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Abstract Deep neural networks have shown great success in stereo matching in recent years. On the KITTI

datasets, most top performing methods are based on neural networks. However, on the Middlebury datasets,

these methods usually do not perform well. The KITTI datasets are collected in outdoor scenes while the

Middlebury datasets are collected in indoor scenes. It is commonly believed that the community still lacks

a large labelled dataset for stereo matching in indoor scenes. In this paper, we introduce a new stereo

dataset called InStereo2K. It contains 2050 pairs of stereo images with highly accurate groundtruth disparity

maps, including 2000 pairs for training and 50 pairs for test. Experimental results show that our dataset

can significantly improve the performance of several latest networks (including StereoNet and PSMNet) on

the Middlebury 2014 dataset. The large scale, high accuracy and rich diversity of the proposed InStereo2K

dataset provide new opportunities to researchers in the area of stereo matching and beyond. It also takes

end-to-end stereo matching methods a step towards practical applications.
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1 Introduction

Stereo matching is a key step in 3D reconstruction. It has numerous applications in the fields of au-

tonomous driving [1,2], robotics [3], UAVs, augmented reality (AR), and 3D modeling [4,5]. It takes two

rectified images as its input and establishes dense correspondences between pixels of these two images to

compute disparities. In practice, foreground-background occlusion is inevitable and makes the task really

challenging. In addition, feature matching is also ambiguous in scenes with low or repetitive textures [6].

In recent years, deep convolutional neural network (CNN)-based stereo matching methods have shown

great success. These end-to-end disparity computation networks have achieved good performance in

both speed and accuracy [7]. On the KITTI datasets [1, 2], most of the top ranking methods are based

on neural networks. However, on the Middlebury datasets, these end-to-end networks do not perform

well. Note that, the KITTI datasets are acquired in outdoor scenes, while the Middleburry datasets

are collected in indoor scenes. A major reason for the performance drop on the Middleburry datasets

lies in the insufficiency of training datasets for indoor scenes. In this paper, we introduce a new large
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dataset, namely, InStereo2K. The InStereo2K dataset contains 2050 pairs of stereo images with highly

accurate groundtruth disparity maps, which are obtained using a structured light system. Experimental

results show that our dataset can improve the performance of several state-of-the-art networks (including

StereoNet [8] and PSMNet [9]) significantly on the Middlebury dataset [10].

The main contributions of this study are as follows:

(1) We introduce a new stereo dataset called InStereo2K. It contains 2050 pairs of stereo images with

highly accurate disparity maps (2000 for training and 50 for test). To the best of our knowledge, it is the

largest publicly available stereo dataset for indoor real scenes. It is an order of magnitude larger than

existing stereo datasets, including KITTI [1, 2] and Middlebury [10, 11]. It can be used to train deep

neural networks and to comprehensively test stereo matching methods. The dataset is available at the

web1).

(2) We introduce an approach to improve the generalization performance of stereo matching networks

using our real dataset and the existing synthetic dataset. We also present several practical training

strategies to improve a network’s performance. Using our dataset and training strategies, the ranking of

PSMNet on the test set of the Middlebury 2014 benchmark is improved by 26.

2 Related work

In this section, we briefly review related work on datasets and deep convolutional neural networks for

stereo matching.

2.1 Stereo datasets

The Middlebury stereo dataset [10] has been widely used in the evaluation of stereo matching methods.

The disparity maps in this dataset were calculated using structured-light techniques and they were very

accurate. However, this dataset only contains dozens of image pairs and is insufficient to train a deep

neural network. The KITTI datasets [1, 2] were collected for automotive driving scenarios. The KITTI

stereo 2012 dataset consists of 194 training image pairs and 195 test image pairs with a resolution of 1242

× 375 pixels, where the disparity labels were transformed from Velodyne LiDAR points. The KITTI

stereo 2015 dataset consists of 200 training scenes and 200 test scenes. Compared to KITTI 2012, it

comprises dynamic scenes for which the groundtruth has been established in a semi-automatic process.

