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Abstract In the applications of domain adaptation (DA), there may exist multiple source domains, and

each source domain usually provides some auxiliary information for object classification. The combination

of such complementary knowledge from different source domains is helpful for improving the accuracy. We

propose an evidential combination of augmented multi-source of information (ECAMI) method. The infor-

mation sources are augmented at first by merging several randomly selected source domains to generate extra

auxiliary information. We can obtain one piece of classification result with the assistance of each information

source based on DA. Then these multiple classification results are combined by belief functions theory, which

is expert at dealing with the uncertain information. Nevertheless, the classification results derived from dif-

ferent information sources may have different weights. The optimal weights are calculated by minimizing an

given error criteria defined by the distance between the combination result and the ground truth using some

training data. For each object, the augmented information sources will produce multiple classification results

that will be discounted by the learnt weights under the belief functions framework. Then the combination of

these discounted results is employed to make the final class decision. The effectiveness of ECAMI is evaluated

with respect to some related methods based on several real data sets, and the experimental results show that

ECAMI can significantly improve the classification accuracy.
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1 Introduction

In pattern classification, most of the machine learning methods work with a common assumption that

the training and test patterns have the same distribution and feature space. If the distribution or feature

space changes, the classification model should be rebuilt from scratch using newly collected training

data. However, the labeled patterns may be expensive or time-consuming to obtain in some cases, and

the standard machine learning methods cannot work well with few or no labeled training data. It would

be helpful if we can transfer the knowledge from some related domains (called source domains) into the

new domain (called target domain) for building a reliable classification model. Domain adaptation as

one special setting of transfer learning to solve classification problem without many labeled patterns has

been successfully employed in applications [1]. It utilizes the labeled patterns (knowledge) in the source

domain for classifying unseen objects in the target domain when the source and target domain data are

in the same feature space but drawn from different distributions.
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The major issue of domain adaptation is how to effectively reduce the distribution discrepancy be-

tween domains and preserve the original information in the source and target domains as much as pos-

sible. Existing studies for solving such problem can be summarized into two categories. (1) Patterns

re-weighting [2], which reuses the patterns in the source domains with some weighting techniques for

building classification models. For instance, Dai et al. [2] extended the AdaBoost method to Transfer

AdaBoost (TrAdaBoost) method for solving domain adaptation problem. It adds a mechanism that

increases the weights of wrongly predicted patterns in the target domain and decreases the weights of

incorrectly classified patterns in the source domain at each iteration. (2) Feature matching (also called

distribution alignment) [3], which discovers a new feature representation to make distributions close to

each other. Recently, many approaches [3–8] have been proposed to learn the new feature representation.

Pan et al. [3] proposed a transfer component analysis (TCA) method to acquire a new representation

by minimizing the marginal distribution discrepancy between domains. Joint distribution adaptation

(JDA) [4] considers both the marginal and conditional distributions in a dimensionality reduction pro-

cedure. The pseudo labels of target data which are predicted by the classifier in the source domain are

used to approximately estimate the conditional distribution. Balanced distribution adaptation (BDA) [7]

adaptively leveraged the importance of the marginal and conditional distribution discrepancies to dis-

cover more robust domain-invariant feature. Deng et al. [8] proposed an explicit map-based feature

selection (EMFS) method which uses explicit feature map and feature selection to reveal the high-order

invariant features. Above mentioned methods focus on learning shallow features by minimizing domain

discrepancy between the source and target domains. In recent studies [9–11], the deep networks can learn

much more transferable features for domain adaptation. Wen et al. [9] proposed a new deep transfer

learning (DTL) method using three-layer sparse auto-encoder to extract the features of data for fault

diagnosis by minimizing the discrepancy between domains. Long et al. [10] proposed a deep adaptation

networks (DAN) method to embed the deep features of all task-specific layers into reproducing kernel

Hilbert spaces and match the distributions. The deep features are made more transferable by exploiting

low-density separation of target domain data in deep architectures. Tzeng et al. [11] proposed an adver-

sarial discriminative domain adaptation (ADDA) method based on adversarial learning which combines

discriminative modeling, untied weight sharing and a GAN loss to handle domain shifts.

In applications, multiple source domains are often available. The multi-source domain adaptation

problem is still an open challenging question for object classification [12]. The classification accuracy is

expected to be improved using the complementary information in different source domains, and many

methods [13–18] have been proposed in recent years. Liu et al. [13] proposed a structure-preserved

multi-source domain adaptation (SPMDA) method. In this method, the source and target data are put

together for clustering to explore the structures of the source and target domains for improving the

classification accuracy in the target domain. Duan et al. [14] proposed to learn a robust target classifier

by utilizing all task functions in multiple source domains into a unified loss function which contains

domain-dependent regularizer and data-dependent regularizer. Ding et al. [15] proposed an incomplete

multi-source domain adaptation method for sharing knowledge from two directions, i.e., cross-domain

transfer and cross-source transfer. Similarly, the deep feature can provide more transferable information

in the multi-source domains setting. Multiple feature space adaptation network (MFSAN) [16] aligns not

only the domain-specific distribution of each source and the target domains by learning multiple domain-

invariant representations but also the outputs of classifiers from multiple sources. Xu et al. [17] proposed

a deep cocktail network (DCTN) to battle the domain shifts and category shifts where classes from

different sources are non-consistent among multiple sources. Multi-source domain adversarial network

(MDAN) [18] aims to learn the feature representations that are invariant under multiple domain shifts

while at the same time being discriminative for learning task.

