
SCIENCE CHINA
Information Sciences

November 2020, Vol. 63 212206:1–212206:13

https://doi.org/10.1007/s11432-019-2813-7

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .

Boolean-network-based approach for construction of

filter generators

Bowen LI1,2 & Jianquan LU2*

1School of Information Science and Engineering, Southeast University, Nanjing 210096, China;
2School of Mathematics, Southeast University, Nanjing 210096, China

Received 24 November 2019/Revised 14 January 2020/Accepted 5 February 2020/Published online 9 October 2020

Abstract In this paper, we view filter generators as Boolean networks (BNs), and discuss their power-

analysis-based side-channel analysis. An incompletely specified binary sequence always contains some bits

called unnecessary bits comprising 1 or 0. Our motivation for considering this type of sequence is to reduce

direct dependencies between side-channel information and key sequences. An algorithm is proposed to

determine the unnecessary bits to increase the key search time required for adversaries rather than simply

turning all unnecessary bits to 0 (or 1). Then, to reduce area dissipation, under the framework of semi-tensor

product (STP) of matrices, the problem of constructing filter generators with minimum number of stages is

converted into the one of determining the corresponding transition matrices. Compared with the existing

results, the lower bound of the minimum number of stages is provided, which can reduce the exhaustive search

time required to find it. Finally, one example is used to illustrate the efficacy of the proposed algorithm.

Keywords filter generator, Boolean network, semi-tensor product

Citation Li B W, Lu J Q. Boolean-network-based approach for construction of filter generators. Sci China Inf

Sci, 2020, 63(11): 212206, https://doi.org/10.1007/s11432-019-2813-7

1 Introduction

With the growth of Internet-of-Things applications, an increasing number of every-day-life applications

have become security-critical, demanding high levels of assurance. Stream ciphers having good correlation

properties have been widely applied to protect confidential information via Internet communications,

error-correcting codes, spread-spectrum communications, etc. These ciphers are generally faster and

less complex for hardware devices than block ciphers [1]. Therefore, in 2004, the ECRYPT (European

Network of Excellence for Cryptology) launched a program called eSTREAM to identify stream ciphers

that could be widely used. Seven algorithms having good applicability were selected. Note that feedback

shift registers (FSRs) were the main building blocks in three types of selected stream ciphers: Grain,

Trivium and Michkey. An FSR comprises combinational logical circuits, feedback function, and the

storage cells (i.e., stages). For the past few decades, the use of FSRs has resulted in a relatively mature

theory, and some interesting results have been obtained, such as [2, 3].

Recently, a new linear representation for FSRs was proposed in [4], where FSRs were viewed as Boolean

networks (BNs). A BN is a class of logical networks, and was firstly used to model genetic regulatory

systems in [5]. BNs are quite different from common complex networks [6]. A BN comprises n nodes

and n Boolean functions, where each node i ∈ [1, n] has an associated state variable given as xi taking

a value of either 0 or 1. Then, xi is updated with its corresponding Boolean function denoted by

*Corresponding author (email: jqluma@seu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2813-7&domain=pdf&date_stamp=2020-10-9
https://doi.org/10.1007/s11432-019-2813-7
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2813-7
https://doi.org/10.1007/s11432-019-2813-7


Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:2

fi : {0, 1}n → {0, 1}. The semi-tensor product (STP) was proposed by Cheng et al. [7]. It has become

a commonly used tool to analyze BNs. It is a generalization of the conventional matrix product, and

breaks the traditional dimension-matching condition required for matrix products. By utilizing the

method of STP, logical systems can be converted into their corresponding algebraic forms. Based on

these, many interesting results have been found, including controllability [8,9], stability and stabilization

[10–15], function perturbation [16], observability [17], disturbance decoupling [18], output tracking [19]

and optimal control [20]. Additionally, the STP can be also applied in the game [21] and fault detection

for logical circuits [22].

Because FSRs are considered as BNs, many matured BN theories can be applied. Compared with

their traditional analysis methods, an FSR can now be converted into a conventional discrete-time linear

system with the help of STP. In [23], the transformation between two configurations of FSRs was analyzed

using STP, where a uniform condition was not required. In [24], Dubrova analyzed non-singularity

of FSRs with nonlinear configurations by converting them into their corresponding algebraic normal

forms. One sufficient condition was derived. In [25, 26], some necessary and sufficient conditions for

non-singularity were obtained by utilizing STP. Apart from non-singularity, a few studies including ones

of driven stability [2], decomposition [3] and minimum period of FSRs in Grain-like configurations [27],

were obtained under the STP.

Obviously, if there exist some algorithms that can break one stream cipher, then the encryption mecha-

nism is not very secure. Note that the binary sequence generated by an FSR having a linear configuration

can be easily determined if 2n bits are known. Therefore, in order to increase the security of the cipher,

the outputs from FSRs with n stages become the input n-vector to a Boolean function g(x1, x2, . . . , xn).

Then, the output sequences comprise the values of g. This structure is a filter generator that can increase

the complexity of key sequences. Based on the different requirements of key sequences, corresponding

filter generators has been constructed.

There exist two kinds of key sequences, that are: completely specified binary sequences and incom-

pletely specified binary sequences. In detail, each bit in the completely specified binary sequences is

certain, whereas, in the incompletely specified binary sequences, there exist some bits whose values can

be either 1 or 0. We call these bits unnecessary bits or do-not-care bits [28]. For example, there is an

8-bit incompletely specified binary sequence: 0, 0, z1, 1, 0, 1, 0, z2 with z1 and z2 being unnecessary

bits. This implies that the information of the corresponding positions of z1 and z2 is trivial. Thus, bits

z1 and z2 can be selected arbitrarily from {0, 1}, and the values of other positions are fixed. Specif-

ically, when the values of z1 and z2 are determined, then the incompletely specified binary sequence

will become the completely specified binary sequence. Thus, we have four possible sequences, that are:

(1) 0, 0, 1, 1, 0, 1, 0, 1; (2) 0, 0, 1, 1, 0, 1, 0, 0; (3) 0, 0, 0, 1, 0, 1, 0, 1; (4) 0, 0, 0, 1, 0, 1, 0, 0.

For a given completely specified binary sequence, filter generators were constructed to generate the se-

quence in [29], and the number of stages of constructed filter generators was guaranteed to be minimal.

However, the search space was too large in order to find the minimum number of stages. In this paper,

we continue the search for an effective algorithm to reduce the search space of the minimum number of

stages.

Side channel analysis is a class of cryptanalysis, and is used to conjecture keystreams by observing

information obtained from the physical implementation of a cipher, such as timing information and power

consumption. In other words, by effectively exploiting the unintentional leakage of information from

applications, a system breakdown can be achieved, and the targeted internal state or the secret key can

be deduced. For an FSR having a nonlinear configuration, a power-analysis-based side-channel analysis

can be practically applied to complementary metal oxide semiconductor hardware to determine the bit

values of an FSR having a nonlinear configuration, as was accomplished in [30]. However, a few results

utilized side-channel analysis to investigate filter generators. In this paper, the power-analysis-based

side-channel analysis is used to improve the security of constructed filter generators.