The ETH3D dataset [12] consists of 27 training image pairs and 20 test image pairs with a resolution of

about 0.3 MP. The Scene Flow dataset [13] is a synthetic dataset, which contains 35855 pairs of stereo

images. It has significantly boosted the research of CNN-based stereo matching methods. However, there

is a huge gap between the synthetic domain and the real domain. To achieve improved performance,

existing deep stereo matching networks are usually trained on this synthetic dataset and then fine-tuned

on real but small specific datasets (e.g., the KITTI dataset [1, 2]).

2.2 Stereo matching networks

Traditional stereo matching methods commonly consist of four steps, including matching cost calculation,

cost aggregation, disparity calculation, and disparity refinement [14]. MC-CNN [15] is the first method

to calculate the matching cost between two image patches using a deep convolutional neural network.

Meanwhile, its remaining steps still follow a traditional approach, including cross-based cost aggregation,

semi-global matching, left-right consistency check, sub-pixel interpolation, median filtering and bilateral

filtering [16]. This architecture needs multiple forward passes to calculate matching costs at all possible

disparities. Therefore, the computational complexity of this method is high. Following MC-CNN [15],

several methods were proposed to improve the computational efficiency [17] and matching accuracy [18].

Different from the architecture of MC-CNN, DispNet [13] used an end-to-end encoder-decoder architec-

ture for disparity regression. The feature extraction and cost calculation steps were seamlessly integrated

1) https://github.com/yuhuaxu/stereodataset.
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to the encoder part. The disparities were directly regressed in a forward pass. The end-to-end DispNet

can run efficiently, with 0.06 s being consumed on a single Nvidia GTX Titan X GPU. GC-Net [19]

introduced the concept of cost volume in traditional stereo matching into disparity estimation networks.

Specifically, GC-Net used 3D convolutions upon a 4D cost volume to incorporate contextual information

and used a differentiable soft argmin module to regress disparities. In StereoNet [8], disparity was first

estimated from a very low resolution (e.g., 1/8 resolution) cost volume. The disparity was then hierarchi-

cally up-sampled and refined using a pixel-to-pixel refinement network, which leveraged image colors as a

guide. The network can run at 60 fps on a Titan X GPU. iResNet [20] incorporated all four steps of stereo

matching by explicitly introducing a residual network for disparity refinement. iResNet ranked the first

in the stereo matching task of robust vision challenge, which was held in conjuction with CVPR 2018.

PSM-Net [9] used pyramid feature extraction and a stacked hourglass block [21] with twenty-five 3D con-

volutional layers to further improve the accuracy. In GA-Net [22], a semi-global aggregation layer (which

was a differentiable approximation of semi-global matching) and a local guided aggregation layer (which

followed a traditional cost filtering strategy to refine thin structures) were proposed. It outperformed

GC-Net with fewer parameters.

Although notable progresses have been achieved in stereo matching for deep neural network-based

methods, the performance on indoor scenes is still limited. Therefore, a large indoor stereo dataset is

highly required for the development of new methods.

3 Our dataset

In this section, we first present the system for the collection of the InStereo2K dataset. Then, we describe

our new dataset in details.

3.1 The structured light system

Because structured light systems have the advantage of high accuracy in 3D reconstruction [23], we

designed an active-stereo 3D imaging system to obtain accurate groundtruth disparity maps. The system

consists of two color cameras with a resolution of 1280 × 960, and a projector with a resolution of 1024

× 768, as shown in Figure 1. The pixel size of the camera’s CCD sensor is 3.75 µm. The lens of each

camera (i.e., Computar M0814-MP2) has a focal length of 8 mm. Given focal length F , baseline B, and

depth Z, the disparity d is obtained by d = BF
Z

for a stereo vision system. Therefore, the disparity d

is proportional to baseline B. To obtain disparities with relatively uniform distribution, we used two

different baselines, i.e., 5 cm and 10 cm.

