
...

umum umvm vmum vmvm um vm 1





















, (4)

and a = [a11; a12; a21; a22; a1; a2; a0] ∈ R
7 denotes the polynomial coefficients.

In general, the r-order polynomial fitting function for an image patch can be similarly constructed as

follows:

z(ui, vj) = Ar ×1 wij · · · ×r wij + · · ·+wT
ijA2wij + aT

1 wij + a0, (5)

where Ar is a r-order tensor and {Ar; . . . ;A;a1; a0} denotes the polynomial coefficients. By vectoring

both sides of (5), we can also transfer (5) into a more concise formulation of (3), with D ∈ R
m2×K , where

K is the total number of polynomial basis functions involved here, and

D =



















wT
11 ⊗· · ·⊗wT

11 · · · wT
11 ⊗wT

11 wT
11 1

...
...

...
...

wT
ij ⊗· · ·⊗wT

ij · · · wT
ij ⊗wT

ij wT
ij 1

...
...

...
...

wT
mm ⊗· · ·⊗wT

mm · · · wT
mm ⊗wT

mm wT
mm 1



















, (6)

and a = [vec (Ar) ; . . . ; vec (A) ;a1; a0] ∈ R
K .

The fitting polynomial coefficients a for an image patch vector z can be easily calculated by solving

the following optimization problem:

min
a

‖z −Da‖2. (7)

Eq. (7) has a closed-form solution a = D†z, where D† ∈ R
K×m2

denotes the pseudo inverse (more

details of pseudo inverse can be found in Appendix A) of D, which is defined as

D† = (DTD)−1DT. (8)

It should be noted that the calculation of fitting polynomial coefficients for all patches in an image

X ∈ R
H×W can be performed efficiently by 2-D convolutions. Denote the kth row of D† as f T

k ∈ R
m2

,

and then we have ak = f T
k z. Since fk is an m2×1 vector, it can be reshaped as an m×m filter Fk, which

is with the same size to the patch Z, and all Fks can be stacked to form a filter tensor F ∈ R
m×m×K .
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Figure 3 (a) Performing f T
k
z for all image patches in an image X is equivalent to performing the convolution Fk ∗X.

(b) An image matrix X. (c) Polynomial coefficients of X. (d) Illusion of rotating a set of polynomial coefficients by rotation

matrix Uθ , where we take 3 order case as an example. (e) The rotated polynomial coefficients.

Thus, as shown in Figure 3(a)–(c), performing f T
k z for all image pathes in a gray-scale image X ∈ R

H×W

is equivalent to perform the convolution:

Ak = Fk ∗X, (9)

where Ak ∈ R
H×W is the matrix of the kth polynomial coefficients of all the patches in different location

in X 2). Thus, with K 2-D convolutions, we can obtain fitting polynomial coefficients for all the patches

in an image.

For an RGB color image XH×W×3, we can perform the convolution defined in (9) for the R, G, B

channels, respectively, to obtain the fitting polynomial coefficients for all of the 3 channels. Denote K as

the number of polynomial coefficients for each patch, and then the tensor stacked by {Ar
k,A

g
k,A

b
k}Kk=1

is represented by A ∈ R
H×W×3×K and the tensor stacked by {Fk}Kk=1 is represented by F ∈ R

m×m×K .

For convenience, we denote (9) for all k = 1, 2, . . . ,K and 3 channels as

A = F ∗ X . (10)

Image patch rotation under polynomial representation. We then introduce how to use the

aforementioned polynomial representation to help measure direction-invariant similarity among image

patches.

Considering a set of polynomial coefficients of the image patch Z in any RGB channel, which can be

represented under the polynomial bases as a = {Ar, . . . ,A2,a1, a0} as shown in Figure 3(c) and (d).

If we assume that another patch z̃ is similar to z but with a θ degree rotation from it, z̃ can then be

understood as being with the similar coefficients a while under rotated axes [ũ; ṽ] = Uθ[u; v], where Uθ

is the rotation matrix with the form

Uθ =

(

cos (θ) sin (θ)

− sin (θ) cos (θ)

)

, (11)

which can be easily understood by observing Figure 2. Moreover, we can prove Theorem 1.

