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Abstract Active learning involves selecting a few critical unlabeled samples for manual and credible labeling

to improve the performance of the current classifier. The critical step of active learning is the sample

selection strategy. Uncertainty sampling is a well-known sample selection strategy, which involves selecting

the samples for which the current classifier is uncertain. For the generalized linear model, these samples are

usually distributed around the current classification hyperplane. However, uncertain samples include samples

near the current classification hyperplane, and samples far from the current classification hyperplane and

the labeled samples. Traditional uncertainty sampling fails to describe the latter, and traditional methods

are easily affected by outliers. In this paper, belief functions are used to describe the uncertainty that

exists in various samples. Furthermore, we propose a sample selection strategy based on belief functions.

Experimental results based on benchmark datasets show that the proposed approach outperforms several

classical methods. Through this approach, higher classification accuracy can be achieved using the same

number of new labeled samples.
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1 Introduction

Active learning (sometimes called query learning) is a subfield of machine learning. It selects a few critical

unlabeled samples for manual labeling and then adds new labeled samples to the set of labeled samples

for retraining the classifier. This process is conducted until the classifier’s accuracy is achieved or the

cost of labeling is exhausted. The whole process is shown in Figure 1.

Active learning has been widely used in applications such as medical image analysis [1], image restora-

tion [2,3], and test classification [3,4]. The sample selection strategy plays a critical role in active learning

(i.e., what kinds of samples are considered as critical samples or high-value samples). In general, sample

selection strategies include information, representativeness, diversity and multicriteria-based strategies.

The information-based strategies are used to select the samples for which the current classifier is uncer-

tain. The use of different methods for measuring uncertainty leads to different samples being chosen.

Lewis et al. [5] assumed that the sample with the least confidence was the most uncertain. However,

Scheffer [6] claimed that the least confidence criterion only considered the information about the most

probable label, discarding other labels’ information. To solve this problem, Scheffer proposed margin

sampling [6]. Considering all labels’ information, the sample with maximum entropy would be regarded

as the most uncertain one. Sharma et al. [7] further analyzed two reasons for the uncertainty of sam-

ples and proposed a probabilistic evidence-based uncertainty sampling. This method queried the sample
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Figure 1 The process of active learning.

with the most conflicting evidence from the most uncertain k samples. All the four methods mentioned

above obtain uncertainty of unlabeled samples by calculating the output probability. When the output

probability cannot be obtained directly, the distance between the sample and the current classification

hyperplane is usually used to measure the uncertainty of the sample. In other words, a smaller distance

leads to a larger uncertainty of the sample. Applying the distance uncertainty, Li et al. [8] proposed

active learning based on multi-label support vector machine (SVM). Furthermore, to reduce the variance

of the model, Zhang et al. [9] proposed to minimize the Fisher information ratio between IU (w) and

Ix(w), where IU (w) is the Fisher information matrix over the unlabeled pool U and Ix(w) is the Fisher

information matrix over x. For maximum model change, a sample that can lead to a great change of

model is considered as critical sample. Cai et al. [10] used the gradient of the loss function to approximate

the model change and derived algorithms for both SVM and logistic regression. Those sample selection

strategies could be regarded as a variation of uncertainty sampling, which uses the norm of the sample,

or the sample variance to weight the probability of the sample. Most of the samples obtained through

the traditional information-based methods are distributed around the current classification hyperplane.

Although the traditional information-based methods perform well in most cases, they still suffer from a

few shortcomings.

(1) The problem of outliers: the outliers are the samples that are far from other samples. If outliers

are selected, the performance of the classifier might be affected seriously. To reduce this influence, some
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scholars further take account of the representativeness of the samples, considering the uncertainty of

samples. Zhu et al. [11] used k-nearest neighbor (KNN) to select the representative samples. Hu et

al. [12] selected a representative sample by hierarchical graph-theoretic clustering. Although the above

algorithms have been proposed to combine informative and representative criteria, Huang et al. [13]

thought these methods were ad hoc. From a min-max perspective, he selected samples characterized by

both representativeness and informativeness.

