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Abstract In this paper, we investigate the problem of achieving node-to-node consensus (NNC) in two-layer

multiple-input-multiple-output (MIMO) multi-agent systems (MASs) with Lipschitz nonlinear dynamics and

intermittent directed networks, where the cooperative goal is to make each follower to track a specified leader.

By using the relative outputs, discontinuous observers are given to reconstruct the full states of followers and

then feedback controllers are designed. Furthermore, some NNC criteria are given by investigating stability

of the error system. To verify the obtained results, a simulation is performed.
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1 Introduction

Cooperative analysis of large scale networked systems has attracted numerous attention from many sci-

entific fields [1,2], such as control systems [3–5], neural networks [6,7], applied mathematics [8], and infor-

mation science [9–11]. Typical cooperative behaviors include consensus of multi-agent systems (MASs) [3]

and synchronization of complex networks [12,13] which are aimed at achieving a state agreement among

multiple agents. As a fundamental cooperative behavior, consensus of MASs has been applied in various

engineering scenarios such as unmanned systems formation [14] and economic dispatch in smart grids [15].

One of the main scientific problems concerning cooperative analysis is to achieve consensus in MASs

with complex dynamics under a complicated communication environment [3, 16, 17]. Recently, many

efficient consensus criteria and controllers have been proposed for the case in which MASs have one or

no leader agent. However, concerning particular practical scenarios such as the formation of a team of

robots, MASs may need to have multiple leaders, and therefore the containment control problem needs

to be further considered [18–24]. Within a containment control framework, followers may not be able

to track a maneuvering target precisely. To mitigate this deficiency, the node-to-node consensus (NNC)

control strategies have been proposed recently [25, 26]. Within the NNC framework, followers may be

unable to follow the same leader or to converge into the convex region. However, their main purpose is

to track a particular leader precisely, and therefore NNC has a broader application range compared to

consensus and containment frameworks. Moreover, it should be emphasized that efficient applications of

NNC frameworks to encryption tasks have been proposed [27].
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In [25,26], full states have been employed for coordination, which severely limits the application range

of the proposed approaches as the measurement of full states is computationally expensive. Considering

that no research has been conducted on the NNC of two-layer MIMO MASs, we focus on the NNC

problem for the two-layer MIMO MASs with Lipschitz nonlinear dynamics and intermittent directed

networks. To reconstruct full states of a follower, we design a discontinuous observer based on relative

outputs. Utilizing the observers’ relative states, we develop some discontinuous controllers. Then, we

give some NNC criteria by analyzing the stability of an error system via developing a multiple Lyapunov

function.

Compared with several recent studies, this paper has the following improvements: (1) Unlike [25, 26],

which have utilized full states to generate the controller, the one given in this paper only uses the

relative outputs, and therefore the obtained results can be used to broaden the range of applications.

Moreover, we also would like to point out that the dynamics of MASs under consideration are much

more general than those studied in [25, 26] thereby the proposed model can characterize more practical

systems. (2) Within the containment framework, followers may be unable to track a maneuvering target

precisely, which can be avoided by employing an NNC control framework. Therefore, in contrast to the

recent studies on containment control [21–24], the proposed controller can enable each follower to track a

maneuvering target precisely. Consequently, the results of the present study have a potential to broaden

the application range.

This paper is organized as follows. The two-layer MAS model is described in Section 2. The main

theoretical and simulation results are discussed in Sections 3 and 4, respectively.

In this paper, we use Rn (Rn×m) to represent the set of n (n×m) dimensional real vectors (matrices).

The notation ‖ · ‖ is used to represent the Euclidean norm. The notation A > 0 indicates that A is a

positive definite matrix. If A ∈ R
n×n has n real eigenvalues, λmax(A) and λmin(A) represent the largest

and smallest eigenvalues of A, respectively.

2 Problem formulation

2.1 Topology

For a two-layer MAS with each layer having N agents, the time varying communication topology of the

first layer (which is named leader layer) is described by graph G with vertex set V = {1, . . . , N} and

adjacency matrix A = [aij ]. For i, j = 1, . . . , N , set lii =
∑N

s=1 ais, and lij = −aij if i 6= j. Then

the Laplacain matrix of G is defined as L = [lij ]. Suppose the two layers have the same topology. By

relabeling the leader layer as a single agent 0, then the communication topology among agent 0 and the

followers is described by graph G̃ with its Laplacian matrix written as

L̃ =

[

0 0TN

−d L̂

]

, (1)

where d = [d1, . . . , dN ]T, di > 0 represents the weight of the pinning edges between the leader i and

follower i, and L̂ = L+ diag{d1, . . . , dN}. If agent 0 has at least one path to each follower, we say G̃ has

a directed spanning tree.