Theorem 1. For two r-order polynomial functions zA(u, v) and zB(u, v), with {Ar; . . . ;A;a1; a0}
and {Br; . . . ;B; b1; b0} denoting their polynomial coefficients, respectively. When a0 = b0 and Bi =

Ai ×1 Uθ · · · ×i Uθ, for all i = 1, 2, . . . , r, zB(u, v) is the result of counterclockwise rotating zA(u, v) with

θ degrees angle, i.e.,

zB(u, v) = zA(ũ, ṽ), (12)

where [ũ; ṽ] = Uθ[u; v].

Proof. We denote the vector [u; v] as w, and denote [ũ; ṽ] as w̃. Then, by the definition in (5), we have

zB(u, v) = Br ×1 w · · · ×r w + · · ·+wTB2w + bw1 + b0

= (Ar ×1 Uθ · · · ×r Uθ)×1 w · · · ×r w · · ·+wT(UT
θ A2Uθ)w + aT

1 w + b0

2) We pad edges of X with zeros for p-pixel width while performing convolution.
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= Ar ×1 (Uθw) · · · ×r (Uθw) · · ·+ (Uθw)TA2 (Uθw) + aT
1 (Uθw) + a0

= Ar ×1 w̃ · · · ×r w̃ · · ·+ w̃TA2w̃ + aT
1 w̃ + a0

= zA(ũ, ṽ). (13)

The proof is then completed.

By Theorem 1, we can rotate an image path by keeping the axes (as well as the polynomial bases)

fixed, while transforming the polynomial coefficients of A as

fθ(a) =
[

vec (Ar ×1 Uθ · · · ×r Uθ) ; . . . ; vec
(

UθA2U
T
θ

)

;Uθa1; a0
]

. (14)

Please see Figure 2 and Figure 3(d) and (e) for easy understanding of such analysis.

We can then get a polynomial representation for a rotated image patch as

z̃ = GDI(a; θ) = Dfθ(a). (15)

Such a representation helps conduct a direction-invariant similarity for image patches. That is, if two

patches are with expressions GDI(a; θ1) and GDI(a; θ2), this means that they possess similar intrinsic

structures while with different rotation angles, as those shown in Figure 1(c).

Similarly, for a color image patch case, we can get its coefficients by imposing fθ(·) on its three-channel

coefficients, respectively. Note that the three channels share the same rotation angle θ, which facilitates

a more stable calculation for this parameter through compensating three channel information.

Circle patch. Note that as compared with the conventional square patch, an approximate circle patch

tend to better reduce the edge artifacts when rotating a local patch to another. We thus prefer to use

circle-like patch in our method as shown in Figure 2(a). Define an indicator matrix Ω ∈ R
m×m:

Ωij =

{

1, if u2
i + v2j 6 R2,

0, if u2
i + v2j > R2,

(16)

where R is the radius of the circle patch, which can be set as 1 + 1
2p in our setting, and let ω = vec(Ω),

and remove the kth row in D, as defined in (4), if ωk = 0. Then we can obtain a D̄ with less rows

than D. By using D̄ to replace D in the above equations, we are actually performing our method on

approximating circle patches. The only difference is that the column number of D̄† is less than D†,

which make its rows cannot be directly reshaped to the filters (i.e., Fks in (9)). This issue can be easily

solved by setting the elements in the filter with indicator (i, j) as zero when Ωij = 0, and setting the

other elements as the correlated elements in the kth row of D̄†.

For easy notations, we still use the symbols D instead of D̄ in the following, while it actually means

the circle-like patches in this paper.

4.2 Representation for measuring color-invariant similarity

We then formulate the following representation for delivering the color-invariant similarity among color

image patches:

z = GCI(µ; c, b) = c⊗ µ+ b⊗ 1, (17)

where z is a given color image patch, µ ∈ R
M is the intrinsic structure of the color patch, M is the

number of pixels in a channel of patch, GCI(µ; c, b) ∈ R
3M , 1 denotes an M vector with all elements

equivalent to 1, and c, b ∈ R
3 denote the color-rendering and color-shifting transformation parameters of

the transformed patch GCI(µ; c, b) against its intrinsic structure µ. For two color patches with expressions

GCI(µ; c1, b1) and GCI(µ; c2, b2), it is seen that they share similar intrinsic structures like textures/edges,

while with a color-rendering and color-shifting variations. The rationality of this representation can be

easily understood by observing Figure 1(b)–(e), which shows that variations of c, b do not affect the

similar structures possessed by corresponding local color patches.
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5 CDI-NSS-based method for color image denoising

By employing the aforementioned CDI-NSS prior, we aim to propose a new MAP model for color image

denoising. The details are introduced as follows.