(2) They cannot describe the uncertainty of samples from unknown regions well: these samples are

far from the current classification hyperplane and the labeled samples, but are near to (or surrounded

by) the unlabeled samples. The traditional information-based methods consider the uncertainty of these

samples to be relatively small. Recently, with the rise of deep learning, there have been many methods

based on neural networks that attempt to handle the selection of such samples. Zhu et al. [14] proposed

a generative adversarial active learning (GAAL) method, which used deep convolution to generate an

adversarial network to select critical samples. Sinha et al. [15] proposed to learn a latent space using

a variational auto-encoder (VAE) and an adversarial network to select critical samples. The samples

selected by deep models are usually those far away from the labeled ones. However, these methods have

a huge computational complexity.

Traditional uncertainty sampling focuses on uncertain samples that are distributed around the classi-

fication hyperplane and ignores those from an unknown region. Besides, it might be affected by outliers.

As a commonly used tool of uncertainty modeling and reasoning, the theory of belief functions can model

the above two types of uncertain samples well and reduce the influence of outliers. Therefore, we use belief

functions to model the uncertainty of samples and propose a sample selection strategy based on belief

functions for active learning. Extensive experimental results show that the newly proposed approach is

an effective improvement of the traditional uncertainty sampling.

2 Preliminaries

2.1 Sample selection strategy

Settles et al. [6] summarized the following existing sample selection strategies: uncertainty sampling, er-

ror reduction, variance reduction, minimization loss increase, maximum model change, adaptive method

and among others. The purpose of this work is to explore the characteristics and improve the uncertainty

criterion for active learning, hence minimizing loss increase and maximum error reduction. The adaptive

methods based on multi-criteria are beyond the scope of this paper. Maximum model change and vari-

ance reduction can be regarded as variants of uncertainty sampling; thus, they are within the scope of

discussion. The following are some detailed introductions to the comparison algorithm involved in this

paper.

(1) The uncertainty sampling is the simplest and the most commonly used sample selection strategy

for active learning. It can be used for probabilistic learning models directly. There are three main sample

selection strategies based on uncertainty criterion in active learning.

(1.1) Least confidence (LC) selects the sample with the least confidence, which is the sample with the

largest 0/1 loss:

xLC = argmin
xi

(1− p(ŷ|xi)), (1)

where ŷ is the label with the maximum posterior probability. LC only uses p(ŷ|xi) and loses the infor-

mation on the remaining label distribution p(y\ŷ|xi).

(1.2) Margin sampling (MS) considers the largest and the second largest posterior probabilities of the

sample:

xMS = argmin
xi

(p(ŷ1|xi)− p(ŷ2|xi)), (2)

where ŷ1 represents the largest posterior probability label and ŷ2 indicates the second largest posterior

probability. Samples with small margin are more ambiguous. However, for multi-classification problem
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(the number of classes is greater than 2), MS still ignores much information for the remaining classes [6].

(1.3) A broader strategy is to use the probability entropy of unlabeled samples, which takes advantage

of all the prediction information of the unlabeled sample:

xEntropy = argmin
xi

∑

k

p(yk|xi)log(p(yk|xi)), (3)

where p(yk|xi) indicates the probability of the sample belonging to k.

The above method gets similar results in binary classification. They all simply query the samples

whose posterior probability of being positive is nearest to 0.5. This paper selects the maximum entropy

strategy as a representative of uncertainty sampling.