These methods for solving multi-source domain adaptation issue can be regarded as data-level combi-

nation techniques. They lose some specific information among source domains, and may not effectively

extract the complementary knowledge. We want to take full advantage of the information contained in

different source domains from the decision-level standpoint, which can preserve all the specific knowledge.

In fusion system, the source domain data sets are regarded as information sources to provide knowledge
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for classifying objects. The classification results yielded by the auxiliary of different information sources

can be combined by many decision-level fusion methods. If the classification results are crisp outputs (sin-

gle crisp labels), the simple majority vote (MV) method is often employed. Fuzzy rules [19] and evidence

theory [20] can be used to combine soft classification results which can provide more information than

single crisp labels. Belief functions offer an interesting mathematical framework to model uncertainty, and

to fuse uncertain sources of evidence. They have been successfully applied in multi-source information

fusion [21], so it is employed here to improve accuracy by combining multiple soft classification results.

For unseen objects, the combination of classification results yielded by multiple information sources

usually gets a good classification performance because the knowledge provided by different information

sources is complementary to each other. The fusion operation makes the combination result be closer

to the ground truth compared with only using knowledge in individual source domain. In our previous

work [22], we proposed a transfer classification method with multiple source domains. Each source

domain produced one piece of classification result, and the different classification results corresponding

to different source domains were combined (with weighting factors) for making the final class decision of

the object under concern. Nevertheless, the weighting factors in the combination were determined by the

distribution distances between the source and target domains, and they were not adaptively learnt by

training data. Because the proper augmentation [23,24] of information sources (i.e., source domains with

different distributions) can generate more complementary knowledge to further improve the classification

accuracy, we propose to use it in our new evidential combination of augmented multi-source of information

(ECAMI) method presented in this paper. For this, we use the augmentation operation to obtain more

information sources to produce extra classification for combination. The distribution of the union of

several existing source domain data sets is different from that of the singleton source domain data set. Its

discernment information keeps after distribution alignment is diverse from that contained in the individual

source domains; i.e., the union of several existing source domain data sets can also provide some useful

knowledge. Thus, we regard the unions of several source domain data sets as new information sources to

yield extra classification results.

In general, high-quality information sources usually have positive influence on the fusion result. The

classification results obtained by low-quality information sources having low reliabilities/weights yield

poor combination results. Thus, we select some high-quality information sources, i.e., singleton source

domain data set and some unions of several source domain data sets, that provide useful knowledge

for classifying the objects. The combination of multiple classification results obtained by high-quality

information sources will help to improve the accuracy. It is worth noting that the classification results

acquired by multiple information sources often have different weights because the domain-consistency

between diverse source and target domains is different. The source domain which is very consistent to

the target domain can provide quite large useful information for object classification, and the obtained

classification results will be quite reliable. The yielded classification results will not be reliable if the

source domain is not close to the target domain. In other words, the reliabilities/weights of information

sources are different in general. The augmented information sources are coming from the singleton source

domain data sets, and the original information in different source domains overlaps to some extent.

Thus, the information sources may correlate to each other. We have to discount the classification results

obtained by the information sources to reduce the negative influence of reliability and correlation among

information sources. The weighting factors are learnt by an optimization operation using labeled patterns

in the source domain. The discounted results with corresponding weights can be combined by some fusion

rules (here we use Dempster’s rule) to make the fusion result be close to the ground truth.

The remainder of this paper is organized as follows. Section 2 briefly introduces transfer learning. The

evidential combination of augmented multi-source of information method is presented in Section 3, and

the experiments to validate ECAMI are reported in Section 4. Section 5 concludes the paper.

2 Basics of transfer learning

Transfer learning is an appealing paradigm to handle classification problem with few or no labeled training
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patterns [1]. It has achieved great success in many fields [25], such as cross-domain classification [26], clus-

tering [27], and WiFi localization [28]. It has two important concepts: domain and task. Domain D con-

sists of two elements: a feature space X and a marginal probability P (X), whereX = [x1,x2, . . . ,xn] ∈ X

is the set of patterns in the feature space X . Task T also has two components: a label space Y and a

prediction function f(·) which is used to predict the label of unseen objects.

In transfer learning, the domain and task are respectively denoted by D = {X , P (X)} and T =

{Y, f(·)}. The source domain, source task and source domain data set are described asDS = {XS , P (XS)},

TS = {YS , fS(·)} and DS = {(xS
1 , y

S
1 ), (x

S
2 , y

S
2 ), . . . , (x

S
nS

, ySnS
)}. Similarly, the target domain, tar-

get task and target domain data set are denoted by DT = {XT , P (XT )}, TT = {YT , fT (·)} and

DT = {xT
1 ,x

T
2 , . . . ,x

T
nT

}. A unified definition of transfer learning based on above concepts and no-

tations is as follows.