5.1 MAP model

The first goal now is to embed the CDI-NSS into the general statistical model to form a complete MAP

framework for color image denoising.

Firstly, we design a prior term on the to-be-estimated color image X ∈ R
H×W×3 to reflect the direction

and color invariant similarities among image patches. Specifically, for each local patch Zhw at location

(h,w) of X , its fitting polynomial coefficient vector is ahw = (F ∗ X )hw. We expect to eliminate the

direction variation freedom θhw and color one chw, bhw of the patch, so as to properly categorize the

Zhw to a group with intrinsic structure shape µl ∈ R
M , where l = 1, . . . , L, L represents the structure

group numbers of the entire local patches across the image and M is the number of pixels in a circle-like

patch. Through readily utilizing mixture of Gaussians [10] for reflecting such similar patch grouping

characteristic, we can construct the following prior term:

p(X|θ,µ, c, b,π, σ) =
∏

hw

L
∑

l=1

πlN
(

GDI((F ∗ X )hw ; θhw)|GCI(µl; chw, bhw), σI
)

, (18)

where the operators GDI and GCI are defined in (14) and (17), respectively, σ denotes the variance

for all Gaussian components, πl is the mixing proportion in MoG, and L is the number of Gaussian

components as well as that of the intrinsic structure patches µl. Note that this prior implies that the

patches categorized in one Gaussian share similar structure patch shape µl, after removing its direction

and color variance. We set the variance of each Gaussian group the same to guarantee a possible balanced

clustering effect in-between all groups.

For a noisy input color image Y, we can further formulate the following likelihood term on it:

p(Y|X ) =
∏

hw

3
∏

q=1

N (yhwq|xhwq, λ), (19)

where X is the to-be-recovered image, q ∈ {1, 2, 3} denoted the three channels and λ is the variance

parameter. Note that we simply assume i.i.d. Gaussian noise on it. In practical cases, however, we can

use more flexible and proper noise modeling technique to better rectify this term [35,36]. Since this paper

mainly focused on the prior term, we still use this simple noise assumption throughout the paper.
By combining the prior (18) and the likelihood (40), and adopting non-informative prior to other

to-be-estimated parameters, we can then obtain the following posteriori distribution:

p(X ,θ,µ, c,b,π, σ|Y) ∝ p(X|θ,µ, c, b,π, σ)p(Y|X ). (20)

Then we can estimate the clean image X as well as other involved parameters by MAP estimation.

5.2 EM algorithm

The EM algorithm [37] can be readily used to estimate the parameters (X , θ,µ, c, b,π, σ) that maximize

the posterior (20). The proposed algorithm will iterate between calculating responsibilities of all Gaussian

components (E step) and maximizing the parameters of the model (M step).

E step. Assume a latent variable zhwl in the model, with zhwl ∈ {0, 1} and
∑L

l=1 zhwl = 1, indicating

the assignment of the image patch phw to a specific component of the mixture. The posterior responsibility

of mixture l (l = 1, 2, . . . , L) for generating the patch xhw is then calculated by [37]

γhwl = E{zhwl} =
πlN

(

GDI((F ∗ X )hw ; θhw)|GCI(µl; chw, bhw), σI
)

∑L
l=1 πlN (GDI((F ∗ X )hw ; θhw)|GCI(µl; chw, bhw), σI )

. (21)
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M step. The M step maximizes the upper bound of logarithmic posterior function given by the E step,

with respect to X , θ,µ, c, b,π, σ [37]:

EZ {ln p(X , θ,µ, c, b,π, σ,Z|Y)}

= − 1

2λ
‖X − Y‖2F − 3HW

2
ln
√
2πλ

·
∑

hwl

γhwl

(

lnπl −
M

2
ln
√
2πσ − 1

2σ
‖D(fθhw

((F ∗ X )hw))− chw ⊗ µl − bhw ⊗ 1‖2F
)

. (22)

An easy way to solve this maximization problem is to alternatively update all the parameters as follows.