2.2 Model formulation

Suppose the communication network is activated during [kh, kh + δ) and is interrupted during [kh +

δ, (k + 1)h), k = 0, 1, . . ., where h > 0, δ > 0 will be given later. The leader i’s dynamic is given by

ẋi(t) =Axi(t) +Df(xi(t)) + αBK

N
∑

j=1

aij(xj(t)− xi(t)), t ∈ [kh, kh+ δ),

ẋi(t) =Axi(t) +Df(xi(t)), t ∈ [kh+ δ, (k + 1)h),

(2)
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where the states xi(t) ∈ R
n, the input matrix B ∈ R

n×m, the gain matrix K ∈ R
m×n, the coupling

strength α > 0, D ∈ R
n×q, and f(·) : Rn 7→ R

q satisfies

‖f(z(t))− f(x(t))‖ 6 ι‖z(t)− x(t)‖, ι > 0. (3)

The follower i’s dynamic is given by

˙̃xi(t) = Ax̃i(t) +Df(x̃i(t)) +Bui(t),

ỹi(t) = Cx̃i(t),
(4)

where the states x̃i(t) ∈ R
n, the inputs ui(t) ∈ R

m, the outputs ỹi(t) ∈ R
p, and the output matrix

C ∈ R
p×n.

For arbitrary x̃i(0) and xi(0), we say NNC of MAS (2) and (4) is achieved if

lim
t→∞

‖x̃i(t)− xi(t)‖ = 0, i = 1, . . . , N.

To reconstruct full states of the follower i, we give the following discontinuous observer:

˙̂xi(t) =Ax̂i(t) +Df(x̂i(t)) +Bui(t)

+ βF





N
∑

j=1

aij
(

(ŷj(t)− ỹj(t))− (ŷi(t)− ỹi(t))
)

− di(ŷi(t)− ỹi(t))



 , t ∈ [kh, kh+ δ),

˙̂xi(t) =Ax̂i(t) +Df(x̂i(t)), t ∈ [kh+ δ, (k + 1)h),

ŷi(t) =Cx̂i(t),

(5)

where the coupling strength β > 0 and the gain matrix F ∈ R
n×p. Suppose the full sates of the leader

can be measured when the communication network is activated. Inspired by [28], we design the following

discontinuous controller:

ui(t) =αK

N
∑

j=1

aij(x̂j(t)− x̂i(t)) + αdiK(xi(t)− x̂i(t)), t ∈ [kh, kh+ δ),

ui(t) =0, t ∈ [kh+ δ, (k + 1)h). (6)

Let ei(t) = x̂i(t)− xi(t) and ǫi(t) = x̂i(t)− x̃i(t). Combing (2), (4)–(6) gives that

ėi(t) =Aei(t) +D [f(x̂i(t))− f(xi(t))]

+ αBK





N
∑

j=1

aij(ej(t)− ei(t)) − diei(t)





+ βFC





N
∑

j=1

aij(ǫj(t)− ǫi(t))− diǫi(t)



 , t ∈ [kh, kh+ δ),

ėi(t) =Aei(t) +D [f(x̂i(t))− f(xi(t))] , t ∈ [kh+ δ, (k + 1)h),

ǫ̇i(t) =Aǫi(t) +D [f(x̂i(t))− f(x̃i(t))]

+ βFC





N
∑

j=1

aij(ǫj(t)− ǫi(t))− diǫi(t)



 , t ∈ [kh, kh+ δ),

ǫ̇i(t) =Aǫi(t) +D [f(x̂i(t))− f(x̃i(t))] , t ∈ [kh+ δ, (k + 1)h).

