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Abstract Research on the application of vehicle re-identification to video surveillance has attracted in-

creasingly growing attention. Existing methods are associated with the difficulties of distinguishing different

instances of the same car model owing to the incapability of recognizing subtle differences among these in-

stances and the possibility that a subtle difference may lead to incorrect results of ranking. In this paper, a

discriminative fine-grained network for vehicle re-identification based on a two-stage re-ranking framework is

proposed to address these issues. This discriminative fine-grained network (DFN) is composed of fine-grained

and Siamese networks. The proposed hybrid network can extract discriminative features of the vehicle in-

stances with subtle differences. The Siamese network is rather suitable for general object re-identification

using two streams of the network, while the fine-grained network is capable of detecting subtle differences.

The proposed two-stage re-ranking method allows obtaining a more reliable ranking list by using the Jaccard

metric and merging the first and second re-ranking lists, where the latter list is formed using the sample

mean feature. Experimental results on the VeRi-776 and VehicleID datasets show that the proposed method

achieves the superior performance compared to the state-of-the-art methods used in vehicle re-identification.
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1 Introduction

Re-identification is aimed to identify the same target within the different shooting scenes and periods,

which is an important field of computer vision, and vehicle re-identification is one of major topics. A

straightforward application is to distinguish whether a vehicle corresponds to the same car model by

identifying the license plate [1–3]. Vehicle re-identification can be executed successfully if license plate

characters can be accurately registered. However, the analysis of surveillance videos is still associated

with the issues owing to license plate recognition loss, various viewpoints, and blurred image resolution.

Illumination may vary owing to changes in the angle of view and a nature of the camera. Surveillance

videos from different cameras also make the task of vehicle re-identification challenging.

Vehicle re-identification is deemed more difficult than person re-identification [4–7] as the vehicles

belonging to the same model can only be distinguished by subtle differences. Several previous ap-

proaches [8,9] have focused on the appearance attributes of vehicles, such as the color, shape, and model.
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However, different vehicle identifications (IDs) may correspond to the same model in particular cases, and

only subtle distinctions may exist among different vehicles registered by the same camera. The subtle

inter-instance differences between different vehicle images and large intra-instance differences between

the same vehicle images hinder the improvement of vehicle re-identification performance. Distinguishing

such vehicles on the basis of simple appearance attributes is difficult, resulting in larger intra-instance

differences compared with the inter-instance ones.

The spatio-temporal relationship has been frequently considered in object association [10]. Several

approaches [11,12] combine the space-time and location data to estimate the relationship between every

pair of vehicle images to improve the re-identification results. However, the lack of relevant datasets

representing the spatio-temporal information is a key problem, which also incurs additional computational

costs. Fine-grained classification [13] is also closely related to the problem of re-identification. However,

it should be noted that minor visual differences can affect the accuracy of a ranking list.

In this study, we aim to distinguish different vehicle IDs having the similar appearance accurately

and to obtain the improved quality ranks. Therefore, hybrid architecture is proposed to address the

considered vehicle re-identification issues. The contributions of this paper are summarized as follows.

(1) A discriminative fine-grained network (DFN) composed of the two main parts is proposed. The

Siamese network is introduced to enhance the expression of features in the first part. Then, the fine-

grained network is utilized to obtain a strong discriminative feature in the second part. The proposed

network can accurately distinguish subtle differences in different vehicle IDs with similar appearances.

(2) Two-stage re-ranking is proposed to obtain a reliable ranking list by applying the fusion metric

strategy, which combines the two stages of formulating the ranking lists considering the Jaccard distance.

(3) A comprehensive experiment is conducted on the two representative vehicle datasets. The results

confirm that the proposed approach has superior performance compared with the several state-of-the-art

methods.

The rest of this paper is organized as follows. Section 2 provides an overview on the related research

work dedicated to re-identification. Section 3 describes the overall proposed architecture. Sections 4 and

5 introduce the details about the proposed DFN and two-stage re-ranking, respectively. The experimental

results are presented in Section 6. The conclusion of the paper is presented in Section 7.