Update µ, c, b, σ. By setting the derivative with respect to these parameters to 0, closed-form updates

for these parameters can be deduced, respectively. Denote chwq and bhwq as the qth element in chw and

bhw, µlm as the mth pixel in core patch µl, and phwmq as the mth element in the qth channel of color

patch D(fθhw
((F ∗ X )hw)). Then the closed-form updates are

µ+
lm =

∑

hwq

γhwlchwq(phwmq − bhwq)
/

∑

hwq

γhwlc
2
hwq,

c+hwq =
∑

lm

γhwlµlm(phwmq − bhwq)
/

∑

lm

γlmµ2
lm,

b+hwq =
∑

lm

γhwl(phwmq − chwqµlm)/M,

σ+ =
∑

hwl

γhwl ‖D(fθhw
((F ∗ X )hw))− chw ⊗ µl − bhw ⊗ 1‖2F /(3HWM).

(23)

Update π. Closed-form update for this mixing proportion parameter is in the same formulation as

standard EM algorithm for mixture of Gaussians [37]:

π
+
l =

∑

hw

γhwl/(HW ). (24)

Update θ. For θhw, by using
∑

l γhwl = 1, it is easy to deduce that it can be updated by solving

θ+hw = argmin
θ

Q(θ) = argmin
θ

‖D(fθ(ahw))− owh‖2F , (25)

where ahw = (F ∗X )hw, owh = chw ⊗ (
∑

l γhwlµl)− bhw ⊗ 1, and for a coefficient vector a ∈ R
K whose

elements are [vec (Ar) ; . . . ; vec (A) ;a1; a0],

fθ(a) =
[

vec (Ar ×1 Uθ · · · ×r Uθ) ; . . . ; vec(UθA2U
T
θ );Uθa1; a0

]

, (26)

where ∀s = 1, 2, . . . , r, As is a s order tensor, denoting the s order polynomial coefficients. We can deduce

that, for any s ∈ N
+ the derivative of Qs(θ) = As ×1 Uθ · · · ×s Uθ is

Q′
s(θ) =

s
∑

i=1

As ×1 Uθ ×2 Uθ · · · ×i−1 Uθ ×i Ūθ ×i+1 Uθ · · · ×s Uθ, (27)

where

Ūθ =
∂Uθ

∂θ
=

(

− sin(θ) cos(θ)

− cos(θ) − sin(θ)

)

. (28)

Then, we can deduce that the derivative of F (θ) is

Q′(θ) =2
〈

DT(D(fθ(ahw))− owh), [vec (Q
′
r(θ)) ; . . . ; vec (Q

′
2(θ)) ; vec (Q

′
1(θ)) ; 0]

〉

, (29)

which is also the gradient of problem (25). Then we can perform gradient descent method to solve

problem (25).
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In practice, we easily calculate the gradient direction by

g(θ) =

{

1, if Q(θ + ǫ) < Q(θ),

− 1, if Q(θ + ǫ) > Q(θ),
(30)

where ǫ is a small positive number. Then we perform gradient descent method to solve problem (25).

Though the closed-from solution of this problem is hard to deduce, the problem is a one dimensional

optimization with smooth objective function, which can be easily optimized by off-the-shelf toolkits.

Update X . By using
∑

l γhwl = 1, it is easy to deduce that X can be updated by solving following

sub-problem:

min
X

σ

λ
‖X − Y‖2F +

∑

hw
‖D(fθhw

((F ∗ X )hw))− owh‖2F . (31)

We apply the alternating direction method of multipliers (ADMM) [38] to solve this problem. Firstly we

introduce a tensor B and equivalently reformulate (41) as follows:

min
X ,B

σ

λ
‖X − Y‖2F + ‖HD(B)−O‖2F s.t. B = F (F ∗ X , θ), (32)

where O is the tensor stacked by owhs. HD(B) and F (F ∗X , θ) denote the result of performing D · Bhw

and fθhw
((F ∗ X )hw) for all h and w.

Then, the augmented Lagrangian function, i.e., Lρ(X ,B,L), is [38]
σ

λ
‖X − Y‖2F + ‖HD(B)−O‖2F + 〈B − F (F ∗ X , θ),L〉+ ρ

2
‖B − F (F ∗ X , θ) ∗ X )‖2F , (33)

where L is the Lagrange multiplier and ρ is a positive scalar. According to the ADMM framework, we

update X , B, L alternatively.