In literature, several phase-shifting 3D imaging systems were proposed using the structure with one

projector and one camera. However, we used a structure with two cameras and one projector. With this

structure, we only need to calibrate the parameters of the two cameras, but do not need to calibrate the

parameters of the projector (including geometric parameters and radiometric parameters). Specifically,

in our system, gray-code [11] and phase-shift are combined to reconstruct a scene. The column-coding

information of the gray-code method and the phase information of the phase-shift method are used

to establish pixel correspondence between the left and right views. It does not require any geometric

constraint imposed by the projector, and thus no projector calibration is required. Because camera

calibration is relatively easier than projector calibration, our structure can be calibrated more easily.

These calibrated camera parameters are used to rectify stereo images to obtain a horizontal epipolar

geometry. The principle of the 3D imaging system is based on phase-shifting and stereo matching, which

is similar to [23].

During measurement, the projector first projects k1 cosine phase-shifted fringe patterns onto the surface

of a target and the corresponding images are captured by these two synchronous cameras. The intensity

of the i-th image with a phase shift δi is

Ii(x, y) = I ′(x, y) + I ′′(x, y)cos(φ(x, y) + δi), (1)
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Figure 1 (Color online) An illustration of the structured light system.

where I ′ denotes the average intensity, I ′′ is the intensity modulation, and φ represents the phase. For

each camera, the relative phase map is calculated using these k1 images [24]:

φ(x, y) = tan−1
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These relative phase maps cannot be directly used to recover the depth of the target. Instead, they

will be used for stereo matching. Then, k2 binary gray-code patterns [11] are projected. Corresponding

images captured by these two cameras are used for phase unwrapping, that is, to determine the period

number of the phases [23]. So far, we can obtain two absolute phase maps for the left and right views,

respectively. Using the absolute phase of each pixel, it is easy to establish sub-pixel correspondences

between the left and right views.

For a pixel pL in the left view, its corresponding point in the right view should have a similar relative

phase value. We determine its correspondence pR by finding the pixel with minimum phase difference

from pL along the same line in the right view. To obtain the subpixel location of the corresponding point,

we fit a three-order polynomial using five pixels centered at pR using the linear least square method. The

polynomial is defined as

xR(φ) = a0,R + a1φ+ a2φ
2 + a3φ

3. (6)

Then, the subpixel location of pR is determined as xR(φ(xL)), as illustrated in Figure 2.

To improve the adaptiveness of our system to targets with multiple albedos, we use three different

camera exposure times to scan each scene, which is similar to [10]. In this way, three disparity maps can
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Figure 2 (Color online) Subpixel refinement.

Figure 3 (Color online) Samples in the InStereo2K dataset.

be obtained. To fuse these three disparity maps, we first calculate the average image of these phase-shift

images in each scan. For each pixel, the disparity value that is closest to a give value gf among these

three average images at the selected pixel is considered as the fused result.

For the gray-code patterns, we set k1=8. To achieve a trade-off between measurement accuracy and

efficiency, we set the number of phase-shift patterns k2 to 8. For each scene, we capture 49 images (8 phase-

shifts and 8 gray-codes for 3 times, and 1 ambient light) for each camera. Among them, 48 images are

used to calculate the disparity map. Left-right consistence check (LRC) and speckle filtering are used to

remove outliers from disparity maps. Finally, the left and right disparity maps are saved together with

their two corresponding RGB images under the ambient light.

Note that, Scharstein et al. [10] illuminated the scene from 4–18 projector positions to minimize the

shadowed areas for view reconstruction. For each projector position, 120 images were captured under

three different exposures. The system has to be re-calibrated when the projector position is changed.

Although the disparity map obtained by [10] is dense, the scanning process is very time-consuming.

Therefore, the method in [10] is unsuitable for the collection of large-scale stereo matching datasets. In

contrast, our system can automatically scan a view in just one minute.