We stress the following interesting issues in this paper. First, for an incompletely specified binary

sequence, a power-analysis-based side-channel analysis is used to determine the unnecessary bits. As

introduced in [28], there are usually two approaches to ascertaining the unnecessary bits: (1) setting



Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:3

all unnecessary bits to 0 (or 1); (2) setting them to random values. In this paper, from a security

perspective, an algorithm is proposed to determine unnecessary bits to increase the key search time for

adversaries. Then, the incompletely specified binary sequence becomes one completely specified binary

sequence. Furthermore, in order to reduce the area and power dissipation, Dubrova in [31, 32] proposed

some algorithms to find the minimum number of stages of binary machines for completely specified

binary sequences. However, these algorithms could not be applied to filter generators because of the

chain connections between registers in FSRs [29]. Thus we utilize BNs to construct filter generators to

generate completely specified binary sequences. Hence, we not only find the minimum number of stages

but we also find the corresponding transition matrix. Additionally, to improve the security of the filter

generators, balanced functions are discussed, and corresponding structure matrices are constructed.

The rest of this paper is organized as follows. Section 2 introduces some preliminaries on BNs and

STP, and then explains how to convert a logical system into its corresponding algebraic form. Section

3 proposes some interesting algorithms for constructing filter generators to improve security and reduce

area and power dissipation. Section 4 provides conclusion to this paper.

2 Preliminaries

In the following, we present some necessary notations, which will be used in the rest of this paper.

• D = {0, 1} and Dn = {0, 1} × {0, 1} × · · · × {0, 1}
︸ ︷︷ ︸

n

.

• Let [a, b] be the set of {a, a+ 1, . . . , b} with a and b being integers and b > a.

• ∆n := {δin : 1 6 i 6 n}, where δin represents the ith column of identity matrix of size n× n.

• A matrix B whose elements are all integers is called a logical matrix if all the columns of B are in

the set ∆n.

• Let Lm×n be the set of m× n logical matrices.

• B = [δi1m, δi2m, . . . , δinm ] ∈ Lm×n, which can also be represented by B = δm[i1, i2, . . . , in] for brevity.

• Notation ∗ represents the Khatri-Rao product.

• Let coli(B) be the i-th column of the matrix B.

A BN consists of n nodes and n Boolean functions [7]. Each node i ∈ [1, n] has an associated state

variable denoted by xi that represents the current value of the node i, and xi(t) represents the value

of node i at time t. The value of node i is updated by its corresponding Boolean function denoted by

fi : {0, 1}n → {0, 1}. A BN having n nodes can be described by the following form:






x1(t+ 1) =f1(x1(t), x2(t), . . . , xn(t)),

x2(t+ 1) =f2(x1(t), x2(t), . . . , xn(t)),

...

xn(t+ 1) =fn(x1(t), x2(t), . . . , xn(t)).

(1)

Clearly, BNs are logical systems, and every state variable of a BN takes a value from the set D. BNs can

be used to model many systems such as gene regulatory networks [5]. Recently, BNs have also been widely

used to study logical circuits and to analyze and synthesize FSRs with the help of the STP method.

Definition 1 ([7]). The STP of two matrices A ∈ Mm×n and B ∈ Mp×q, is defined as

A⋉B =
(

A⊗ I l
n

)(

B ⊗ I l
p

)

, (2)

where ⊗ is the Kronecker product and l = lcm(n, p) is the least common multiple of n and p.

Note that in the BNs, δ12 ∼ 1 and δ22 ∼ 0. Therefore, D (Dn) and ∆2 (∆2n) represent two different

forms of the same object, and can be used interchangeably. Generally, we say X is a scalar if X ∈ Dn.

Inversely, X is in a vector form if X ∈ ∆2n . To distinguish these two different forms, X represents the

scalar form and x represents the vector form. The equivalent relation δi2n ∼ (i1, i2, . . . , in) satisfies that

i = 2n − (i12
n−1 + i22

n−2 + · · ·+ in).



Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:4

Lemma 1 ([7]). Consider a logical function f(x1, x2, . . . , xn), with logical variables x1, x2, . . . , xn. There

exists a unique matrix Mf ∈ L2×2n , called the structure matrix of f , such that in vector form, we have

f(x1, x2, . . . , xn) = Mf ⋉
n
i=1 xi,

where ⋉
n
i=1xi = x1 ⋉ x2 · · ·⋉ xn ∈ ∆2n .

In fact the structure matrix can be obtained from the corresponding truth table of the logical function.

For example, x1(t + 1) = x1(t) ∨ x2(t) with xi ∈ D, i ∈ [1, 2]. Then, we consider four cases: (1) x1(t) =

x2(t) = 1; (2) x1(t) = 1, x2(t) = 0; (3) x1(t) = 0, x2(t) = 1; and (4) x1(t) = 0, x2(t) = 0. Thus, we have

x1(t + 1) = 1, 1, 1, and 0 successively. Because δ12 ∼ 1 and δ22 ∼ 0, the corresponding structure matrix

Mg = δ2[1 1 1 2], i.e., x1(t + 1) = Mgx1(t)x2(t), xi ∈ ∆2, i ∈ [1, 2]. Therefore, for each logical function,

there is a logical matrix such that the logical expression can be equivalently to an algebraic expression.

We assume that Mfi , i ∈ [1, n] is the unique structure matrix of logical function fi. Thus, via STP, the

corresponding algebraic expression of system (1) can be obtained:

x(t+ 1) = Lx(t), (3)

where coli(L) = coli(Mf1) ∗ coli(Mf2) ∗ · · · ∗ coli(Mfn), i ∈ [1, 2n] is called the transition matrix of system

(1), and x(t) = ⋉
n
i=1xi. The state of a BN is in the form of (x1, x2, . . . , xn) ∈ Dn. The next state of BNs

can be determined from the current state via a transition matrix. Then, the trajectory of system (1) can

also be determined by L after the initial state is given.

The state-transition graph is a directed graph and consists of 2n nodes and 2n directed edges. The 2n

nodes represent the 2n states of a BN. If the state vector (i1, i2, . . . , in) is changed into (i′1, i
′
2, . . . , i

′
n) next

time, then there exists a directed edge from the node representing (i1, i2, . . . , in) to the node representing

(i′1, i
′
2, . . . , i

′
n). Obviously, the state-transition graph plays the same role as the transition matrix L.