(2) The idea of variance reduction (VR) [16] selects the sample that can minimize the average variance

of the estimated of model parameters. Zhang et al. [9] proposed using the Fisher information matrix over

the unlabeled pool as the variance of the current model. Zhang’s method can be computed as follows:

IU =
1

|U |
∑

xi∈U

p1 (xi) (1− p1 (xi))xix
T
i + λId, (4)

where p1 represents samples’ probability belonging to the positive class and |U | represents the number of

unlabeled samples. Fisher information matrix over the unlabeled sample xi can be computed as follows:

Ixi
= p1 (xi) (1− p1 (xi))xix

T
i + λId. (5)

He minimized the Fisher information ratio between IU and Ixi
to achieve VR:

xVR = argmin
xi∈U

tr
(

I−1
xi

IU
)

. (6)

The more uncertain the sample, the greater the product of sample’s probability. The greater the product

of sample’s probability is, the more Fisher information the sample has. Therefore, VR can be regarded

as the variant of uncertainty criterion.

(3) Maximum model change (MMC) [17] selects the sample that can lead to great change of the current

classifier. Settles used the expected gradient length of the objective function as the measurement of model

change. Cai et al. [17] proposed that MMC based on logistics regression (LR) can be equivalent to the

following:

xMMC = argmax
xi

2p1(xi)(1 − p1(xi))‖xi‖. (7)

Hence, MMC can be seen as a criterion using the norm to weight the uncertainty. This criterion based

on SVM can be equivalent to the following:

xMMC = argmax
xi

‖xi‖ s.t.
∣

∣wTxi + b
∣

∣ < γ, (8)

where ‖xi‖ is the norm of xi. The above methods can be regarded as uncertainty sampling or variants

of uncertainty sampling. They are all used as comparison methods in this paper.

(4) Diversity criterion [18] selects the sample that is as dissimilar from the labeled samples as possible.

In fact, this sample comes from the unlabeled area (the region where labeled samples are not distributed).

Hence it can be regarded as an uncertain sample in essence. Kee et al. [12] uses the minimum distance

between a sample and a labeled sample to measure the diversity of samples, as shown in the following

formula:

xDiversity = argmin
xi

‖xi − xj‖2 , (9)

where xj ∈ L, L represents the set of labeled samples.

(5) Random sampling selects the sample in the set of unlabeled sample randomly. As the number

of labeled samples increases, the distribution of labeled samples becomes closer to the distribution of

original data and the performance of classifier improves. Random sampling is the baseline to improve

classifier [6], and thus it is also selected as comparison algorithm in this paper.
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2.2 The theory of belief functions

The theory of belief functions, also known as Dempster-Shafer evidence theory (DST), is a tool of uncer-

tainty modeling and reasoning [19–21]. We briefly introduce the theory of belief functions in this paper

as follows. Suppose A is a subset of a finite discrete frame of discernment (FOD) Θ, and then there exist










m(∅) = 0,
∑

A⊆Θ

(m(A)) = 1, (10)

where m : 2Θ → [0, 1] is called a basic belief assignment (BBA) defined over the FOD Θ for the closed-

world assumption. Elements in FOD are mutually exclusive and exhaustive. In the open-world assump-

tion, m(∅) > 0 is allowed, which represents a mass assignment given to the hypothesis that might not lie

in FOD. To get a better decision, the Dempster’s rule of combination can be used to fuse those evidences

while multiple independent evidences are available. The Dempster’s rule of combination is expressed as

follows:

m(A) =











0, A = ∅,
∑

∩Aj=A

∏

16i6n mi (Aj)

1−K
, A 6= ∅,

(11)

where

K =
∑

∩Aj=∅,16i6n

mi (Aj) (12)

represents the total conflicting mass assignments. Suppose that m is a BBA defined on the FOD Θ =

{θ1, θ2, . . . , θn}, and then m can be transformed to pignistic probability distribution as

BetP(θ) =
∑

θ∈A⊆Θ

m(A)

|A| , ∀A ⊆ Θ, (13)

where |A| is the cardinality of A. Then, based on the pignistic probability, the ambiguity measure (AM)

can be computed as

AM(m) = −
∑

θ⊆Θ

BetP(θ) log2 BetP(θ). (14)

AM represents the degree of ambiguity incorporated in a BBA, which includes the discord and non-

specificity. The discord represents the disagreement in choosing among different alternatives whereas the

non-specificity represents that two or more choices are left unspecified.