2 Related work

Re-identification is a widely-discussed application in the field of computer vision, and most of existing

methods focus on person re-identification that is aimed to search for the same people corresponding to

a probe person in the target gallery set. Several hand-crafted features [14–17], including texture, color,

and local maximal occurrence (LOMO) [18], have been applied to person re-identification. Moreover,

at present, deep neural networks are widely applied to several computer vision tasks [19–24]. Zhao et

al. [25] have proposed a cross-view training strategy to learn the filters with invariant and discrimi-

native perspectives to distinguish pedestrians. Zheng et al. [26] have implemented a Siamese network

using identification and verification losses to learn more discriminative pedestrian features. Cheng et

al. [27] have designed a multi-channel convolution neural network (CNN) that employs the improved

triplet loss function to achieve the final result. A novel joint spatio-temporal attention pooling network

(ASTPN) [28] has been utilized to solve the problem of pedestrian video recognition. It can be used to

improve re-identification performance. Zhao et al. [29] have proposed the multilevel dropout method and

the improved Monte Carlo strategy to solve the overfitting problem and to reduce the impact of uncertain

pedestrian representations, respectively. Many researches have considered person re-identification as a

deep metric learning problem [30, 31].

The rapid advance of person re-identification applied to surveillance video has facilitated the research

on vehicle re-identification. Many previous methods have identified vehicles by obtaining attributes

manually [32]. Tang et al. [33] have combined local binary patterns and BOW-CN features to enable the

robust discriminating ability. Zapletal et al. [34] have extracted the 3D bounding box, color histogram,
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and gradient histogram of images, and then have applied linear regression to distinguish whether a

vehicle corresponds to the same car model. Recent researches on vehicle re-identification have mainly

focused on deep learning approaches, and several state-of-the-art methods have utilized CNN features to

achieve excellent results. Yang et al. [35] have employed CNN to extract the overall and local features

of vehicles aiming to perform fine-grained classification and attribute prediction. Zhang et al. [36] have

designed the classification-oriented loss based on the original triplet loss enhanced with the distance

learning and have proposed a new sampling method to solve the misleading problem. Zhou et al. [37]

have proposed an adversarial bi-directional long short-term memory network (ABLN) that is capable of

synthesizing the unknown view information about vehicles based on a partially visible view. Zhou et

al. [38] have proposed a viewpoint-aware attentive multi-view inference (VAMI) model, which focuses

the attention of the network model on the intersection of the input viewpoint and the target viewpoint

of an image. Then, it converts single-view features into multi-view ones using the developed adversarial

training architecture. Zhou et al. [39] have proposed a novel cross-view generative adversarial network

(XVGAN), which combines the features of the original input and generated images to compute the

distances aiming to improve the vehicle identification performance. Zhu et al. [40] designed the joint

horizontal and vertical deep learning feature to describe the horizontal and vertical directions of vehicles

in a more comprehensive manner so as to enhance the robustness of vehicle viewpoint variations. Shen

et al. [11] have developed two structurally similar sub-networks of the Siamese neural networks (Siamese-

Visual) to learn the similarity of an image pair. Liu et al. [32] have proposed a new loss function called

coupled clusters loss (CCL) corresponding to the vehicle search problem. This function has been improved

on the basis of the triplet loss and has replaced the original triplet input with positive and negative input

sets. A mixed network structure base on CCL, namely, MixedDiff + CCL has been also proposed to

learn a similarity measure accurately [32]. This structure can effectively extract the vehicle information

and distinguish the differences in similar vehicles. The FACT model [9] has adopted the fusion strategy

of color and texture, as well as the high-order semantic features, such as BOW-CN and BOW-SIFT, and

deep semantic features obtained from GoogLeNet.

Most of existing metric learning and ranking algorithms have been successfully applied to the re-

identification problem. The metric learning methods are mainly based on the Mahalanobis metric learning

(KISSME) [41] and cross-view quadratic discriminant analysis (XQDA) [18]. Li et al. [42] have employed

labels to measure learning, and then have combined semantic information to improve the image retrieval

performance and accuracy. Zhong et al. [43] have proposed the k-reciprocal encoding method. Then, the

Jaccard distance has been also introduced and fused with the initial distance to improve the results of

person re-identification. Ding et al. [44] have proposed an improved triplet loss function to narrow the

distance between positive sample pairs and enlarge the distance between the negative sample pairs for

achieving accurate image retrieval. Li et al. [45] constructed the local adaptive decision function by using

the combined model of locally adapted thresholds and metric distance. This method allows achieving

outstanding results.