Example 1. The following BN was constructed in [33] to simulate the dynamics of the reduced model

for Th-lymphocyte differentiation:

{

x1(t+ 1) = f1(x1(t), x2(t)) = x1(t) ∧ ¬x2(t),

x2(t+ 1) = f2(x1(t), x2(t)) = ¬x1(t) ∧ x2(t),
(4)

where x1 and x2 represent T-bet and GATA-3, respectively. The structure matrices can be calculated

as Mf1 = δ2[2 1 2 2] and Mf2 = δ2[2 2 1 2]. Let x(t) = x1(t)x2(t) ∈ ∆22 , and then the corresponding

algebraic expression can be obtained:

x(t+ 1) = Lx(t) = δ4[4 2 3 4]x(t). (5)

According to the definition of the state-transition graph, there are four nodes labeled by (1, 1), (1, 0),

(0, 1), (0, 0). According to (5), the state-transition graph is shown in Figure 1, where (1, 1) ∼ δ14 , (1, 0) ∼

δ24 , (0, 1) ∼ δ34 and (0, 0) ∼ δ44 .

Based on the algebraic expression and the state-transition graph, many interesting results and appli-

cations about BNs can be obtained as mentioned in Section 1. Moreover, in analysis and synthesis logical

circuits, the Boolean-network-based method shows some advantages which are presented latter.

3 Main results

A filter generator is composed of an FSR, denoted by cf and external circuit ce (see Figure 2). The cf

comprises of n binary storage elements that are usually called stages, and the associated state variable

of each stage i ∈ [1, n] is denoted by xi. The state of an FSR is the ordered set of values of its state

variables (x1, x2, . . . , xn), denoted by X . As usual, the first stage is called the lowest stage, and the n-th

stage is called the highest stage. In cf , every updated function fi, i ∈ [1, n− 1], except for fn takes the

form of fi = xi+1(t), indicating that the value of function fi only depends on xi+1(t), and the value of



Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:5

(1,1)

(0,0) (0,1)

(1,0)

c
f

x
n

x
n−1

x
n−2 x

1

y
1

c
g

f
n
(x

1
, x

2
, ..., x

n
)

g(x
1
, x

2
, ..., x

n
)

Output

Figure 1 The state-transition graph of system (4). Figure 2 (Color online) A filter generator, where the ar-

row represents the passing directions of states.

stage i+ 1 is transmitted to that of stage i at every time. However, fn potentially depends on all of the

values of n stages, and is of type:

fn = fn(x1, x2, . . . , xn).

Clearly, the updated process of finding the value for the stage n differs from other stages, and it is poten-

tially dependent on values of some stages via the updated function fn rather than simply transmitting

the value of the upper stage to that of the next stage (as shown in Figure 2). Therefore, the next state

overlaps the current state at n− 1 positions in every time except for the stage n. Generally, the updated

function fn is called the feedback function of cf . Thus, once the updated function is determined, cf is

therewith determined. The FSR can be described as
{

xi(t+ 1) = xi+1(t), i ∈ [1, n− 1],

xn(t+ 1) = fn(x1(t), x2(t), . . . , xn(t)).
(6)

The external circuit ce comprises a logical function whose inputs are taken from certain stages to

produce the output, denoted by g. Then, a filter generator can be described as







xi(t+ 1) = xi+1(t), i ∈ [1, n− 1],

xn(t+ 1) = fn(x1(t), x2(t), . . . , xn(t)),

y1(t) = g(x1(t), x2(t), . . . , xn(t)).

(7)

Note that functions fn and g are not minimally represented, implying that there potentially exist

i1, i2 ∈ [1, 2n], such that

fn(x1(t), . . . , xi1−1(t), 1, xi1+1(t), . . . , xn(t))

= fn(x1(t), . . . , xi1−1(t), 0, xi1+1(t), . . . , xn(t)),

and
g(x1(t), . . . , xi2−1(t), 1, xi2+1(t), . . . , xn(t))

= g(x1(t), . . . , xi2−1(t), 0, xi2+1(t), . . . , xn(t)).

Assume that the structure matrices of feedback functions fn and g are M ′
fn

and Mg by Lemma 1. For

any i ∈ [1, n − 1], the corresponding Boolean function of xi denoted by fi(x1(t), x2(t), . . . , xn(t)) can

be regarded as fi(x1(t), x2(t), . . . , xn(t)) = xi+1(t) in (6). Then, via Lemma 1, we can also obtain the

corresponding structure matrix denoted by M ′
fi
. Therefore, system (6) can be rewritten as

{

xi(t+ 1) = M ′
fi
x1(t)x2(t) · · ·xn(t), i ∈ [1, n],

y1(t) = Mgx1(t)x2(t) · · ·xn(t).
(8)



Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:6

By multiplying all equations together in (8), we get
{

x(t+ 1) = L′x(t),

y1(t) = Mgx(t),
(9)

where x(t) = ⋉
n
i=1xi(t), coli(L

′) = coli(M
′
f1
) ∗ coli(M

′
f2
) ∗ · · · ∗ coli(M

′
fn
), i ∈ [1, 2n].

Sometimes, not all information is important and needs to be kept secret. For example, if in a given

plaintext transmission, there exist some characters which are trivial, then it does not matter that the

corresponding bits are either 1 or 0 in the key sequence. We call these bits unnecessary bits [28]. In general,

there are two common strategies used to find these unnecessary bits: (1) specifying all unnecessary bits

as 0 or all as 1; (2) specifying them to random values (0 or 1). Herein, we consider the power-analysis-

based side-channel analysis, where the unnecessary bits are determined as a simple countermeasure of the

attack. In order to increase the key search time for adversaries, an algorithm is proposed to determine the

unnecessary bits. Thus, the importance of low-power optimization techniques for our daily life and social

development is self-evident. Therefore, filter generators using the minimum number of stages should be

designed.

Definition 2. A completely specified binary sequence S : s0, s1, . . . is called periodic if there exists a

positive integer r such that si+jr = si for i = 0, 1, . . . and j = 0, 1, . . .. The smallest positive integer r

having this property is called the smallest period of S. Note that the multiple of r, i.e., jr is also the

period of sequence S.

Definition 3. An incompletely specified binary sequence W : w1, w2, . . . , is called pseudo-periodic if

there exists a positive integer l, assuming that the subscripts of all the specified bits in the first l bits are

{α1, . . . , αλ}, such that wi+jl = wi, i = α1, . . . , αλ, j = 1, 2, . . ., where both wi+jl and wi are determined

bits. Moreover, the positive integer l, represents the smallest period of incompletely specified binary

sequence W . Furthermore, jl also is the period of sequence W .

We assume that, for any given pseudo-periodic incompletely specified binary sequence, the value of

every unnecessary bit corresponding to the same position is the same between any two periods. For

example, there is an incompletely specified binary sequence W : 1, 0, z1, 0, 1, 0, z2, 0, 1, 0, z3, 0. It

can be found from Definition 3 that the incompletely specified binary sequence is pseudo-periodic and

its minimum period is 4. Although, if we let z1 = z2 = z3 = 1, then the incompletely specified binary

sequence W , becomes a completely specified binary sequence denoted by S. Thus, we have that the

sequence S is periodic and its minimum period is 2 by Definition 2.