(7)
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By using (1), we can rewrite (7) as

ėi(t) =Aei(t) +D [f(x̂i(t)) − f(xi(t))]

− αBK





N
∑

j=1

l̂ijej(t)



 − βFC





N
∑

j=1

l̂ijǫj(t)



 , t ∈ [kh, kh+ δ),

ėi(t) =Aei(t) +D [f(x̂i(t)) − f(xi(t))] , t ∈ [kh+ δ, (k + 1)h),

ǫ̇i(t) =Aǫi(t) +D [f(x̂i(t)) − f(x̃i(t))]− βFC





N
∑

j=1

l̂ijǫj(t)



 , t ∈ [kh, kh+ δ),

ǫ̇i(t) =Aǫi(t) +D [f(x̂i(t)) − f(x̃i(t))] , t ∈ [kh+ δ, (k + 1)h),

(8)

where l̂ij is given by (1). Taking e(t) = [eT1 (t), . . . , e
T
N(t)]T and ǫ(t) = [ǫT1 (t), . . . , ǫ

T
N(t)]T, we have

ė(t) =(IN ⊗A)e(t) + (IN ⊗D)f(e(t))

− α(L̂ ⊗BK)e(t)− β(L̂ ⊗ FC)ǫ(t), t ∈ [kh, kh+ δ),

ė(t) =(IN ⊗A)e(t) + (IN ⊗D)f(e(t)), t ∈ [kh+ δ, (k + 1)h),

ǫ̇(t) =(IN ⊗A)ǫ(t) + (IN ⊗D)f(ǫ(t))− β(L̂ ⊗ FC)ǫ(t), t ∈ [kh, kh+ δ),

ǫ̇(t) =(IN ⊗A)ǫ(t) + (IN ⊗D)f(ǫ(t)), t ∈ [kh+ δ, (k + 1)h),

(9)

where f(e(t)) = [[f(x̂1(t))−f(x1(t))]
T, . . . , [f(x̂N (t))−f(xN (t))]T]T and f(ǫ(t)) = [[f(x̂1(t))−f(x̃1(t))]

T,

. . . , [f(x̂N (t))− f(x̃N (t))]T]T. Based on the above observations, we need to show

lim
t→∞

‖e(t)‖ = lim
t→∞

‖ǫ(t)‖ = 0.

Before moving forward, the following assumption and the Schur complement lemma are given, respec-

tively.

Assumption 1. (A,B,C) is stabilizable and detectable.

Lemma 1 (Schur complement lemma). Suppose A = AT ∈ R
n×n, B = BT ∈ R

m×m, and C ∈ R
n×m.

The condition
[

A C

CT B

]

< 0

is equivalent to any one of the following conditions:

(1) B < 0 and A− CB−1CT < 0;

(2) A < 0 and B − CTA−1C < 0.

3 Main theoretical results

3.1 Node-to-node consensus of MASs with nonlinear dynamics

Assumption 2. The graph G̃ has a directed spanning tree rooted at agent 0.

If Assumption 2 holds, then we can obtain from [29, 30] that there exists Ξ = diag{ξ1, . . . , ξN} such

that

L̂TΞ + ΞL̂ > 0,

where [ξ1, . . . , ξN ]T = (L̂)−T · 1N . Specifically, the eigenvalue

λ0 = λmin

(

L̂+ Ξ−1L̂TΞ
)

, (10)

is positive.
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Theorem 1. Under Assumptions 1 and 2, if

δ

h
>

c3
c0 + c3

+
lnϕ

(c0 + c3)h
,

then node-to-node consensus of MAS (2) and (4) under the observer (5) based controller (6) can be

achieved by setting α > α̂/λ0, β > β̂/λ0, K = BTP−1, F = Q−1CT, where ϕ = max{ξmax
λmax(Q)
λmin(U) , ξmax

· 1
λmin(P )λmin(U) ,

λmax(U)
ξminλmin(Q) ,

λmax(U)λmax(P )
ξmin

}, ξmax = maxi=1,...,N ξi, ξmin = mini=1,...,N ξi, c0 = min{c1,
c2} > 0, λ0 is given by (10), α̂ and β̂ are two positive scalars. Q > 0, P > 0, and U > 0 satisfy

[

ATQ+QA− β̂CTC + ι2

κ2 In + 2c1Q κQD

κDTQ −Iq

]

< 0, (11)

[

PAT +AP − α̂BBT + ι2

κ̂2 In + 2c2P κ̂D

κ̂DT −Iq

]

< 0, (12)

[

ATU + UA+ ι2

κ̂2 In − 2c3U κUD

κUTD −Iq

]

< 0, (13)

where c1 > 0, c2 > 0, and c3 > 0.