In turn, fine-grained identification of a vehicle is also relevant to vehicle re-identification. Fine-grained

networks [46–48] can be used to detect and extract more detailed information, such as window labels and

wheel bones. These specific regions of information are vital to identify the subtle differences between

images in vehicle re-identification. Yu et al. [49] have proposed a deep learning model based on the vehicle

detection model and vehicle fine-grained detection, and have concluded that a classification model can

identify more details corresponding to vehicles. Hu et al. [50] have designed a multi-task that leverages

multiple characteristics jointly to CNNs. It can be used to identify vehicle types on a fine-grained level.

Zhang et al. [51] have proposed a fine-grained vehicle recognition method, which combines pre-training

and hierarchical fine-tuning to provide better robustness with respect to visual changes.

3 Overview of the proposed method

The challenge to the existing re-identification methods lies in the subtle differences between vehicles of
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Figure 1 (Color online) The challenges associated with vehicle re-identification.

the same model and the lack of positive samples with high ranks. Figures 1(a)–(d) represent several

examples of subtle differences between different vehicle IDs having the similar appearance, which are

obtained from the two benchmark datasets, namely, VeRi-776 [52] and VehicleID [32]. The appearance

of the vehicles presented in Figures 1(a) and (c) is rather similar and therefore, they can be distinguished

by particular marks, such as stickers on the car hood and windshield. Vehicles corresponding to the

same model can be distinguished only by subtle differences in their parts. For example, it is possible to

determine whether there are receiving antenna devices on both vehicle roofs presented in Figure 1(b), or

whether the styles of a wheel hub shown in Figure 1(d) are the same. The re-ranking method is also vital

in re-identification. Figure 1(e) represents the top ten ranked images of the probe. The red box denotes

an incorrect sample, and the green box corresponds to a positive sample. It should be noted that several

false samples have received higher ranks, while particular positive samples have obtained lower ranks.

The proposed architecture mainly consists of the two components: DFN and the two-stage re-ranking.

The proposed DFN is implemented as the first component. The pipeline of DFN is illustrated in the left

part of Figure 2. The overall proposed network architecture adopts the multi-loss as supervision signals.

It is composed of the two parts: the Siamese network and the fine-grained one. First, the Siamese network

simultaneously learns the deep features of images and conducts similarity mapping from image pairs to

the Euclidean space by identification and verification losses. Then, the fine-grained network is used to

identify subtle differences between the vehicles by applying fine-grained classification loss. The two-stage

re-ranking method is proposed, as shown in the right part of Figure 2. It implies fusing the two parts of

the deep feature vectors to compute fusion features and is divided into two stages. In stage 1, we obtain

k-reciprocal features from the fusion features. In stage 2, sample mean features are formed by extracting

the mean center of the k-reciprocal nearest neighbor. The final distance is weighted by the original and

Jaccard distances.

4 Discriminative fine-grained network

The Siamese network [26] is introduced according to the scheme presented in the left part of Figure 2.

Similarly to the approach proposed by Zheng et al., this network mainly consists of the two sub-networks

of the same structure, which simultaneously share the weights during the training period. The shared

CNNs combine the identification and verification losses at once. Therefore, two deep networks can be

jointly regulated by verification supervision while being separately managed by identification supervision.
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Figure 2 (Color online) The overview of the proposed architecture for vehicle re-identification. Firstly, the dataset is

input into the network. Then the discriminative fine-grained network part including the Siamese network in the upper part

and the fine-grained network in the lower part is applied. Finally, the two-stage re-ranking part is executed to merge the

feature vectors of the two sub-networks to obtain the final distance by the two-stage calculation.