The above assumption is reasonable because the number of state variables is finite, i.e., 2n, where n

is the number of stages in an FSR. This implies that the sequence generated by FSRs will be ultimately

periodic. Hereafter, the period usually indicates the minimum period. The following lemma reveals the

relation between the periods of sequences W and S.

Lemma 2. Assume that there is a pseudo-periodic incompletely specified binary sequence W with

period l. Then, the incompletely specified binary sequence becomes a completely specified binary sequence

denoted by S when the values of all unnecessary bits are determined. The period of completely specified

binary sequence S, denoted by l′ is a divisor of l.

Next, we consider the following two sequences having period l: a : a0, a1, a2, a3, a4, . . . , al−1, . . . ,

and b : b0, b1, b2, b3, b4, . . . , bl−1, . . ., where ai, i ∈ [r1, r2, . . . , rs], s 6 l are unnecessary bits. Note that

the periods of these two sequences are not required to be the same. In fact, the period of b is a divisor of

that of a. For simplicity, we assume that the periods of these two sequences are the same. We then must

design a filter generator to generate the above two sequences. In detail, sequences a and b are generated

using one feedback shift register and an external circuit, respectively. We must solve the following two

problems.

• Problem 1: for an incompletely specified binary sequence a, determining unnecessary bits to increase

key search time for adversaries.

• Problem 2: once the sequence a is specified, designing filter generators with the minimum number

of stages to generate b.



Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:7

Table 1 All relations between PDt and {HW(x1(t)⊕x1(t+1)), HW(cβt
⊕cβt+1

), HW(xn(t+1)⊕xn(t+2)), HW(cβt+1
⊕

cβt+2
)}

PDt {HW(x1(t) ⊕ x1(t + 1)),HW(cβt
⊕ cβt+1

),HW(xn(t + 1) ⊕ xn(t + 2)),HW(cβt+1
⊕ cβt+2

)}

−2 {0, 0, 1, 1}

−1 {1, 0, 1, 1}, {0, 1, 1, 1}, {0, 0, 1, 0}, {0, 0, 0, 1}

0 {1, 1, 1, 1}, {1, 0, 1, 0}, {0, 1, 1, 0}, {0, 1, 0, 1}, {0, 0, 0, 0}, {1, 0, 0, 1}

1 {1, 1, 1, 0}, {1, 1, 0, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}

2 {1, 1, 0, 0}

We first solve problem 1. The overall power consumption of filter generator (7) at time t represented

by Pt is given by

Pt =

n∑

i=1

PFi
(t) + Py1

(t), (10)

where
∑n

i=1 PFi
(t) and Py1

(t) represent the power consumptions of the FSR stages and the output y1 at

time t, respectively. Note that the number of stages n is not determined here.

Let St denote the values of the filter generator (7) at time t, where St = (X(t), y1(t)). Let HDt be the

Hamming distance between St and St+1. Let HW(St) denote the Hamming weight (i.e., the number of

ones) of St. Thus, we have

HDt = HW(St ⊕ St+1)

= HW((X(t), y1(t))⊕ (X(t+ 1), y1(t+ 1)))

= HW(x1(t)⊕ x1(t+ 1), x2(t)⊕ x2(t+ 1), . . . , xn(t)⊕ xn(t+ 1), y1(t)⊕ y1(t+ 1)),

HDt+1 = HW(St+1 ⊕ St+2)

= HW((X(t+ 1), y1(t+ 1))⊕ (X(t+ 2), y1(t+ 2)))

= HW(x1(t+ 1)⊕ x1(t+ 2), x2(t+ 1)⊕ x2(t+ 2), . . . ,

xn(t+ 1)⊕ xn(t+ 2), y1(t+ 1)⊕ y1(t+ 2)).

Based on the property of FSRs, the state transition relation is (x1, x2, . . . , xn) → (x2, x3, . . . , fn(x1, x2,

. . . , xn)). Then we have that xi(t) = xi−1(t + 1), i ∈ [2, n]. Assume that Mg = δ2[c1, c2, . . . , c2n ] and

X(t+ i) ∼ δ
βt+i

2n . Let PDt be the theoretical power difference given by

PDt = HDt −HDt+1

= HW(x1(t)⊕ x1(t+ 1))−HW(xn(t+ 1)⊕ xn(t+ 2))

+ HW(cβt
⊕ cβt+1

)−HW(cβt+1
⊕ cβt+2

).

Clearly, HW(x1(t) ⊕ x1(t + 1)), HW(cβt
⊕ cβt+1

), HW(xn(t + 1) ⊕ xn(t + 2)) and HW(cβt+1
⊕ cβt+2

)

can take values from set D. Let PDt ∼ {HW(x1(t) ⊕ x1(t + 1)), HW(cβt
⊕ cβt+1

), HW(xn(t + 1) ⊕

xn(t+2)), HW(cβt+1
⊕ cβt+2

)}, and all possible combinations of HW(x1(t)⊕x1(t+1)), HW(cβt
⊕ cβt+1

),

HW(xn(t+ 1)⊕ xn(t+ 2)) and HW(cβt+1
⊕ cβt+2

) are shown in Table 1.

From Table 1, PDt can take any value from the set {−2,−1, 0, 1, 2}. As shown by [34], power con-

sumption Pt is proportional to HDt, and PDt is proportional to the difference of the measured power

consumption at times t and t + 1. As usual, the difference of the measured power consumption can be

known, so the theoretical PD values can also be known. It can be found that if PDt = −2, then we imme-

diately obtain that HW(x1(t)⊕ x1(t+1)) = 0, HW(cβt
⊕ cβt+1

) = 0, HW(xn(t+1)⊕ xn(t+2)) = 1 and

HW(cβt+1
⊕cβt+2

) = 1. Similarly, when PDt = 2, we have HW(x1(t)⊕x1(t+1)) = 1, HW(cβt
⊕cβt+1

) = 1,

HW(xn(t+ 1)⊕ xn(t + 2)) = 0 and HW(cβt+1
⊕ cβt+2

) = 0. Therefore, when PDt is either −2 or 2, the

above four values can be uniquely determined. This implies that the attacker is susceptible to finding the

initial state. Based on these two cases, the unnecessary bits in the incompletely specified binary sequence

should specify some certain values to avoid these two cases.