3.2 The InStereo2K dataset

Our dataset consists of 2050 pairs of RGB images with their highly accurate disparity maps. Within this

dataset, 2000 pairs are used as the training set and 50 pairs are used as the test set. This dataset covers

different indoor scenes including offices, classrooms, bedrooms, living rooms and dormitories. Figure 3

shows some samples of our dataset. Table 1 shows the comparison between our dataset and several

existing datasets [1, 2, 10–13, 25–27]. Compared to KITTI 2012 and KITTI 2015, our dataset is one

order of magnitude larger in the number of labelled images. In terms of disparity map quality, our

disparity maps are much denser. The resolution of images in the Middlebury 2014 dataset is higher

than that in our dataset. However, it only contains 23 pairs of training images. More importantly,
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Table 1 A comparison between our InStereo2K dataset and several existing stereo datasets

Dataset Synthetic/Natural #Frames Stereo Depth Resolution

Middlebury 2003 [11] Natural 2
√ √

1800 × 1500

Middlebury 2005 [25] Natural 9
√ √

∼1.5 MP

Middlebury 2006 [25] Natural 21
√ √

∼1.5 MP

Middlebury 2014 [10] Natural 23
√ √

∼6 MP

KITTI 2012 [1] Natural 194
√ √

1242 × 375

KITTI 2015 [2] Natural 200
√ √

1242 × 375

ETH3D [12] Natural 27
√ √

∼0.3 MP

InStereo2K Natural 2000
√ √

1080 × 860

Scene Flow [13] Synthetic 35855
√ √

960 × 540

Sintel [26] Synthetic 1064
√ √

1024 × 436

SYNTHIA [27] Synthetic ∼200000
√ √

960 × 720

the images in Middlebury 2014 are acquired with high-end SLR cameras, while ours are collected with

ordinary industrial cameras (which have higher noise levels). Our cameras are closer to those used in

most practical applications. Although the resolution of our original RGB images is 1280 × 960, the RGB

images and disparity maps are cropped to 1080 × 860 because stereo rectification introduces several

invalid pixels. To improve the distribution of disparity values, we reduce the size of these RGB images

by half and add them to the training set of our experiments. Note that, these half-resolution images are

only used in our experiments but not included in the InStereo2K dataset.

4 Experiments and discussion

In this section, we show the role of our dataset in the training of deep stereo matching networks. To

further improve stereo matching performance, we also test several network fine-tuning strategies.

4.1 Neural networks for test

We use two latest stereo matching networks in our experiments, including PSMNet [9] and StereoNet [8].

PSMNet. PSMNet [9] is one of the state-of-the-art methods in KITTI Stereo Evaluation 2015, which

exploits global context information at the whole-image level. It consists of a spatial pyramid pooling

(SPP) module [28] for the incorporation of global contexts and a stacked hourglass 3D CNN module for

cost volume regularization. Specifically, three 2D convolutions are firstly cascaded and four residual blocks

are followed to extract features. Then, the SPP module is applied to gather context information. The left

and right feature maps are concatenated to build a cost volume, which is fed into a stacked hourglass 3D

CNN for regularization. The stacked hourglass architecture has three mean hourglass networks, where

each network produces a disparity map. Consequently, the stacked hourglass 3D CNN produces three

disparity maps and losses. The final loss is the weighted average of these three losses.

StereoNet. StereoNet [8] extracts features from stereo images using a Siamese network. It builds a

cost volume at a low resolution (i.e., 1/8 of the original resolution). To aggregate contexts across both

the spatial domain and the disparity domain, the cost volume is filtered with four 3D convolutions. The

final cost volume is used to compute a coarse disparity map with the soft argmin function. Finally,

the coarse disparity maps are hierarchically refined to recover small details and thin structures. The

hierarchical network uses the left color image as a guide, and applies six residual blocks (which use atrous

convolutions) to refine the upsampled disparity map. Owing to its simplified architecture, StereoNet can

run in real-time.