With other parameters fixed, X can be updated by solving minX Lρ(X ,B,L) which is equivalent to

the following problem:

min
X

σ

λ
‖X − Y‖2F +

ρ

2

∥

∥F (F ∗ X , θ)− B − ρ−1L
∥

∥

2

F
. (34)

Since the operator fθ(·) is constructed by several rotation matrices Uθhw
s, it is easy to deduce that

‖fθ(·)‖2F = ‖ · ‖2F. Thus Eq. (34) is equivalent to

min
X

σ

λ
‖X − Y‖2F +

ρ

2

∥

∥F ∗ X − F (B + ρ−1L,−θ)
∥

∥

2

F
, (35)

which has been proved to have a closed-form solution [39]

X+ = fft−1

(

σ
λ
fft (Y) + ρ

2

∑

k fft(Fk)
∗ ⊙ fft

((

F (B + ρ−1L,−θ)
)

k

)

σ
λ
+ ρ

2

∑

k(fft(Fk)⊙ fft(Fk)∗)

)

, (36)

where ⊙ denotes element-by-element multiplication.

With other parameters fixed, B can be updated by solving minB Lρ(X ,B,L) which is equivalent to the

following problem:

min
B

‖HD(B)−O‖2F +
ρ

2

∥

∥B − F (F ∗ X , θ) + ρ−1L
∥

∥

2

F
. (37)

Since the operator HD(·) is constructed by the same matrix D product the corresponce vectors in B,
Eq. (37) is a quadratic program. It closed-form solution is

B+ = H(DTD+ ρ
2
I)−1

(

HDT (O) +
ρ

2

(

F (F ∗ X , θ)− ρ−1L
)

)

. (38)

Finally the Lagrange multiplier L can be update in closed-form [38]

L+ = L+ ρ (B − F (F ∗ X , θ)) . (39)



Xie Q, et al. Sci China Inf Sci December 2020 Vol. 63 222101:12

The proposed algorithm can then be summarized in Algorithm 1, and we denote the proposed method

as CDI-MoG (color and direction invariant mixture of Gaussian denoising method). An example of the

estimated µ, c, b, θ, γ is illustrated in Figure 1(f)–(j) for easy understanding. Please refer to Appendix B

for more details of the algorithm.

Algorithm 1 Algorithm for CDI-MoG method

Input: Noisy image Y .

1: Initialize X (0), θ(0), c(0), b(0), µ(0), π(0), and σ(0);

2: for l = 1 : L do

3: Update E step by Eq. (21);

4: Update µ, c, b, σ, π and θ by Eqs. (23)–(25);

5: while not convergence do

6: Update X by Eq. (36) and update B by Eq. (38);

7: Update L by Eq. (39) and let µ := ρµ;

8: end while

9: end for

Output: Denoised image X (L).

Computational complexity. For an input image Y ∈ R
H×W×3, the cost for updating µ, c, b

are around O(HWLM), where M is the number of pixels in an image patch, and L is the number

of Gaussian components in our model. When updating θ, the cost defends on the order of the fitting

polynomial function r. We can deduce that the number of coefficients is K = (r+2)(r+1)
2 . Each time

when we calculate fθ(a) by (26), the cost is O(M(r+2)(r+1)
2 + 2r+2 − 1). Thus the cost on updating θ

is O(HWM(r+2)(r+1)
2 + (2r+2 − 1)HW ). Note that when we set r = 5 and L = 200 (as we did in our

experiments), the cost of updating µ, c, b are similar to that of updating θ. The cost of updating X mostly

lies on the calculation of fast Fourier transform, which is O(HWK log2 (H)). While the cost of updating

B is O((K+M)MKHW ). From the above analysis, we can find that the per-iteration computational cost

of our method is around O((LM + M(r+2)(r+1)
2 +(2r+2−1)+K log2 (H)+(K+M)MK)HW ). It should

be noted that the per-iteration cost of the proposed method, is comparable to that of the state-of-the-art

method, MCWNNM [9], which is O(max(M2P, P 3)HW ), where P denote the number of patches in each

similar patch group.