Given −2 ∼ {0, 0, 1, 1} and 2 ∼ {1, 1, 0, 0}, we begin with t = 0. Then, we find that cβt
= bt,

implying that HW(cβt
⊕ cβt+1

) and HW(cβt+1
⊕ cβt+2

) can be determined. Because the number of stages



Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:8

cannot be determined, the value of HW(xn(t + 1) ⊕ xn(t + 2)) is still unknown until the problem 2 is

solved. Let ⋆ represent the value of HW(xn(t + 1) ⊕ xn(t + 2)), that can be ignored temporarily. In

order to reduce the times of Pt being equal to −2 or 2, i.e., the combinations {0, 0, ⋆, 1} and {1, 1, ⋆, 0},

we should carefully choose the values of the unnecessary bits to reduce direct dependencies between the

side channel information and key sequences. Thus, we increase the difficulty of adversaries’ attack. To

achieve this objective, Algorithm 1 is provided to determine the values of unnecessary bits in sequence a.
Algorithm 1 Determine the values of unnecessary bits in sequence a
1: for t = 0 to l − 1 do

2: if both of at and at+1 are unnecessary bits or one of them is unnecessary bit then

3: if (bt ⊕ bt+1) = 0 and (bt+1 ⊕ bt+2) = 1 then

4: Let at and at+1 satisfy at ⊕ at+1 = 0;

5: else

6: if (bt ⊕ bt+1) = 1 and (bt+1 ⊕ bt+2) = 0 then

7: Let at and at+1 satisfy at ⊕ at+1 = 1;

8: end if

9: end if

10: else

11: t = t+ 1.

12: end if

13: end for

By using Algorithm 1, the values of all unnecessary bits in a can be determined. We assume that

the incompletely specified binary sequence a becomes a completely specified binary sequence 
 given

by 
 : c0, c1, c2, . . . with period l′. Next, we analyze problem 2. To obtain the minimum number of

stages for generating sequence 
, we must carefully analyze the properties of FSRs. For a given state

(x1(t), x2(t), . . . , xn(t)), the next state can be represented by (x2(t), x3(t), . . . , fn(x1(t), x2(t), . . . , xn(t))),

which is also called the successor to the state (x1(t), x2(t), . . . , xn(t)). The output of FSRs is always the

value of the first stage, i.e., x1(t). Moreover, it can be found that the period of output sequences is

equivalent to that of state sequences [35].

Based on the property of FSRs, the following result can be obtained.

Lemma 3. For a completely specified binary sequence 
 having period l′: c0, c1, . . . , cl′−1, . . ., if the

number of stages for an FSR is k, then the trajectory with an initial state (a0, a1, . . . , ak−1) of the FSR

can be determined.

For sequence 
, if we know that the number of stages for the FSR generating the sequence 
 is

r, r 6 l′, then one of the trajectories for the FSR is (c0, c1, . . . , cr−1) → (c1, c2, . . . , cr) → · · · →

(cl′−1, cl′ , . . . , cl′+r−2) → (c0, c1, . . . , cr−1) → · · · , and others cannot be ensured. For an FSR having

r stages, there totally exist 2r nodes in the state-transition graph. However, we can only ensure the

successor of (ci, c1+i, . . . , cr−1+i), i ∈ [0, l′ − 1]. Therefore, the successors of the remaining 2r − l′ in the

state-transition graph are not determined. Let G(
, r) denote this state-transition graph. Moreover, we

can also conclude from G(
, r) that there exists more than one FSR with r stages generating the output

sequence 
, because the successors of the rest 2r − l′ can be random.

For example, consider the following binary sequence having period 11: 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, . . ..

If we know that the above sequence was generated by an FSR having 4 stages, then based on Lemma 3,

one of the state trajectories for the feedback shift register must be (1, 1, 0, 1) → (1, 0, 1, 1) → (0, 1, 1, 1) →

(1, 1, 1, 0) → (1, 1, 0, 0) → (1, 0, 0, 1) → (0, 0, 1, 0) → (0, 1, 0, 0) → (1, 0, 0, 1) → (0, 0, 1, 1) → (0, 1, 1, 1) →

(1, 1, 1, 0) → (1, 1, 0, 1). However, there still exist four states which are not included in the above tra-

jectory. If we have no idea about the number of stages in the FSR, then it is hard to confirm any state

trajectory that may comprise triples or quintuples. Thus, it is a challenge for us to confirm the number

of stages for generating the given periodic sequence, and the number must be minimized.

If the FSR (7) is regarded as a BN having n nodes, then by [36], the generating maximum period

sequence is 2n. Thus, for given periodic sequence 
 with period l′, the minimum number of stages



Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:9

denoted by Nmin satisfies the following inequality:

Nmin > log2l
′. (11)

According to (11), for the sequence 
, we begin to consider from n = ⌈log2l
′⌉. If there exists a node

whose out-degree is greater than 1 in G(
, ⌈log2l′⌉), then the number of stages must be greater than

⌈log2l
′⌉. For any given state, the next state must be uniquely determined. This fact implies that it is

impossible to have a node whose out-degree is greater than 1 in G(
, ⌈log2l′⌉). Therefore, an FSR having

⌈log2l
′⌉ stages cannot generate sequence 
.

Considering the case n = (⌈log2l
′⌉)+r, r ∈ N , the trajectory is (c0, c1, . . . , c(⌈log2l

′⌉)+r−1) → (c1, c2, . . .,

c(⌈log2l
′⌉)+r) → · · · → (cl′−1, cl′ , . . . , cl′+(⌈log2l

′⌉)+r−2). Because the sequence 
 is periodic and its period is

l′, then it indicates that cjl′+i = ci, i ∈ [0, l′−1], j > 1. If the out-degree of every node in G(
, ⌈log2 l′⌉+1)

is 1, then it implies that the given sequence a can be generated using an FSR with (⌈log2l
′⌉) + r stages.

Based on the above analysis, Algorithm 2 shows the process how to find the minimum number of stages

for the FSR generating the given sequence 
.
Algorithm 2 Determine the minimum number of stages for the FSR generating completely specified binary sequence 


1. Consider a given sequence 
 having period l′: c0, c1, . . . , cl′−1 . . ., and set n = ⌈log2l
′⌉;

2. Obtain the trajectory with initial state (c0, . . . , cn−1);

3. If there exists one node in the state-transition graph G(
, n) such that its out-degree is greater than 1, go to the next

step. However, if the output degree of every node is equal to 1, then the minimum number of stages generating 
 is

n;

4. Let n = n+ 1. Then, repeat steps 2 and 3.

Meanwhile, we can obtain the following theorem about the minimum number of stages.

Theorem 1. For a completely specified binary sequence 
 having a period l′: c0, c1, . . . , cl′−1 . . ., if

there exists a minimum integer k (k > ⌈log2l
′⌉) such that the out-degree of all the determined l′ nodes is

1 in G(
, k), then the minimum number of stages for FSRs generating the sequence 
 is k.