Proof. Let

V (t) =

{

̺ǫT(t) [Ξ⊗Q] ǫ(t) + eT(t)
[

Ξ⊗ P−1
]

e(t), when t ∈ [kh, kh+ δ),

(
√
̺ǫ(t) + e(t))T [IN ⊗ U ] (

√
̺ǫ(t) + e(t)), when t ∈ [kh+ δ, (k + 1)h),

(14)

where Q, P and U are, respectively, given by (11)–(13); ̺ > 0 will be given later. For analytical

convenience, let

V1(t) = ǫT(t) [Ξ⊗Q] ǫ(t) (15)

and

V2(t) = eT(t)
[

Ξ⊗ P−1
]

e(t). (16)

When t ∈ [kh, kh+ δ), k = 0, 1, . . .,

V̇1(t) = ǫT(t)
[

Ξ⊗ (ATQ+QA)
]

ǫ(t) + 2ǫT(t)(Ξ ⊗QD)f(ǫ(t))

− βǫT(t)
[

L̂TΞ⊗ CTFTQ
]

ǫ(t)− βǫT(t)
[

ΞL̂ ⊗QFC
]

ǫ(t)

= ǫT(t)
[

Ξ⊗ (ATQ+QA)
]

ǫ(t) + 2ǫT(t)(Ξ ⊗QD)f(ǫ(t))

− βǫT(t)
[(

L̂TΞ + ΞL̂
)

⊗ CTC
]

ǫ(t), (17)

where we use F = Q−1CT to get the second equality. By using the Young inequality and (3), we have

2ǫT(t)(Ξ ⊗QD)f(ǫ(t)) 6 κ2ǫT(t)(Ξ ⊗QDDTQ)ǫ(t) +
1

κ2

N
∑

i=1

ξif
T
i (ǫi(t))fi(ǫi(t))

6 ǫT(t)

[

Ξ⊗
(

κ2QDDTQ+
ι2

κ2
In

)]

ǫ(t). (18)

Because CTC > 0, it can be obtained from (10) and β > β̂/λ0 that

−βǫT(t)
[(

L̂TΞ + ΞL̂
)

⊗ CTC
]

ǫ(t) 6 −βλ0ǫ
T(t)

[

Ξ⊗ CTC
]

ǫ(t) 6 −β̂ǫT(t)
[

Ξ⊗ CTC
]

ǫ(t). (19)
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Combining (17)–(19) gives

V̇1(t) 6 ǫT(t)

[

Ξ⊗
(

ATQ+QA+ κ2QDDTQ+
ι2

κ2
In − β̂CTC

)]

ǫ(t). (20)

According to Lemma 1 and (11), we have

ATQ+QA+ κ2QDDTQ+
ι2

κ2
In − β̂CTC < −2c1Q. (21)

Substituting (21) into (20), we have

V̇1(t) 6− 2(c1 + ĉ1)ǫ
T(t) [Ξ⊗Q] ǫ(t), (22)

where 0 < ĉ1 ≪ c1.

Note that K = BTP−1, and then

V̇2(t) = eT(t)
[

Ξ⊗
(

ATP−1 + P−1A
)]

e(t) + 2eT(t)(Ξ ⊗ P−1D)f(e(t))

− αeT(t)
[(

L̂TΞ + ΞL̂
)

⊗ P−1BBTP−1
]

e(t)− 2βeT(t)(ΞL̂ ⊗ P−1FC)ǫ(t). (23)

Using similar arguments as above gives that

V̇2(t) 6 eT(t)

[

Ξ⊗
(

ATP−1 + P−1A+ κ̂2P−1DDTP−1 +
ι2

κ̂2
In − αλ0P

−1BBTP−1

)]

e(t)

− 2βeT(t)(ΞL̂ ⊗ P−1FC)ǫ(t).

This together with α > α̂/λ0 gives

V̇2(t) 6 eT(t)

[

Ξ⊗
(

ATP−1 + P−1A+ κ̂2P−1DDTP−1 +
ι2

κ̂2
In − α̂P−1BBTP−1

)]

e(t)

− 2βeT(t)(ΞL̂ ⊗ P−1FC)ǫ(t). (24)

On the other hand, Eq. (12) implies

PAT +AP − α̂BBT +
ι2

κ̂2
In < −2c2P. (25)

Substituting (25) into (24), we have

V̇2(t) 6 −2(c2 + ĉ2)e
T(t)

[

Ξ⊗ P−1
]

e(t)− 2βeT(t)(ΞL̂ ⊗ P−1FC)ǫ(t), (26)

where 0 < ĉ2 ≪ c2.