Extension to general color image processing tasks. Note that the proposed CDI-NSS is easy to

be applied to other color image processing tasks. Consider a general image processing problem, which

can be modeled as Y = A(X ) with Y, X and A denote the observation, original image and the linear

degradation operator, respectively. Similar to Eq. (40), we can adopt the following generation distribution

to the observation:

p(Y|X ) =
∏

hw

3
∏

q=1

N (yhwq|(A(X ))hwq , λ), (40)

where h and w denote height and width of the image, respectively, q ∈ {1, 2, 3} denotes the three channels
of color image and λ is the variance parameter. Combining this distribution with the CDI-NSS prior

distribution (18), we can obtain a posteriori distribution similar to Eq. (20). Then we can estimate X
by MAP estimation in a similar way as the CDI-MoG algorithm. The difference is that the subproblem

(41) now is replaced by

min
X

σ

λ
‖A(X )− Y‖2F +

∑

hw

‖D(fθhw
((F ∗ X )hw))− owh‖2F . (41)

Here, we just show a very intuitive way as an example. One can exploit CDI-NSS in flexible ways

depending on the specific situations.
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Figure 4 16 employed color images in synthetic experiments.

Table 1 Average performance of 8 competing methods with respect to 4 PQIs. For both settings, the results are obtained

by averaging through the 16 images

Competing λ = 0.102 λ = 0.152 Average

method PSNR SSIM FSIM MS-SSIM PSNR SSIM FSIM MS-SSIM time (s)

Noisy 19.998 0.484 0.812 0.295 16.476 0.350 0.728 0.272 –

BM3D 27.913 0.845 0.925 0.320 25.781 0.782 0.893 0.312 0.47

WNNM 28.249 0.852 0.928 0.321 26.185 0.791 0.896 0.313 484.94

NCSR 27.963 0.843 0.923 0.320 25.769 0.777 0.883 0.311 1427.69

PCLR 28.341 0.855 0.930 0.321 26.281 0.796 0.897 0.314 279.19

EPLL 27.973 0.850 0.932 0.321 25.972 0.789 0.902 0.313 105.28

CBM3D 29.094 0.881 0.935 0.324 26.793 0.823 0.904 0.317 0.45

MCWNNM 29.119 0.874 0.930 0.323 26.926 0.819 0.896 0.316 115.60

CDI-MoG 29.257 0.882 0.937 0.324 27.130 0.831 0.910 0.317 984.05

6 Experimental results

We evaluate the proposed CDI-MoG method on synthetic and real noisy color images. We compare the

proposed method with state-of-the-art denoising methods, including BM3D [2], WNNM [3], NCSR [7],

PCLR [21], EPLL [16], CBM3D [8], and MCWNNM [9]. The later two methods represent state-of-the-

arts color image denoising method, and the first 5 methods represent state-of-the-arts gray-scale denoising

methods which is adopted to the RGB channels separably.

Implementation details. In proposed method, we set the number of Gaussian component L = 200,

and set diameter of image patch to be 5. Since the updating of X takes more computation than other

parameters, we update X only once after 15 iterations updating of other parameters.

6.1 Experiments on synthetic noisy color images

We first compare the proposed CDI-MoG method with 7 competing methods on 16 color images, as shown

in Figure 4. Four quantitative picture quality indices (PQI) are employed for performance evaluation, in-

cluding peak signal-to-noise ratio (PSNR), structure similarity (SSIM [40]), feature similarity (FSIM [41]),

and multiscale structural similarity (MS-SSIM [42]). The larger these four measures are, the closer the

target image is to the reference one.

For most of the competing denoising methods, the standard deviation of noise should be given as a

parameter. In synthetic experiments, additive Gaussian noises with variance λ = 0.12 and 0.152 are

added to these testing images to generate the noisy observations, and the noise levels λ is assumed to be

known for all competing methods.

For each noise setting, all of the four PQI values for each competing MSI denoising methods on all

16 scenes have been calculated and recorded. Table 1 lists the average performance of the competing

methods. From these quantitative comparison, the advantage of the proposed method can be evidently

observed. Specifically, the average results of our method can outperform other competing methods with

respect to all evaluation measures. Note that albeit with comparable per-iteration computational cost

with current state-of-the-arts, the computation of the proposed method might be not that fast since on

one hand we have not optimized our code in the Matlab platform, on the other hand it might need more
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(a) Clean image (b) Noisy: 20.00 (c) BM3D: 26.73

(g) EPLL: 26.85

(e) NCSR: 26.93

(f) PCLR: 27.15

(d) WNNM: 27.12

(h) CBM3D: 26.98 (i) MCWNNM: 27.22 (j) CDI-MoG: 27.73

Figure 5 (a) Clean image. (b) Corresponding noisy image. (c)–(j) Restored images obtained by 8 competing methods.