3 The proposed method

3.1 Problem statement

We use a binary classification to explain the drawback of the traditional uncertainty sampling. As shown

in Figure 2, the red circle represents the labeled positive samples, the blue circle represents the labeled

negative samples, the purple straight line represents the current classification hyperplane based on the

labeled samples, and the cross represents the unlabeled samples. Based on the output probability of the

unlabeled samples, the uncertainty of the samples (probability entropy; see Table 1) can be calculated.

When the classifier is logistic regression, the probability is calculated as follows:

p(y = 1|xi) =
1

1 + exp(−wTxi − b)
, p(y = 0|xi) =

exp(−wTxi − b)

1 + exp(−wTxi − b)
. (15)

When the classifier is SVM, the sigmoid function is used, which mapped score wTxi+b to the probability.

The probability is calculated as follows:

p(y = 1|xi) =
1

1 + exp(A(wTxi + b) +B)
, p(y = −1|xi) =

exp(A(wTxi + b) +B)

1 + exp(A(wTxi + b) +B)
, (16)



Zhang S X, et al. Sci China Inf Sci November 2020 Vol. 63 210205:6

−6 −5 −4 −3 −2 −1 0

x(1)

−1

0

1

2

3

4

5

6

7

8

x
(2

)

Sample1Sample2

Sample3

Sample4

Labeled postive samples
Labeled negative samples
Unlabeled samples
The current classifier

1 2 3 4

Figure 2 (Color online) The problem of traditional uncertainty sampling.

Table 1 Uncertainty based on probability entropy

p1 p2 Probability entropy

Sample1 0.5 0.5 0.6931

Sample2 0.9933 0.0067 0.0402

Sample3 0.9933 0.0067 0.0402

Sample4 0.5 0.5 0.6931

where the parameters A and B correspond to the fields’ scale and intercept of score transform and they

are obtained by maximum likelihood. For logistic regression and SVM, p(y = 1|xi) is written as p1(xi)

for simplicity, and p(y = 0|xi) and p(y = −1|xi) are written as p2(xi).

(1) The traditional uncertainty sampling will select Sample1 or Sample4 for active learning. As Sample1

and Sample4 are close to the current classification hyperplane, they are considered as uncertain samples.

However, it can be clearly observed that Sample4 is an outlier. Therefore, the traditional method might

select an outlier.

(2) The probability uncertainty of Sample2 is the same as that of Sample3, because they have the

same distance to the classification hyperplane. Sample2 is close to the positive labeled samples; however,

Sample3 is far away from the labeled samples and located in an unknown region. It is counter-intuitive

that the probability uncertainty of Sample2 is the same as that of Sample3. The uncertainty of Sample3

should be greater than that of Sample2. Therefore, the traditional probability uncertainty cannot describe

the uncertainty of Sample3 well.

3.2 BBA generation

Let us describe the uncertainty of the sample in terms of belief functions. For simplicity, the belief is only

assigned to the singleton, the empty set, and the the total set. We discount the output probability of the

sample and assign it to the singleton. Intuitively, if an unlabeled sample is similar to one of the labeled

samples, then the output probability of the unlabeled sample is more credible and it is given a small

discount to assign the singletons. Because the unlabeled sample is distributed in an unknown region and

it is uncertain, the discount should be big so that more belief is assigned to the empty set or the total

set. If the unlabeled sample is located in a dense region (in other words, it is near to other samples),

it is less likely to belong to an outlier and m∅ should be small; otherwise, m∅ should be big. Then the

remaining belief is assigned to the total set. Take a binary classification problem as an example. Based

on this idea, the BBA can be generated by the following formula:

mxi
(θ1) = f(xi)p1 (xi) , mxi

(θ2) = f(xi)p2 (xi) , (17)
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Table 2 Symbolic representation involved in the algorithm