Proof. Because the out-degree of all the determined l′ nodes is 1, the successors to these l′ nodes

are uniquely determined. Therefore, such an FSR having k stages generating the output sequence 

exists. Inversely, if there exists one node owning two out-degrees denoted by (ci, ci+1, . . . , ci+k−1) →

(ci+1, ci+2, . . . , ci+k−1, 1) and (ci, ci+1, . . . , ci+k−1) → (ci+1, ci+2, . . . , ci+k−1, 0), then it implies that the

feedback function should satisfy fn(ci, ci+1, . . . , ci+k−1) = 1 and fn(ci, ci+1, . . . , ci+k−1) = 0, which is

obviously contradictory.

If the number of stages is determined to be k, then the trajectory beginning with the initial state

(c0, c1, . . . , ck−1) is (c0, c1, . . . , ck−1) → (c1, c2, . . . , ck) → · · · → (cl′−1, cl′ , . . . , cl′+k−1), indicating that

the sequence of the FSR having the initial state (c0, c1, . . . , ck−1) must be 
. Therefore, the minimum

number of stages for FSRs generating sequence 
 is k.

Remark 1. Compared with [29], by resorting to the method of BNs, the lower bound of the minimum

number of stages can be obtained, which reduces the exhaustive search time. Moreover, the trajectory of

a given initial state is reflected on the state-transition graph, for which, the minimum number of stages

is found, and the relationship between some columns of L′ is subsequently revealed.

Suppose that we have obtained the minimum number of k stages for FSRs generating the completely

specified binary sequence 
 by Theorem 1. Then, we must construct these FSRs. We further as-

sume that (c0, c1, . . . , ck−1) ∼ δi0
2k
, (c1, c2, . . . , ck) ∼ δi1

2k
, (c2, c3, . . . , ck+1) ∼ δi2

2k
, . . . , and (cl′−1, cl′ , . . . ,

cl′+k−2) ∼ δ
il′−1

2k
. Consider system (9) and let n = k. Then, we have that coli0(L

′) = δi1
2k
, coli1(L

′) =

δi2
2k
, . . . , colil′−2

(L′) = δ
il′−1

2k
, and colil′−1

(L′) = δi0
2k
. Thus, L′ has the following form:

L′ = δ2k

[

⋄ · · · ⋄ i1
i0

⋄ · · · ⋄ i2
i1

⋄ · · · ⋄ il′−1
il′−2

⋄ · · · ⋄ i0
il′−1

]

,



Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:10

where the notation ⋄ represents undetermined elements. It can be seen that there exist a total of 2(2
k−l′)k

matrices L′. Next, we determine matrices satisfying the corresponding updated functions of the forms

of fi = xi+1(t), i ∈ [1, n − 1] and fn = fn(x1, x2, . . . , xn). Fortunately, Zhao et al. [4] has solved this

problem and reached the following result:

coli(L
′) =

{

δ2i−1
2k

or δ2i2k , 1 6 i 6 2k−1,

δ
2(i−2k−1)−1

2k
or δ

2(i−2k−1)

2k
, 2k−1 + 1 6 i 6 2k.

(12)

Therefore, based on (12), we can conclude that each column of L′ has two possible values except for the

known l′ columns, implying that there exist 22
k−l′ FSRs generating the given output sequence 
.

In the following, we must construct the external circuit ce using a logical function g(x1, x2, . . . , xk)

to generate the given binary sequence b having period l′, where l′ is a divisor of l. Assuming that the

structure matrix of g(x1, x2, . . . , xk) is denoted by Mg, then it implies that we only need to construct

matrix Mg.

As discussed above, when the minimum number of stages is k, the trajectory of the FSRs is (c0, c1, . . . ,

ck−1) → (c1, c2, . . . , ck) → · · · → (cl′−1, cl′ , . . . , cl′+k−2) → (c0, c1, . . . , ck−1) → · · · . Then, consider

system (7), and coli0(Mg) = δ
(2−b0)
2 , coli1 (Mg) = δ

(2−b1)
2 , . . ., and colil′−1

(Mg) = δ
(2−bl′−1)

2 . Therefore,

Mg takes the form of

Mg = δ2

[

⋆ · · · ⋆ (2− b0)
i0

⋆ · · · ⋆ (2 − b1)
i1

⋆ · · · ⋆ (2 − bl′−1)
il′−1

]

, (13)

where the notation ⋆ represents undetermined elements. It follows from (12) that the columns of L′ have

some limitations because the FSRs should satisfy (6). However, there is no limitation on the columns of

Mg except the determined l′ columns. Therefore, the notation ⋆ can take value randomly from {1, 2},

implying that there exist a total of 22
k−l′ matrices Mg, generating the binary sequence b having a period

l′.

As usual, the objective of cryptanalytic attacks is to ensure the unknown initial state by providing

a long enough segment of its keystream sequence. Therefore, to further enhance the exhaustive search

time, the choice of function g is particularly important such that the generated output gets independent

random bits.

Definition 4. The function is said to be balanced if the probability of the function output being 0 or

1 is 1/2.

For any given state S = (s1, s2, . . . , sk), its conjugate state is defined as S∗ = (s̄1, s2, . . . , sk) with

s̄1 = 1⊕ s1, where ⊕ means XOR. Clearly, we have |D(S) −D(S∗)| = 2k−1.

Lemma 4. Consider system (9). The function g is balanced if for any given state S and its conjugate

state S∗, the D(S)-th column and D(S∗)-th column of Mg are different.

It can be found from (13) that some columns of Mg have been restricted, implying that it is tough to

guarantee Mg while satisfying Lemma 4. To increase the key search time for adversaries, we make some

modifications to Mg based on (13) and Lemma 4, shown in Algorithm 3.

Algorithm 3 Determine Mg to increase the key search time

1: for j = 1 to 2k−1 do

2: if both of colj(Mg) and colj+2k−1 (Mg) are not determined or one of them is not determined then

3: Let colj(Mg) and colj+2k−1 (Mg) take different values;

4: end if

5: j = j + 1.

6: end for

The aim of Algorithm 3 is to make the probability of the output being 0 or 1 closer to 1
2 . It can be

found that both Algorithms 1 and 3 play important roles of increasing the key search time for adversaries.

Actually, most of algorithms generating key sequences are not be guaranteed to be absolutely secure.



Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:11

Clearly, from the security point of view, it is not preferable that the adversaries cannot easily find the

initial state. Therefore, in order to improve the probability of regulators finding vulnerabilities, we try

to increase the key search time for adversaries by utilizing Algorithms 1 and 3. Based on these two

algorithms, the transition matrix L′ and structure matrix Mg can be determined. Cheng et al. [7] showed

how to convert the algebraic form (9) back to logical form (7). Thus, referring to [7], the corresponding

filter generator can be constructed.

Example 2. We construct a filter generator which generates the following sequences with period 11:a : 1, z1, z2, 0, 0, z3, 1, 1, z4, 0, 1, . . .b : 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, . . . .