The identification model considers re-identification as a multi-classification task. This model obtains

deep network features by supervised learning on the basis of the strong label information. By using cross

entropy loss, the identification function is defined similarly to the traditional softmax loss function and

can be written as follows:

Lossi =
1

K

[
K∑

k=1

(
ỹk · log

(
ef ·ωt

∑c

m=1 e
f ·ωm

))]
, (1)

where K represents the number of samples in the training set, C indicates the total number of classes, ỹk
is the correct probability of the target vehicle, ω = [ω1, ω2, . . . , ωC ] is the predictive vehicle probability

matrix, ωt represents the matrix of the correct vehicle labels, and f denotes the corresponding extracted

features.

In turn, the verification model addresses the problem as a two-class similarity regression task. The

image pairs input in the network are analyzed to predict whether they correspond to the same class. The

Siamese deep network can be used to learn similarity metrics in the Euclidean space by identification

supervision. We note the presence of the risk that the contrast loss may lead to overfitting at the data size.

Therefore, the cross-entropy loss is still applied to train the validation model, which can be formulated

as follows:

Lossv =
1

G

[
G∑

g=1

(
ỹ1,2 · log

(
e(f1−f2)

2·ωs

∑2
n=1 e

(f1−f2)
2·ωsn

))]
, (2)

where G is the number of image pairs, and ỹ1,2 indicates that the pair of images corresponds to the same

target. When the detected pair of images matches the same target, ỹ1,2 = 1; otherwise, ỹ1,2 = 0. In

the present study, a square layer is added to fuse the features extracted from the Siamese network. The

two input eigenvectors are calculated in accordance with (f1 − f2)
2
, and then, the fused feature output

is obtained. ωs represents the matrix of the correctly detected vehicle labels.

Although the identification and verification losses can facilitate extracting features with the consid-

erable discriminative ability, they still have several deficiencies. First, the network does not learn fine

features effectively owing to the subtle differences in many positive input sample pairs. In the problem

of vehicle re-identification, the vehicles with similar appearance may belong to different IDs. However,

the vehicles belonging to the same class ID can be mismatched owing to various factors, such as the

angle and illumination conditions. This phenomenon is illustrated in Figure 3. Owing to the angle

and similar appearance factors, people often misjudge the left and middle vehicles represented in this
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Figure 3 (Color online) The influence of the subtle feature information on vehicle re-identification.

figure as the same target. In fact, the right and middle vehicles correspond to the same vehicle. To

mitigate this problem, a deep network can be applied to extract precise and discriminative features. At

present, fine-grained networks are reported to achieve the excellent performance in image classification.

However, the extracted features are high-dimensional and may reach millions of levels, which makes the

computational load too large and difficult to process. Gao et al. [13] have designed the compact bilinear

pooling method with the same distinguishing power as the bilinear representation, which benefits from

the compact bilinear representation of thousands of dimensions.

Unlike the study of Zheng et al. [26], we apply the compact bilinear pooling method to obtain fine-

grained features based on the previous vehicle re-identification effort. The sub-network considered in

this section is the VGG-16 model. According to the study described in [13], this model replaces the

compact bilinear layer with the original pooling layer and adds the element-wise signed square-root layer

(y ← sign(x)
√
|x|) and L2 regularization ones to perform a normalization step. As a result, a global

image descriptor is extracted by using the compact bilinear layer according to

C(X) =
∑

s∈S

xsx
T
s , (3)

where S denotes a series of spatial locations, and X =
(
x1, . . . , x|S|

)
represents a set of local descriptors.

XS are the local descriptors output from HOG, SIFT or by a forward pass based on a CNN.

The main challenge of using the fine-grained classification network is to efficiently detect and extract the

important local area information from an image. These specific regions of information are vital to identify

subtle differences between vehicle images. From the above, we conclude that the compact bilinear layer

can be successfully used to combine the features corresponding to the different local positions of an image

to obtain a discriminative global representation vector representing fine-grained features. Moreover, a

normalization step is performed in which the compact bilinear vector passes through the element-wise

signed square-root and the L2 regularization layers. More detailed description about these concepts can

be found in [13].