Symbolic Description Symbolic Description

L All labeled samples U All unlabeled samples

x∗ Selected samples AM(xu

i
) The ambiguity measure of xu

i

φc(·|L) Classifier trained on labeled samples p(xu

i
) The output probability of xu

i

|U | The number of unlabeled samples xu

i
An unlabeled sample

Un(xu

i
) The uncertainty of xu

i
mxu

i
(θ) The belief function of xu

i

η Threshold about m∅

where f(xi) = e−αdl(xi) is the discount factor; dl (xi) = minxj∈L d (xi, xj) represents the Euclidean

distance between xi and the labeled sample that is the nearest to xi; α is a parameter, whose value

should be greater than or equal to 0, with the default value being 1. p1(xi) is the probability that the

sample belongs to the positive class and p2(xi) is the probability that the sample belongs to the negative

class.

mxi
(∅) = g(xi) (1−mxi

(θ1)−mxi
(θ2)) , (18)

where g(xi) = e−βdo(xi) is the density factor; do (xi) = minxk∈[L,U ]\xi
d (xi, xk) represents the Euclidean

distance between xi and the sample (including the labeled samples and unlabeled samples) that is the

nearest to xi; β is a parameter, whose value should be greater than or equal to 0, with the default value

being 1.

mxi
(Θ) = 1−mxi

(θ1)−mxi
(θ2)−mxi

(∅) . (19)

Note that AM is calculated based on a closed-world assumption in Subsection 2.2. We make the following

corrections to the mass calculated by the above method and calculate AM:

{

m′
xi
(A) =

mxi
(A)

1−mxi
(A) , if A ∈ 2Θ\∅,

m′
xi
(∅) = 0.

(20)

3.3 Uncertainty sampling based on belief functions (USBF)

Our sample selection strategy will be introduced in this subsection. Table 2 is the explanation of some

symbols in Algorithm 1.

Algorithm 1 Traditional uncertainty sampling

Require: A set of labeled samples L, a set of unlabeled samples U .

1: while Termination condition not satisfied do

2: Train a classifier φc(·|L) based on labeled samples;

3: for i = 1 : |U | do

4: Calculate the uncertainty of the sample, Un(xu

i
);

5: end for

6: x∗ = argmaxi Un(xu

i
);

7: U = U − x∗;

8: L = L ∪ (x∗,GetLabel(x∗));

9: end while

For the traditional uncertainty sampling: first, it calculates the uncertainty of unlabeled samples

(include the probability entropy and the other variant of the probability uncertainty; see Subsection 2.2

for detail); then, it selects the most uncertain sample to label and repeat this process. As mentioned above,

traditional methods only focus on the samples that are distributed around the classification hyperplane

as the uncertain samples, and they ignore that the one far from the classification hyperplane could be

an uncertain sample. Additionally, the traditional methods might select an outlier. A method based

on belief functions is proposed to address the issue of traditional strategy. First, the output probability

of the unlabeled samples is still calculated; then, the belief functions are computed by the method in

Subsection 2.2; next, the samples with largerm∅ are removed, since these samples are far away from others

and are suspected to be the outliers; finally, we calculate the AM of the remaining samples and select the
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Figure 3 Uncertainty sampling based on belief functions.

Table 3 Uncertainty based on belief functions

m(∅) m(θ1) m(θ2) m(Θ) AM

Sample1 0.1146 0.1839 0.1839 0.5175 0.6931

Sample2 0.0374 0.6025 0.0041 0.3560 0.4850

Sample3 0.0911 0.0420 2.833×E−4 0.8665 0.6921

Sample4 0.3739 0.0175 0.0175 0.5853 –

sample with the largest AM to label. USBF selects the samples with maximum AM for labeling; hence

it is also called as MaxAM. The process of sample selection is shown in Figure 3. The whole algorithm

process is shown in Algorithm 2.

Algorithm 2 USBF

Require: A set of labeled samples L, a set of unlabeled samples U .