4.2 Training approach

We first pre-train these two networks using the synthetic Scene Flow dataset [13] to obtain initial models.

Next, we fine-tune these initial models with our InStereo2K dataset to achieve better generalization
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performance. Then, we use the training set of Middlebury 2014 as a test set to evaluate the generalization

performance of different models. Note that, the Middlebury 2014 dataset is not used in any of our training

phases. Therefore, the scenes in Middlebury 2014 are unseen for these networks.

4.3 Fine-tuning strategies

Here, we discuss several strategies for the fine-tuning of these networks. For each network, we have tested

6 different cases for network fine-tuning.

(a) Without fine-tuning (test with the pre-trained model).

(b) Fine-tuning using KITTI 2015 only.

(c) Fine-tuning using both Scene Flow and KITTI 2015.

(d) Fine-tuning using our InStereo2K dataset only.

(e) Fine-tuning using both Scene Flow and our InStereo2K dataset.

(f) Fine-tuning using both Scene Flow and our InStereo2K dataset (with augmentation in color).

Mayer et al. [29] showed that data augmentation (including augmentations in color and geometry) was

very important for a synthetic dataset. In this paper, we also test the role of data augmentations in the

real scene dataset (i.e., case (f)).

4.4 Implementation details

All experiments are implemented using TensorFlow on a Tesla K80 GPU.

For PSMNet, the initial model is trained using Adam [30] with β1 = 0.9 and β2 = 0.999. The input

images are randomly cropped to the size of 512 × 256. The batch size is set to 1. The learning rate is set

to 0.001, and the training step is stopped at the 200k-th iteration. During the fine-tuning of the initial

model, for cases (b) and (d), the learning rate is initially set to 0.001, and then reduced to 0.0001 at the

40k-th iteration. The fine-tuning step is stopped at the 60k-th iteration. For cases (c), (e) and (f), the

learning rate is initially set to 0.001, and then reduced to 0.0001 at the 60k-th iteration. The fine-tuning

step is stopped at the 90k-th iteration.

For StereoNet, during the training of the initial model on Scene Flow, we use RMSProp2) to optimize

the model with a decay learning rate. The input images are randomly cropped to the size of 512 × 400.

The batch size is set to 1. The learning rate is initially set to 0.001, and then reduced by a half at the

38k-th, 75k-th and 110k-th iterations. The training step is stopped at the 150k-th iteration. During the

fine-tuning of the initial model, we use different parameters for different cases. For cases (b) and (d), the

initial learning rate is set to 0.0005 and then reduced by a half at the 15k-th and 30k-th iterations. The

fine-tuning step is stopped at the 50k-th iteration. For cases (c), (e) and (f), the initial learning rate is set

to 0.0005 and then reduced by a half at the 15k-th, 30-th and 60k-th iterations. The fine-tuning step is

stopped at the 90k-th iteration. In the following part, we use ‘network name’-‘training case’ to represent

the models of different network structures trained under different conditions. For example, PSMNet-A is

used to represent the model of PSMNet trained under case (a).

4.5 Experimental results and analyses

In this subsection, bad 2.0 errors (percentage of pixels whose errors are larger than 2.0), average absolute

errors in pixels and bad 4.0 errors are used as evaluation metrics to test the performance of these two

networks under different cases. The quantitative results are listed in Tables 2–4.

It can be observed that, when these models are fine-tuned with the KITTI 2015 dataset (i.e., case (b)),

the bad 2.0 error, bad 4.0 error, and the average absolute error of PSMNet can be reduced significantly

as compared to the pre-trained model without fine-tuning (i.e., case (a)). However, the bad 2.0 error of

StereoNet is not improved. When the models are fine-tuned with both the KITTI 2015 and Scene Flow

datasets (i.e., case (c)), the performance of both models can further be improved. When these models are

fine-tuned using our dataset only (i.e., case (d)), their performance is improved and outperforms case (c).