First, we confirm the values of these unnecessary bits in sequence a using Algorithm 1. Because a1 is

one unnecessary bit and b0 ⊕ b1 = 0 as well as b1 ⊕ b2 = 1, we can conclude that a0 ⊕ a1 = 0, implying

that a1 = 1. Similarly, we have that a2, a5 and a8 are unnecessary bits. Moreover,

b1 ⊕ b2 = 1 and b2 ⊕ b3 = 0,

b4 ⊕ b5 = 0 and b5 ⊕ b6 = 1,

b7 ⊕ b8 = 1 and b8 ⊕ b9 = 0.

Using Algorithm 1, a2, a5 and a8 can be determined and are all equal to 0. Therefore, the sequence a
becomes a completely specified binary sequence denoted by 
, that is, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, . . ..

Then, we must determine the minimum number of stages to generate the sequence 
 by

Algorithm 2. We consider the case that n = ⌈log2 11⌉ = 4, and then it can be observed from Fig-

ure 3 that the out-degrees of nodes (1, 1, 0, 0) and (0, 0, 1, 1) are 2. Therefore, the sequence 
 can also

not be generated by FSRs with stages being 4. When n = 5, it can be learned from Figure 4 that the

out-degree of every node is equal to 1. Therefore, the minimum number of stages for FSRs generating

the sequence 
 is 5 by Theorem 1.

Obviously, (1, 1, 0, 0, 0) ∼ δ832, (1, 0, 0, 0, 0) ∼ δ1632 , (0, 0, 0, 0, 1) ∼ δ3132 , (0, 0, 0, 1, 1) ∼

δ2932 , (0, 0, 1, 1, 0) ∼ δ2632 , (0, 1, 1, 0, 0) ∼ δ2032 , (1, 1, 0, 0, 1) ∼ δ732, (1, 0, 0, 1, 1) ∼

δ1332 , (0, 0, 1, 1, 1) ∼ δ2532 , (0, 1, 1, 1, 0) ∼ δ1832 and (1, 1, 1, 0, 0) ∼ δ432. Thus, L′ takes the

following form:

L′ = δ32

[

⋄ ⋄ ⋄ 8
4
⋄ ⋄ 13

7
16
8
⋄ ⋄ ⋄ ⋄ 25

13
⋄ ⋄ 31

16
⋄ 4
18
⋄ 7
20
⋄ ⋄ ⋄ ⋄ 18

25
20
26

⋄ ⋄ 26
29

⋄ 29
31

⋄

]

, (14)

and the rest columns (represented by ⋄) of L′ satisfy (12). According to (13), Mg is in the form of

Mg = δ32

[

⋆ ⋆ ⋆ 2
4
⋆ ⋆ 2

7
1
8
⋆ ⋆ ⋆ ⋆ 2

13
⋆ ⋆ 1

16
⋆ 1
18
⋆ 1
20
⋆ ⋆ ⋆ ⋆ 1

25
1
26
⋆ ⋆ 2

29
⋆ 2
31
⋆

]

. (15)

The remaining columns (represented by ⋆) of Mg can randomly take values from {1, 2}.

Considering the property of balanced functions and in order to increase the key search time, then by

Algorithm 3, structure matrix Mg can take the following form:

Mg = δ32[1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 1 2 1 1 1 2 1 1 2 1 1 1 2 2 1 2 2].

According to (12), the transition matrix L′ can be

L′ = δ32[1 4 5 8 9 12 13 16 18 20 22 24 25 27 29 31 1 4 5 7 9 11 14 16 18 20 22 24 26 27 29 32].

Therefore, referring to [7], the corresponding logical forms can be obtained; i.e., the filter generator,



Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:12

(1,1,0,0) (1,0,0,1) (0,1,1,1) (1,1,1,0)

(1,0,0,0)

(0,0,0,0) (0,0,0,1) (0,0,1,1) (0,1,1,0)

(1,1,0,0,0) (0,1,1,1,0) (1,1,1,0,0)

(1,0,0,0,0)

(0,0,0,0,1)

(0,0,1,1,1) (1,0,0,1,1) (1,1,0,0,1)

(0,0,0,1,1) (0,0,1,1,0) (0,1,1,0,0)

Figure 3 The state-transition graph G(
, 4). Figure 4 The state-transition graph G(
, 5).
generating sequences a and b, can be constructed as follows:







x1(t+ 1) =x2(t),

x2(t+ 1) =x3(t),

x3(t+ 1) =x4(t),

x4(t+ 1) =x5(t),

x5(t+ 1) =(x1(t) ∧ ((x2(t) ∧ x5(t)) ∨ ¬(x2(t) ∨ x3(t))))

∨ (¬x1(t) ∧ ((x2(t) ∧ ((x3(t) ∧ (x4 → x5))

∨ (¬x3 ∧ x5))) ∨ (¬x2(t) ∧ (¬x3(t) ∧ (x4(t)∨̄x5(t)))))),

y1(t) =(x1(t) ∧ ((x2(t) ∧ ((x3(t) ∧ x4(t) ∧ x5(t))

∨ (¬x3(t) ∧ (x4(t) ↔ x5(t))))) ∨ (¬x2(t) ∧ ((x3(t)

∧ ¬(x4(t) ∨ x5(t))) ∨ ¬(x3(t) ∧ x4(t)))))) ∨ (¬x1(t)

∧ ((x2(t) ∧ ((x3(t) ∧ ¬(x4(t) ∧ x5(t))) ∨ (¬x3(t)

∧ (x4(t)∨̄x5(t))))) ∨ (¬x2(t) ∧ ((x3(t) ∧ x4(t)

∧ x5(t)) ∨ ¬(x3(t) ∨ (x4(t) → x5(t))))))).

4 Conclusion

In this paper, we regarded a filter generator as a BN. By utilizing the STP, the corresponding algebraic

form was obtained. Based on the algebraic form, algorithms were presented to construct filter generators

to improve security and reduce area and power dissipation for a given incompletely specified binary

sequence. Finally, one example was given to illustrate the effectiveness of our results.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No. 61973078),

Natural Science Foundation of Jiangsu Province (Grant No. BK20170019), Jiangsu Provincial Key Laboratory of Networked

Collective Intelligence (Grant No. BM2017002), Jiangsu Province Six Talent Peaks Project (Grant No. 2015-ZNDW-002),

Fundamental Research Funds for the Central Universities (Grant No. 2242019k1G013), and Postgraduate Research &

Practice Innovation Program of Jiangsu Province (Grant No. KYCX19 0111).