The demarcated areas are for easy observing the detail.

iteration steps for final convergence. We will further alleviate this efficiency issue in our future research.

To further depict the denoising performance of our method, we show in Figure 5 the results of the

competing methods on 4 typical utilized images, with noise level λ = 0.152. From the figures, it is easy

to observe that the proposed method performs better than other competing ones, both in the recovery

of finer-grained textures and coarser-grained structures.

The good performance of the proposed CDI-MoG model can be rationally explained by observing

Figure 1(f)–(j). It can be seen from Figure 1(f) that the extracted core structural patches µl finely

reflect the knowledge of local edges and textures underlying the latent recovery image. This should

be attributed to the utilization of more sufficient self-similar image patches under the proposed color

and direction invariant representations as compared with the conventional NSS manners. Besides, from

Figure 1(g)–(i), it is seen that the extracted c, b, and θ all comply with their expected physical meanings.

Especially, by observing Figure 1(j), through elaborately adjusting the color and texture-direction of all

image patches by our method, they can be finely categorized into rational clusters based on their intrinsic

structures. In particular, the edges of all items in the image, albeit with different colors and different

directions, can be well compensated between each other to facilitate a good boundary recovery and noise

suppression effects. For more experimental results, please refer to Appendix C.

6.2 Experiments on real noisy color images

In this subsection, we evaluate the proposed method on real noisy color images from dataset [29] and

dataset [30]. Since the noise level is unknown for real noisy images, we use the noise estimation method

proposed in [43] to estimate the noise of each channel. Here, we only compare the visual quality of the

denoised images since there is no “ground truth” for the real noisy images. For CBM3D and the proposed

CDI-MoG, a single noise level should be the input, and we simply set the noise level as λ =
λr+λg+λb

3 .

Figures 6 and 7 show the denoised images by the competing methods on the two datsets, respectively.

It can be seen that the images restored by CDI-MoG are capable of better removing the noise while finely

preserving the structure. For more experimental results, please refer to Appendix D.

7 Conclusion

A new NSS prior, called CDI-NSS, has been designed in this study, by considering the similarity among

patches with different colors and different texture-directions. Such prior can help extract more sufficient

local image patches with self-similarity and thus expected to lead better performance of related image
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(a) Noisy image (b) BM3D (d) NCSR (e) PCLR(c) WNNM

(f) EPLL (g) CBM3D (h) MCWNNM (i) CDI-MoG

Figure 6 (a) A real noisy color image from dataset [29]. (b)–(i) The restored images obtained by 8 competing methods.

(a) Noisy image (b) BM3D (d) NCSR (e) PCLR(c) WNNM

(f) EPLL (g) CBM3D (h) MCWNNM (i) CDI-MoG

Figure 7 (a) A real noisy color image from dataset [30]. (b)–(i) The restored images obtained by 8 competing methods.

processing tasks. We have specifically testify the capability of this prior in color image denoising problem,

and designed MAP model as well as its EM solving algorithm for handling this task. Experiments

implemented on simulated and real color images have substantiated the superiority of this method,

verifying the rationality of this newly constructed prior forms.

The image NSS study remains an open issue. Indeed there is still large room for further improvements

of CDI-NSS. Firstly, the computational speed of the proposed method still has large room to be further

improved. This is due to the fact that we need to apply an ADMM algorithm to solve the subproblem in

each iteration. Actually, we might employ some inexact approximate method to solve them for speeding-

up the algorithm. Secondly, when the image is badly damaged, the method inclines to suffer form the

inaccurate estimation of the parameter θ and poor clustering results of MoG. Thus, a robust amelioration

of the proposed method is required to be proposed specifically for complicated non-Gaussian noise cases.

Thirdly, this work proposes a concise model with sound mathematical forms and evidently different from

previous strategies specifically designed for this task. This, however, limits the flexible design of the

proposed algorithm, especially make the algorithm not inherit advantageous aspects of other ones. It is

thus meaningful to consider how to embed more beneficial points of current algorithms into the previous

ones, under the guarantee of its concise mathematical expression.
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Supporting information Appendixes A–D. The supporting information is available online at info.scichina.com and

link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility

for scientific accuracy and content remains entirely with the authors.
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