1: while Termination condition not satisfied do

2: Train a classifier φc(·|L) based on labeled samples;

3: UR = ∅;

4: for i = 1 : |U | do

5: p(xu

i
) = φc(xu

i
|L);

6: Calculate the belief functions of xu

i
,mxu

i
(θ);

7: if (mxu
i
(∅) < η) then

8: UR = UR + xu

i
;

9: end if

10: end for

11: for i = 1 : |UR| do

12: Calculate the AM(xu

i
);

13: end for

14: x∗ = argmax
i

AM(xu

i
);

15: U = U − x∗;

16: L = L ∪ (x∗,GetLabel(x∗));

17: end while

Let us calculate the BBA of the unlabeled samples in Figure 2 based on the above method. The

calculation results are presented in Table 3. It is obvious that m∅ of Sample4 is relatively large; hence

Sample4 is very likely to be an outlier. We remove Sample4 and calculate AM for other samples. The

uncertainty of Sample1 and Sample3 will be larger, and thus they are considered as uncertain samples.
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Table 4 Details of datasets

Data Category Num Proportion Features

Heart 2 270 150/120 13

Breast 2 683 444/239 9

LetterDP 2 1608 805/803 16

LetterIJ 2 1502 755/747 16

LetterVY 2 1550 764/786 16

LetterEF 2 1543 768/755 16

7VS9 2 14251 7293/6958 784(PCA10)

Toy1 2 1000 500/500 2

Toy2 2 400 200/200 2

4 Experimental analysis

To verify the effectiveness of our algorithm, we compare our method based on USBF with the classical

uncertainty sampling, maximum model change, maximum variance reduction, the method based on di-

versity, and random sampling in 7 public datasets and 2 toy datasets. The abbreviations and descriptions

of these methods are as follows.

(1) Random: random sampling, selecting a sample in the unlabeled set randomly.

(2) MaxEntropy: maximum probability entropy, selecting a sample with maximum entropy (see for

formula (3)).

(3) MaxAM: maximum ambiguity measure, selecting a sample with maximum AM (see formula (14)).

(4) MMC: maximum model change, selecting a sample that can lead to a great change of current model

once labeled (see formula (8)).

(5) VR: variance reduction, selecting a sample that can reduce the average variance of the estimates

of model parameters (see formula (6)).

(6) Diversity: selecting a sample which is not similar to the labeled samples (see formula (9)).

4.1 Datasets

To compare the difference between different sample selection strategies for active learning, 9 datasets

were used to verify the validity of the algorithm. Some basic information and pretreatment of the

datasets are shown in Table 4. For the Letter dataset, we converted it into a binary classification

problem, including four groups, namely LetterIJ, LetterVY, LetterEF and LetterDP. For the MINIST

dataset, it was also converted into a binary-category problem, including one group, namely 7VS9; principal

component analysis (PCA) was used to reduce the feature dimension from original 784 to 10. One of

the toy datasets, shown as Figure 4, is a two-dimensional normal distribution with mean of −5, 5 and a

variance of
√
5. The other is shown in Figure 5. In this dataset [13], if the initial labeled sample is not

selected properly, the traditional uncertainty sampling will fall into local optimum.

4.2 Datasets division and evaluation criteria

Original dataset was divided into a labeled set, an unlabeled set, and a test set randomly. For the initial

labeled set, the number of samples is at least k, where k is the number of classes contained in the dataset,

and there is at least one sample for each class. 30 Monte-Carlo experiments were conducted on each

dataset, and then the final result was obtained by taking the average result of 30 experiments. The

number of selecting samples was 30, and one sample was selected at one iteration process. We draw the

learning curve and use the area under the learning curve (ALC) as performance measurement. One-factor

analysis of variance was carried out at the level of 95% significance.
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Figure 4 (Color online) Distribution of artificial dataset

Toy1.

Figure 5 (Color online) Distribution of artificial dataset

Toy2.