This specifically added network structure is represented in the lower left part of Figure 2. To extract

the fine-grained features of vehicles, we utilize this element of the sub-network, which is supervised by

fine-grained losses during training. We also employ the softmax loss function as a fine-grained one, which

can be written as follows:

Lossf =
1

K

[
K∑

k=1

(
ỹk · log

(
ef ·ωt

∑C

m=1 e
f ·ωm

))]
+ λ

C∑

m=1

ωm, (4)

where K represents the number of samples in the training set, C indicates the total number of classes, ỹk
is the correct probability of the target vehicle, ω = [ω1, ω2, . . . , ωC ] is the predictive vehicle probability

matrix, ωt represents the matrix of the correct vehicle labels, f represents the corresponding extracted

fine-grained features, and λ is an L2 regularization parameter.

We extract the features in the two sub-networks of DFN, and then merge them. The fusion method is

based on simple dimension superposition and can be calculated as follows:

fall = [f1, f2, . . . , fN ] , (5)
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where N represents the number of sub-networks, and fn is the N -th extracted feature vector.

The calculation method of formula (5) is simple; however, it can effectively retain the feature repre-

sentation of strong discriminative power. The right part of Figure 2 represents the fusion feature vector

of 12288 dimensions, including the 4096- and 8192-dimensional features of the outputs obtained from the

Siamese network and fine-grained network parts.

5 Two-stage re-ranking

Zhong et al. [43] have proposed the k-reciprocal encoding method to improve the results of person re-

identification. On its basis, in the present paper, we propose a two-stage re-ranking method for vehicle

re-identification to determine the characteristics and differences among vehicles.

In the first stage, the k-reciprocal encoding method is introduced to obtain a k-reciprocal feature. We

assume that the gallery set of N images is defined as G = {gi|i = 1, 2, . . . , N}. H(p, k) = {g1, g2, . . . , gk}

is the top-k similar sample set of the probe vehicle p and can be defined according to (6). N (gi, k)

represents the top-k similar sample set of gi. Assuming the similarity of the two sets, their intersection

is considered as the most similar candidate target as follows:

H(p, k) = {gi| (gi ∈ N(p, k)) ∩ (p ∈ N (gi, k))} . (6)

In [43], the 1/2 k-reciprocal nearest neighbors of each candidate are added into a more robust set. It

is proposed to concentrate the positive samples in the forefront of the ranking list:

H∗(p, k) = H(p, k) ∪H

(
q,

1

2
k

)
. (7)

Confidence values corresponding to the highly ranked samples are often influenced by neighboring

samples. In the second stage, we define p of the confidence item p to enhance the confidence of the

positive samples to retrieve a rank-list after calculating H(p, k) using the fusion feature. The selection

strategy is to extract the mean of the top-k list samples of the probe vehicle p, which can be obtained

according to (8) as follows:

p = avg(H(p, k)). (8)

The robust set H∗(p, k) is calculated from the confidence sample p corresponding to the probe vehicle

p. Figure 4 represents the process of deriving H∗(p, k). First, we set image Q as the probe vehicle, and

image C is the sample mean candidate for H(Q, 20) in the first row of Figure 4. Then, we obtain H(C, 20)

in the second row. Finally, we incrementally add the 1/2 k-reciprocal nearest neighbors of the candidate

in H(C, 20) into H∗(C, 20) in the third and fourth rows of Figure 4. H∗(C, 20) has more positive samples

than H(Q, 20). Accordingly, the k-reciprocal nearest neighbors of the mean sample candidate p can map

appropriately to the positive samples corresponding to the ranking-list of the probe vehicle p that are

difficult to distinguish.

The Jaccard distance is applied to measure the difference between two sets. As described in [43], if

two images are similar, their k-reciprocal nearest neighbor sets will have a larger number of duplicate

samples. The Jaccard distance between p and gi is calculated as follows:

dJ (p, gi) = 1−
|H∗(p, k) ∩H∗ (gj, k)|

|H∗(p, k) ∪H∗ (gj, k)|
. (9)

The final distance d∗ is weighted by the original distance (namely, Mahalanobis and Euclidean dis-

tances) and the Jaccard one, and is defined as

d∗ =
∑

x∈(M,E)

dx (p, gi) +
∑

yǫ(p,p)

dJ (y, gi) , (10)

where dM (p, gi) denotes the Euclidean distance between p and gi, dE (p, gi) is the Mahalanobis distance

between p and gi, dJ (y, gi) is the Jaccard distance between y and gi, and y contains p and p.
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Figure 4 (Color online) Example of the selection of candidate p and the definition process of robust set H∗(C, 20) in the

second step of re-ranking.