Combining (22) and (26) gives that

V̇ (t) 6− 2̺(c1 + ĉ1)ǫ
T(t) [Ξ⊗Q] ǫ(t)− 2(c2 + ĉ2)e

T(t)
[

Ξ⊗ P−1
]

e(t)

− 2βeT(t)(ΞL̂ ⊗ P−1FC)ǫ(t). (27)

Let δ(t) = [ǫT(t), eT(t)]T. We can rewrite (27) as

V̇ (t) 6− 2c1̺ǫ
T(t) [Ξ⊗Q] ǫ(t)− 2c2e

T(t)
[

Ξ⊗ P−1
]

e(t) + δT(t)Πδ(t), (28)

where

Π =

[

−2ĉ1̺(Ξ⊗Q) 2ΩT

2Ω −2ĉ2(Ξ⊗ P−1)

]

(29)
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with Ω = −β(ΞL̂ ⊗ P−1FC). According to Lemma 1, Π < 0 if and only if

−ĉ1̺(Ξ⊗Q) +
1

ĉ2
ΩT(Ξ⊗ P−1)−1Ω < 0, (30)

which can be realized by choosing

̺ >
1

ĉ1ĉ2

[

λmax

(

(Ξ⊗Q)−1ΩT(Ξ⊗ P−1)−1Ω
)]

. (31)

Now we choose ̺ such that Eq. (31) holds and thereby Π < 0. This together with (28) gives

V̇ (t) 6− 2c1̺ǫ
T(t) [Ξ⊗Q] ǫ(t)− 2c2e

T(t)
[

Ξ⊗ P−1
]

e(t)

6− 2c0V (t), (32)

where c0 = min{c1, c2} > 0.

When t ∈ [kh+ δ, (k + 1)h),

V̇ (t) = (
√
̺ǫ(t) + e(t))T

[

IN ⊗ (ATU + UA)
]

(
√
̺ǫ(t) + e(t))

+ 2(
√
̺ǫ(t) + e(t))T [IN ⊗ UD] (f(ǫ(t)) + f(e(t))) . (33)

Using the same arguments as in (18) gives

V̇ (t) 6 (
√
̺ǫ(t) + e(t))T

[

IN ⊗
(

ATU + UA+ κ2QDDTQ+
ι2

κ2
In

)]

(
√
̺ǫ(t) + e(t))

6 2c3(
√
̺ǫ(t) + e(t))T [IN ⊗ U ] (

√
̺ǫ(t) + e(t))

6 2c3V (t), (34)

where the second inequality follows from (13).

It can be obtained from (32) and (34), respectively, that

V (kh+ δ) 6 ϕ · lim
t→(kh+δ)−

V (t) 6 ϕ · e−2c0δV (kh),

V ((k + 1)h) 6 ϕ · lim
t→((k+1)h)−

V (t) 6 ϕ · e2c3(h−δ)V (kh+ δ).

And the above inequalities yield

V ((k + 1)h) 6 ϕ2 · e−2c0δ+2c3(h−δ)V (kh)

= e−2c0δ+2c3(h−δ)+2 lnϕV (kh)

= e−τV (kh), (35)

where τ = 2c0δ − 2c3(h − δ) − 2 lnϕ > 0. By recursion, it is not difficult to show limt→∞ V (t) = 0. So

the NNC of MAS (2) and (4) is achieved.

Remark 1. Following the similar analysis made in Remark 5 of [31], we can show that the linear matrix

inequality (LMI) (11) is solvable if (C,A) is detectable and Eq. (12) is solvable if (A,B) is stabilizable.

3.2 Node-to-node consensus of MASs with general linear dynamics

In this subsection, the leader i’s dynamic is given by

ẋi(t) = Axi(t) + αBK

N
∑

j=1

aij(xj(t)− xi(t)), t ∈ [kh, kh+ δ),

ẋi(t) = Axi(t), t ∈ [kh+ δ, (k + 1)h).

(36)
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Leader
layer

Follower
layer

Figure 1 (Color online) The communication graph G of the considered two-layer MAS.

And the follower i’s dynamic is given by

˙̃xi(t) = Ax̃i(t) +Bui(t), ỹi(t) = Cx̃i(t). (37)

Then we design the following discontinuous observers and controllers:

˙̂xi(t) = Ax̂i(t) + βF





N
∑

j=1

aij
[

(ŷj(t)− ỹj(t))− (ŷi(t)− ỹi(t))
]

− di[ŷi(t)− ỹi(t)]



 , t ∈ [kh, kh+ δ),

˙̂xi(t) = Ax̂i(t), t ∈ [kh+ δ, (k + 1)h),

ŷi(t) = Cx̂i(t),

(38)

ui(t) = αK

N
∑

j=1

aij(x̂j(t)− x̂i(t)) + αdiK(xi(t)− x̂i(t)), t ∈ [kh, kh+ δ),

ui(t) = 0, t ∈ [kh+ δ, (k + 1)h), (39)

where the notations are the same as those in Subsection 3.1.