Table 5 Performance comparison of active learning algorithms in terms of ALC (the classifier is LR)a)

Random MaxEntropy MaxAM MMC VR Diversity Pr

Heart 20.7303 21.3208 22.5876 21.3792 20.9729 22.1399 <0.001

Breast 23.8481 24.1926 24.3251 23.6402 24.1977 23.6796 <0.001

DvsP 27.3869 28.5772 28.6395 28.6394 27.6903 28.2065 <0.001

IvsJ 25.2297 26.1200 26.2846 25.5102 25.6006 25.4774 <0.001

VvsY 24.8488 25.5989 25.7868 25.5066 25.1008 25.0405 0.281

EvsF 27.1054 28.1053 28.1780 27.4638 27.2350 27.6923 <0.001

7VS9 26.7563 26.9520 26.9590 26.7247 26.8880 26.8400 <0.001

Toy1 29.1916 29.3444 29.3830 29.3839 29.3553 29.3433 <0.001

Toy2 29.1606 27.1131 29.7385 27.2998 27.2559 29.1533 <0.001

Win 0 0 8 1 0 0 –

Rank 5.20 3.11 1.11 3.67 3.89 4 –

a) The best algorithm on each dataset has been highlighted in bold face; Win is the number of datasets on which an

algorithm achieves the best or comparable; Rank shows the average rank within the compared methods.

4.3 Experimental environment

We performed experiments on a computer equipped with Intel Core i7 3.6 GHz CPU, 8 GB DDR III

memory and MATLAB 2018b software of Microsoft Windows 10 OS. In Subsection 3.1, we notice that

generalized linear models often use the distance from the sample to the classification hyperplane as

the sample uncertainty directly or indirectly. This measurement method has certain defects; therefore,

USBF is proposed to improve it. LR and SVM are representative of generalized linear models, so they

were chosen as classifiers. We use the LR contained in the liblinear package and set the regularization

parameter λ to 0.01 [22]. For SVM, the probability formula is shown in formula (16).

4.4 Result analysis

Tables 5 and 6 show the performance of various sample selection strategies under different classifiers.

Figures 6–14 show the performance of active learning on each dataset based on LR and Figure 15 shows

the average learning curve of the above datasets. Figure 16 shows the average learning curve of the above

datasets when the classifier is SVM. Owing to space limitations, only their average results are listed. The

average run time of each method is shown in Table 7.

For LR, we notice that Random, VR, and Diversity do not achieve the best performance on all datasets.

Their rankings are 5.20, 3.89 and 4.00, respectively. MaxEntropy ranks second overall. MaxAM tends to

yield decent performance in most cases, with an average rank of 1.11 and achieves the best improvement
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Table 6 Performance comparison of active learning algorithms in terms of ALC (the classifier is SVM)a)

Random MaxEntropy MaxAM MMC VR Diversity Pr

Heart 19.9130 19.8200 20.4494 19.6234 19.6234 19.9469 0.6839

Breast 23.1817 23.5343 23.8023 23.5646 23.4649 23.6947 <0.001

DvsP 28.0414 28.4266 28.7438 28.3654 28.0947 28.2963 <0.001

IvsJ 26.7640 25.5787 25.8420 25.1469 24.8652 25.3375 <0.001

VvsY 24.3555 25.2773 25.6406 24.8179 24.0420 24.1685 <0.001

EvsF 27.4661 28.1299 28.2953 27.7841 27.5363 27.4708 <0.001

7VS9 26.5471 26.8171 26.8912 26.6995 26.7957 26.5487 <0.001

Toy1 29.2302 29.4354 29.4426 29.3466 29.4112 29.3556 <0.001

Toy2 26.8595 26.4866 28.5427 27.2929 26.2620 28.0407 <0.001

Win 0 0 9 0 0 0 –

Rank 5.38 2.5 1 3.88 4.63 3.75 –

a) The best algorithm on each dataset has been highlighted in bold face; Win is the number of datasets on which an

algorithm achieves the best or comparable; Rank shows the average rank within the compared methods.
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Figure 6 (Color online) Active learning performance on Heart dataset based on LR. (a) Learning curve; (b) distributions

of the classifier’s accuracy.
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Figure 7 (Color online) Active learning performance on Breast dataset based on LR. (a) Learning curve; (b) distributions

of the classifier’s accuracy.