6 Experiments

6.1 Datasets and comparison methods

To evaluate the efficiency of the proposed DFN, we conduct the experiments on VeRi-776 and VehicleID,

the vehicle re-identification datasets, extracted from large-scale surveillance videos.

VeRi-776 is an urban surveillance vehicle dataset with the multi-view and spatio-temporal location

information. It contains about 50000 images of 776 vehicles from 20 cameras. Several labels of other

attributes, such as car model and color, are also included in the dataset. The whole dataset is split into

three subsets as follows: a training set consisting of 37778 images of 576 vehicles, a test set of 11579

images corresponding to 200 vehicles, and a subset of 1678 images from the test set is extracted as the

query set.

VehicleID is a large-scale vehicle re-identification dataset that contains front and rear views of cars.

It contains 221763 images of 26267 vehicles. Furthermore, 10319 vehicles are labeled using the model

information. The whole dataset comprises the training and test sets in which the training part contains

110178 images of 13134 vehicles, and the test part contains 111585 images of 13133 vehicles, respectively.

Considering that the test set is rather large, three subsets (small, medium and large) are extracted from

the VehicleID dataset test data. We randomly select one image of each vehicle from the probe set, and

consider that all other images belong to the gallery set.

The proposed framework is compared with the state-of-the-art vehicle re-identification methods, such as

LOMO [18], BOW-CN [16], FACT [9], VGG+CCL [32], MixedDiff + CCL [32], VAMI [38], XVGAN [39],

DLCNN [26], and Siamese-Visual [11].

6.2 Evaluation metric

Liu et al. [52] have proposed a standard evaluation protocol for the VeRi-776 dataset. On this basis,

we employ the cumulative matching characteristic (CMC) curve for evaluation. In turn, mean average

precision (mAP) is a common evaluation index used in the multi-label image classification task and is an

important criterion for measuring the quality of a similar task model. Therefore, mAP is also adopted

to evaluate the vehicle re-identification performance. For the VehicleID dataset, the probe image set
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Table 1 Comparison of the state-of-the-art methods on the VeRi-776 dataset

Method rank1 (%) mAP (%)

LOMO [18] 24.59 9.68

FACT [9] 51.89 18.69

Siamese-Visual [11] 41.12 29.48

BOW-CN [16] 33.82 9.63

VAMI [38] 77.03 50.13

XVGAN [39] 60.20 24.65

DLCNN [26] 82.42 49.88

Ours 88.14 61.85

Table 2 Comparison of the state-of-the-art methods on the VehicleID dataset

Method
Small Medium Large

rank1 (%) rank5 (%) rank1 (%) rank5 (%) rank1 (%) rank5 (%)

LOMO [18] 19.92 32.83 19.52 29.91 15.72 25.56

FACT [9] 49.93 68.37 45.01 64.75 40.12 60.59

VGG+CCL [32] 43.92 65.01 38.84 61.91 34.58 55.72

MixedDiff+CCL [32] 48.52 74.55 43.94 67.96 40.85 62.79

VAMI [38] 63.08 83.12 52.69 75.08 47.28 70.06

XVGAN [39] 52.79 80.69 49.47 71.42 44.92 66.71

DLCNN [26] 73.01 82.70 66.50 77.06 61.00 73.17

Ours 77.02 85.04 71.81 80.81 66.29 78.42

comprises randomly selected images corresponding to the one identity in the gallery set. Following the

method described in [52], we apply the CMC curve to evaluate the re-identification performance.