2) Hinton G, Srivastava N, Swersky K. Neural networks for machine learning. Lecture 6a. Overview of mini-batch

gradient descent. https://www.cs.toronto.edu/tijmen/csc321/slides/lecture slides lec6.pdf.
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Table 2 Evaluation on the Middlebury 2014 dataset (bad 2.0 error)

Model Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

StereoNet [8] 60.2 65.1 51.2 48.8 40.8 45.4

PSMNet [9] 52.2 30.3 28.8 24.8 23.0 23.0

Table 3 Evaluation on the Middlebury 2014 dataset (average absolute error in pixels)

Model Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

StereoNet [8] 22.5 20.4 16.5 11.6 12.7 14.4

PSMNet [9] 17.5 6.94 6.6 10.1 3.94 4.64

Table 4 Evaluation on the Middlebury 2014 dataset (bad 4.0 error)

Model Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

StereoNet [8] 42.0 49.6 34.6 32.3 25.1 30.3

PSMNet [9] 37.0 18.3 17.7 15.1 13.1 12.6

Figure 4 (Color online) Disparity maps achieved by StereoNet. The 1st row shows the color images in the training set

of Middlebury 2014, the 2nd row shows the results of StereoNet-A, the 3rd row shows the results of StereoNet-C, and the

last row shows the results of StereoNet-E.

Furthermore, when these models are fine-tuned using both our dataset and Scene Flow (i.e., case (e)), the

error is further reduced. In addition, it can be observed that color enhancement cannot further improve

the accuracy for both networks significantly (please see the results of case (f)). From Tables 2–4, we can

find that the fine-tuning strategy in case (e) achieves the best performance.

The disparity maps obtained by these networks are shown in Figures 4 and 5. The results of these

models trained only using the synthetic dataset have many artifacts (case (a); see the 2nd row in Figures 4

and 5). After fine-tuning with both the real scene dataset and the synthetic dataset, the results become

more accurate (case (c); see the 3rd row in Figures 4 and 5). In addition, the models trained with both

Scene Flow and our InStereo2K dataset (i.e., case (e)) achieve better accuracy than case (c). There are

two reasons for this observation. First, our dataset has more training images than KITTI. Second, the

images in our dataset are collected in indoor scenes, and the test dataset (i.e., Middlebury 2014 dataset)

is also collected in indoor environment.

Finally, we upload the results of PSMNet-E on the test set of Middlebury 2014 for online evaluation,

where the groundtruth is unknown. By August 18, 2019, the PSMNet’s ranking (PSMNet 2000) is raised



Bao W, et al. Sci China Inf Sci November 2020 Vol. 63 212101:9

Figure 5 (Color online) Disparity maps achieved by PSMNet. The 1st row shows the color images in the training set of

Middlebury 2014, the 2nd row shows the results of PSMNet-A, the 3rd row shows the results of PSMNet-C, and the last

row shows the results of PSMNet-E.

Figure 6 (Color online) Disparity maps achieved by PSMNet-E on the test set of Middlebury 2014. The 1st row shows

the color images in the test set of Middlebury 2014, the 2nd row shows the results of PSMNet-E, and the 3rd row shows

the results of PSMNet model in [9].

by 26 (from 108th to 82nd) in terms of bad 2.0 error in non-occlusion regions. When using the average

absolute error in all regions as the evaluation metric, the ranking is raised by 12 (from 38th to 26th).

Figure 6 shows some visual examples. PSMNet-E achieves higher prediction accuracy in texture-less

regions and richer reconstruction details of objects than PSMNet.
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5 Conclusion

In this paper, we introduce a new dataset for the training of stereo matching networks. It contains more

than 2000 pairs of stereo images with highly accurate disparity maps. Experimental results show that

our dataset can significantly improve the generalization performance of deep stereo matching networks

on the Middlebury 2014 dataset. In addition, we observe that better generalization performance can be

achieved using both real and synthetic datasets. Our dataset can be used to promote end-to-end stereo

matching methods towards practical applications.
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