8 times. MMC achieves the best performance 1 times, whose average rank is 3.67. It has beaten MaxAM

on Toy1, but the difference between them is not obvious. This phenomenon can be attributed to the
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Figure 8 (Color online) Active learning performance on LetterDP dataset based on LR. (a) Learning curve; (b) distri-

butions of the classifier’s accuracy.
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Figure 9 (Color online) Active learning performance on LetterIJ dataset based on LR. (a) Learning curve; (b) distributions

of the classifier’s accuracy.
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Figure 10 (Color online) Active learning performance on LetterVY dataset based on LR. (a) Learning curve; (b) distri-

butions of the classifier’s accuracy.

fact that this dataset is relatively simple and there is no problem of falling into a local optimum or an

outiler. In contrast to Toy2, if the initial labeled samples are selected from the central area as shown
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Figure 11 (Color online) Active learning performance on LetterEF dataset based on LR. (a) Learning curve; (b) distri-

butions of the classifier’s accuracy.
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Figure 12 (Color online) Active learning performance on 7VS9 dataset based on LR. (a) Learning curve; (b) distributions

of the classifier’s accuracy.
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Figure 13 (Color online) Active learning performance on Toy1 dataset based on LR. (a) Learning curve; (b) distributions

of the classifier’s accuracy.

in Figure 5, the data from the area on the four corners will not be selected. Because they are far

from the current classification hyperplane, traditional uncertainty measures will not consider them to
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Figure 14 (Color online) Active learning performance on Toy2 dataset based on LR. (a) Learning curve; (b) distributions

of the classifier’s accuracy.
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Figure 15 (Color online) Average ALC based on LR. Figure 16 (Color online) Average ALC based on SVM.

Table 7 Average run time of active learning algorithms

Random MaxEntropy MaxAM MMC VR Diversity

LR 0.023 0.026 0.645 0.052 0.263 0.058

SVM 0.024 0.828 1.687 0.923 1.122 0.056

be uncertainty samples. In fact, for high-dimensional datasets, the dataset often exhibits multi-peak

characteristics (samples of the same category are distributed in multiple regions). In this case, many

unknown regions will not be queried since they are far from the classification hyperplane, which leads to

local optimization. Their performance is not even as effective as random sampling. MMC and VR will

also encounter the same problem. Diversity method will not encounter this problem, but it might select

an outlier. MaxAM based on the belief functions can reduce the influence of those problem; hence the

behavior of MaxAM outperforms other methods. For SVM, the performance of each method is roughly

the same as that based on LR. MaxAM achieves the best performance on all datasets.

Regarding training time, no matter which classifier is selected, Random and Diversity methods take the

least time. It is because that the above methods are completely based on the data itself and the sample

selection process does not need to train the classifier. MaxAM takes the most time. For calculating the

AM of the sample, it not only requires the current classifier to participate in it, but also transforms the

output probability of the sample into BBA. It leads to a lot of time overhead.
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5 Conclusion

This paper proposes a new sample selection strategy for active learning: USBF. The belief functions

are used to model the uncertainty of the sample. The samples near the classification hyperplane are

considered as uncertain samples; those far from the classification hyperplane and labeled samples are

also considered to be uncertain samples. Traditional uncertainty sampling methods fail to model the

latter. The introduction of empty sets allows us to reduce the effect of outliers effectively. Based on

LR and SVM, USBF can produce the best results using large number of datasets. We recommend using

belief functions to measure the uncertainty of the sample. The sample selection criteria, e.g., informa-

tion, representative, divergence and multi-criteria based strategies, can be employed for active learning.

Combining representative and diversity criteria to improve the performance of current classifiers better

is the subject of future work. Additionally, generating BBA has a large computational complexity when

FOD is large. Under the premise of ensuring the accuracy of the algorithm, reducing the computational

complexity is also a challenging problem.
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