References

1 Wang J, Mu J Q, Wei S Q, et al. Statistical characterization of decryption errors in block-ciphered systems. IEEE

Trans Commun, 2015, 63: 4363–4376

2 Zhong J H, Lin D D. Driven stability of nonlinear feedback shift registers with inputs. IEEE Trans Commun, 2016,

64: 2274–2284

https://doi.org/10.1109/TCOMM.2015.2474860
https://doi.org/10.1109/TCOMM.2016.2557330


Li B W, et al. Sci China Inf Sci November 2020 Vol. 63 212206:13

3 Zhong J H, Lin D D. Decomposition of nonlinear feedback shift registers based on Boolean networks. Sci China Inf

Sci, 2019, 62: 039110

4 Zhao D W, Peng H P, Li L X, et al. Novel way to research nonlinear feedback shift register. Sci China Inf Sci, 2014,

57: 092114

5 Kauffman S A. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol, 1969, 22:

437–467

6 Zhang Y, Liu Y. Nonlinear second-order multi-agent systems subject to antagonistic interactions without velocity

constraints. Appl Math Comput, 2020, 364: 124667

7 Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach. London:

Springer, 2011

8 Zhong J, Liu Y, Kou K I, et al. On the ensemble controllability of Boolean control networks using STP method. Appl

Math Comput, 2019, 358: 51–62

9 Lin L, Cao J D, Rutkowski L. Robust event-triggered control invariance of probabilistic Boolean control networks.

IEEE Trans Neural Netw Learn Syst, 2020, 31: 1060–1065

10 Huang C, Lu J Q, Ho D W C, et al. Stabilization of probabilistic Boolean networks via pinning control strategy. Inf

Sci, 2020, 510: 205–217

11 Zhu S Y, Lu J Q, Liu Y. Asymptotical stability of probabilistic Boolean networks with state delays. IEEE Trans

Automat Contr, 2020, 65: 1779–1784

12 Zhong J, Li B W, Liu Y, et al. Output feedback stabilizer design of Boolean networks based on network structure.

Front Inform Technol Electron Eng, 2020, 21: 247–259

13 Xu M X, Liu Y, Lou J G, et al. Set stabilization of probabilistic Boolean control networks: a sampled-data control

approach. IEEE Trans Cybern, 2019. doi: 10.1109/TCYB.2019.2940654

14 Zhu S Y, Liu Y, Lou Y J, et al. Stabilization of logical control networks: an event-triggered control approach. Sci

China Inf Sci, 2020, 63: 112203

15 Lu J Q, Sun L J, Liu Y, et al. Stabilization of Boolean control networks under aperiodic sampled-data control. SIAM

J Control Opt, 2018, 56: 4385–4404

16 Liu Y, Li B W, Chen H W, et al. Function perturbations on singular Boolean networks. Automatica, 2017, 84: 36–42

17 Liu H C, Liu Y, Li Y Y, et al. Observability of Boolean networks via STP and graph methods. IET Control Theor

Appl, 2018, 13: 1031–1037

18 Liu Y, Li B W, Lu J Q, et al. Pinning control for the disturbance decoupling problem of Boolean networks. IEEE

Trans Automat Contr, 2017, 62: 6595–6601

19 Li Y Y, Liu R J, Lou J G, et al. Output tracking of Boolean control networks driven by constant reference signal.

IEEE Access, 2019, 7: 112572

20 Wu Y H, Shen T L. A finite convergence criterion for the discounted optimal control of stochastic logical networks.

IEEE Trans Automat Contr, 2018, 63: 262–268

21 Li Y L, Li H T, Xu X J, et al. Semi-tensor product approach to minimal-agent consensus control of networked

evolutionary games. IET Control Theor Appl, 2018, 246: 2269–2275

22 Li H T, Wang Y Z. Boolean derivative calculation with application to fault detection of combinational circuits via the

semi-tensor product method. Automatica, 2012, 48: 688–693

23 Lu J Q, Li M L, Huang T W, et al. The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via

semi-tensor product of matrices. Automatica, 2018, 96: 393–397

24 Dubrova E. On constructing secure and hardware-efficient invertible mappings. In: Proceedings of International

Symposium on Multiple-Valued Logic, Sapporo, 2016. 211–216

25 Liu Z B, Wang Y Z, Cheng D Z. Nonsingularity of feedback shift registers. Automatica, 2015, 55: 247–253

26 Lu J Q, Li M L, Liu Y, et al. Nonsingularity of Grain-like cascade FSRs via semi-tensor product. Sci China Inf Sci,

2018, 61: 010204

27 Zhong J H, Lin D D. On minimum period of nonlinear feedback shift registers in Grain-like structure. IEEE Trans

Inform Theor, 2018, 64: 6429–6442

28 Li N, Dubrova E. Synthesis of power- and area-efficient binary machines for incompletely specified sequences.

In: Proceedings of Asia and South Pacific Design Automation Conference, Singapore, 2014. 634–639

29 Wan Z, Dai Z, Liu M, et al. Nonlinear Feedback Shift Registers (in Chinese). Beijing: Science Press, 1978

30 Zadeh A A, Heys H M. Simple power analysis applied to nonlinear feedback shift registers. IET Inform Secur, 2014,

3: 188–198

31 Dubrova E. Synthesis of binary machines. IEEE Trans Inform Theor, 2011, 57: 6890–6893

32 Dubrova E. Synthesis of parallel binary machines. In: Proceedings of the International Conference on Computer-Aided

Design, San Jose, 2011. 200–206

33 Veliz-Cuba A. Reduction of Boolean network models. J Theor Biol, 2011, 289: 167–172

34 Burman S, Mukhopadhyay D, Veezhinathan K. LFSR based stream ciphers are vulnerable to power attacks.

In: Proceedings of International Conference on Cryptology, 2007. 384–392

35 Goresky M, Klapper A. Algebraic Shift Register Sequences. Cambridge: Cambridge University Press, 2012

36 Li R, Yang M, Chu T G. State feedback stabilization for Boolean control networks. IEEE Trans Automat Contr, 2013,

58: 1853–1857

https://doi.org/10.1007/s11432-017-9460-4
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1109/TNNLS.2019.2917753
https://doi.org/10.1016/j.ins.2019.09.029
https://doi.org/10.1109/TAC.2019.2934532
https://doi.org/10.1631/FITEE.1900229
https://doi.org/10.1137/18M1169308
https://doi.org/10.1016/j.automatica.2017.06.035
https://doi.org/10.1109/TAC.2017.2715181
https://doi.org/10.1109/ACCESS.2019.2934740
https://doi.org/10.1109/TAC.2017.2720730
https://doi.org/10.1049/iet-cta.2018.5230
https://doi.org/10.1016/j.automatica.2012.01.021
https://doi.org/10.1016/j.automatica.2018.07.011
https://doi.org/10.1016/j.automatica.2015.03.014
https://doi.org/10.1007/s11432-017-9269-6
https://doi.org/10.1109/TIT.2018.2849392
https://doi.org/10.1049/iet-ifs.2012.0186
https://doi.org/10.1109/TIT.2011.2149495
https://doi.org/10.1016/j.jtbi.2011.08.042
https://doi.org/10.1109/TAC.2013.2238092

	Introduction
	Preliminaries
	Main results
	Conclusion