For the linear MAS (36) and (37), we have the following theorem.

Theorem 2. Under Assumptions 1 and 2, if

δ

h
>

c̃3
c̃0 + c̃3

+
lnϕ

(c̃0 + c̃3)h
,

then node-to-node consensus of MAS (36) and (37) under the observer (38) based the controller (39) can be

achieved by setting α > α̂/λ0, β > β̂/λ0, K = BTP−1, F = Q−1CT, where ϕ = max{ξmax
λmax(Q)
λmin(U) , ξmax

· 1
λmin(P )λmin(U) ,

λmax(U)
ξminλmin(Q) ,

λmax(U)λmax(P )
ξmin

}, ξmax = maxi=1,...,N ξi, ξmin = mini=1,...,N ξi, c̃0 = min{c̃1,
c̃2} > 0, λ0 is given by (10), and α̂ and β̂ are two positive scalars. Q > 0, P > 0, and U > 0 satisfy

ATQ+QA− β̂CTC + 2c̃1Q < 0, (40)

PAT +AP − α̂BBT + 2c̃2P < 0, (41)

ATU + UA− 2c̃3U < 0, (42)

where c̃1 > 0, c̃2 > 0 and c̃3 > 0.

Theorem 2 can be proven similarly as Theorem 1, so we omit the proof here for space limitation.

4 Simulation

The following example is given to validate Theorems 1 and 2.

We consider a two-layer MAS with the communication topology G given by Figure 1. Let f(xi(t)) =

− sin(xi1(t)) and

A =

[

0 1

0 −0.5

]

, D = B =

[

0

1

]

, C =
[

1 0
]

.
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Figure 2 (Color online) Intermittent communication.
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Figure 3 (Color online) Trajectories of (a) ei1(t), i = 1, . . . , 4 and (b) ei2(t), i = 1, . . . , 4.

It can be verified easily that Assumptions 1 and 2 hold. And direct calculation gives that λ0 = 1.397,

ϕ = 34.3038 and ι = 1. Choosing β̂ = 3, κ = 2, c1 = 1.5, α̂ = 7, κ̂ = 2, and c2 = 1.5, solving (11)–(13)

gives that

Q =

[

0.7654 −0.2577

−0.2577 0.1060

]

, F =

[

7.1839

17.4565

]

,

P =

[

0.2053 −0.4477

−0.4477 1.1652

]

, K =
[

11.5552 5.2980
]

, U =

[

0.5465 0.0871

0.0871 0.3277

]

.

And we choose α = 5.1 > α̂/λ0 = 5.0107 and β = 2.2 > κ̂/λ0 = 2.1475. By setting h = 3, according to

Theorem 1, NNC is achieved if δ/h > 0.8040. Let δ = 2.43, and then δ/h = 0.81 > 0.8040. Suppose the

communication network is activated during [3k, 3k+2.43) and is interrupted during [3k+2.43, 3(k+1)),

k = 0, 1, . . ., which is shown in Figure 2. The trajectories of ei1(t), ei2(t), ǫi1(t), ǫi2(t), ‖e(t)‖, and ‖ǫ(t)‖
are depicted by Figures 3–5, respectively, which show NNC is achieved, where ‖ · ‖ denotes the Euclidean

norm.

5 Conclusion

As a result of this study, we developed several discontinuous observers based NNC controllers for two-

layer MIMO MASs with Lipschitz nonlinear dynamics and with linear dynamics under intermittent
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Figure 5 (Color online) Trajectories of (a) ‖e(t)‖ and (b) ‖ǫ(t)‖.

communications. After analyzing the stability of the error system, several NNC criteria were formulated

and then verified by simulation. However, the results were obtained for MASs with the same inner

communication topology, which limits their application range. In the future work, we will investigate the

NNC problem concerning two-layer MASs with the heterogeneous inner communication topology.
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12 Zhou J, Lu J A, Lü J. Pinning adaptive synchronization of a general complex dynamical network. Automatica, 2008,

44: 996–1003
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