6.3 Experimental results

The experimental results are represented in Tables 1 and 2, and Figure 5. Bold data represent the best

experimental results. In the results corresponding to VeRi-776, “Ours” indicates the overall pipeline of

DFN. It can be seen that the proposed method achieves the best results among all considered vehicle

re-identification methods [9, 11, 16, 18, 26, 32, 38, 39]. LOMO and BOW-CN show poor performance in

terms of the hand-crafted feature. FACT and Siamese-Visual, which adopt the deep network to learn

semantic features, achieve acceptable performance. Both XVGAN and VAMI improve the result of vehi-

cle re-identification results by generating multi-view representation. They focus on exploiting multi-view

information to obtain a global feature, rather than extracting the fine-grained features. However, they

cannot distinguish the subtle differences of vehicles accurately because the appearance of the same model

of the vehicles captured in same viewpoint is still similar. DLCNN outperforms the above mentioned

methods owing to the combination of verification and identification losses in the Siamese network. Com-

pared with DLCNN, the proposed method achieves a gain of 11.97% in mAP and an increase of 5.72%

in the rank-1 accuracy. Similarly to the results on VeRi-776, VGG + CCL and MixedDiff + CCL also

demonstrate the effectiveness of utilizing CNN with the improved loss function to extract semantic fea-

tures in VehicleID. However, they cannot distinguish the subtle differences of vehicles accurately. The

proposed method achieves a 4.01% improvement in terms of the rank-1 accuracy and a 2.34% improve-

ment in the rank-5 accuracy compared with the second best method (DLCNN) in the case of the small

scale test dataset. In the case of the medium scale and large-scale test datasets, the proposed method

also achieves 5.31% and 5.29% higher accuracy in terms of the rank-1 rate, and 3.75% and 5.25% higher

accuracy in terms of the rank-5 rate, respectively. Evaluating on both VeRi-776 and VehicleID, we can

observe that significant performance improvements can be achieved by extracting fine-grained features.

This demonstrates that the proposed method can better distinguish similar vehicles than other considered

state-of-the-art approaches.

Applying re-ranking methods can also improve the results of vehicle re-identification. Therefore, we
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Figure 5 (Color online) CMC curves of different methods. (a) VeRi-776; (b) the small test set of VehicleID; (c) the

medium test set of VehicleID; (d) the large test set of VehicleID.

Table 3 Comparison of the results obtained using the methods with and without re-ranking on VeRi-776

Method rank1 (%) mAP (%)

Base 88.14 61.85

Base+Zhong [43] 89.03 65.19

Base+TR 90.11 66.10

Table 4 Comparison of the results obtained using the methods with and without re-ranking on VehicleID

Method
Small Medium Large

rank1 (%) rank5 (%) rank1 (%) rank5 (%) rank1 (%) rank5 (%)

Base 77.02 85.04 71.81 80.81 66.29 78.42

Base+Zhong [43] 77.89 85.28 72.38 81.06 67.92 79.17

Base+TR 79.00 86.01 74.06 82.19 69.50 79.79

utilize two re-ranking methods to evaluate the aforementioned datasets. Tables 3 and 4 represent the

results obtained using the methods with and without re-ranking on the VeRi-776 and VehicleID datasets.

“Base” denotes the proposed network (DFN) and “Base + TR” corresponds to the overall network using

the two-stage re-ranking method. The method described in [43] allows gaining additional improvements

based on the DFN. However, the TR method yields better performance compared with the method

presented in [43]. Therefore, the proposed method allows improving the re-ranking results more efficiently

compared with the other two methods.
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7 Conclusion

In this paper, the DFN for vehicle re-identification using the two-stage re-ranking framework is proposed.

It can be used to extract more subtle features and improve the re-ranking method. First, the Siamese and

fine-grained networks are combined to extract fusion features. Owing to the combined effect of verifica-

tion, identification, and fine-grained losses, the extracted features have strong discriminative capability.

The two-stage re-ranking is applied to obtain the sample mean feature, which is then added to the final

distance metric. As a result, the number of the positive samples in the top-k list increases. The con-

ducted experiments demonstrate that the proposed method outperforms other considered state-of-the-art

approaches on the VehicleID and VeRi-776 datasets.
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