Definition 1 ([1]). Given a source domain DS and source task TS , a target domain DT and target task

TT , transfer learning aims to help improve the learning of target prediction function fT (·) in DT using

the knowledge (i.e., labeled patterns) in DS when DS 6= DT or TS 6= TT .

Obviously, DS 6= DT represents either XS 6= XT or P (XS) 6= P (XT ). When the feature spaces of

the source and target domains are the same but the distributions are quite different, i.e., XS = XT and

P (XS) 6= P (XT ), this case is called domain adaptation or homogeneous transfer learning. If XS 6= XT ,

it is called heterogeneous transfer learning. In this paper, we consider only the domain adaptation case.

3 Combining augmented transfer classification with muti-source domains

We consider n (n > 2) source domains {DSi
}ni=1 and one target domain DT with n source domain data

sets DSi
= {(xSi

p , ySi
p )}Ni

p=1, i = 1, . . . , n and one target domain data set DT = {xT
q }

NT

q=1, where Ni and

NT are the number of patterns in the i-th source and target domains, {xSi
p }Ni

p=1, {x
T
q }

NT

q=1 ∈ R
k are the

patterns in the i-th source and target domains, k is the feature space dimension of the source and target

domains, and {ySi
p }Ni

p=1 ∈ {ω1, . . . , ωc} are real labels. The patterns in the source and target domains are

in the same feature space but drawn from different distributions as XS1
= XS2

= · · · = XSn
= XT and

P (XS1
) 6= P (XS2

) 6= · · · 6= P (XSn
) 6= P (XT ). The difference among the source and target domains in

such case is shown in Figure 1.

One can see that the patterns in the source and target domains are in the same feature space but do not

satisfy the independent and identically distributed (i.i.d.) assumption. The classification models learnt

in different source domains cannot be directly used to classify objects in the target domain. Domain

adaptation techniques should be employed to reduce the distribution discrepancy between the source

and target domains. The work presented in [5,29] aimed to match/align distributions by learning a new

feature representation for patterns in the source and target domains, i.e., by mapping patterns into one

new feature space. Traditional machine learning approaches can work in this new feature space because

the distributions become close. The patterns in different source domains provide diverse complementary

information for classifying unseen objects in the target domain, so the combination of classification results

provided by multiple source domains should improve the accuracy of the classification result.

In practice, more information sources can generate more classification results and should lead to good

combination results. If we can obtain more information sources, more complementary knowledge could

be integrated in the fusion process for improving the classification performance. The distribution of the

union of several source domain data sets is different from that of singleton source domain data set. Thus,

the discernment information in the union of several source domain data sets after matching distribution

will be different from that in the singleton source domain data set. We simply merge the data sets

in different source domains as new information sources to provide extra complementary knowledge (i.e.,

information). More classification results can be obtained by the help of the union of several source domain

data sets for combination. However, the classification results produced by the low-quality information

sources often have a bad influence on the fusion result. Therefore, we select some high-quality information

sources for exploiting only reliable information. The combination of the classification results yielded by
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Figure 1 (Color online) Patterns in different domains. (a) Patterns in DS1
; (b) patterns in DS2

; (c) patterns in DSn ;

(d) patterns in DT .

the auxiliary of high-quality information sources is expected to give higher accuracy than classification

only based on a singleton source domain data set (information source). Nevertheless, the weights of

classification results are usually different because the distribution discrepancy among domains is diverse.

Moreover, the information sources may not be distinct, so we also use the discounting process to reduce

the negative influence of reliability and correlation before combining multiple classification results. The

weighting factors are obtained by an optimization procedure by the labeled data in the source domain

described in Subsection 3.2.

3.1 Selection of effective information sources

In applications, the combination results could be improved if more information sources are available to

produce classification results. However, the new source domain data sets usually are difficult to obtain

for multi-source domain adaptation issue. We regard the union of several existing source domain data

sets, e.g., DS1∪S2
= DS1

∪DS2
, as new information sources to produce extra classification results. The

interest and justification of this operation to augment information sources are introduced in the sequel.

As example, we consider the TCA [3] which is a classical shallow domain adaptation method. TCA

learns a new feature representation across domains by minimizing the reconstruction error of source do-

main data and target domain data. LetXS = [x1,x2, . . . ,xns
] ∈ R

k×ns ,XT = [xns+1,xns+2, . . . ,xns+nt
]

∈ R
k×nt and X = [XS ,XT ] = [x1,x2, . . . ,x(ns+nt)] ∈ R

k×(ns+nt) be the set of patterns in the source

domain, the target domain and the two domains respectively, where ns and nt are the number of pat-

terns in the source and target domains and k is the feature dimension. One transformation matrix

A ∈ R
k×k̃ (k̃ ≪ k) which maps data into a (k̃-dimension) common feature space can be obtained by

minimizing

Â = argmin
A

∥

∥

∥

∥

∥

1

ns

ns
∑

p=1

ATxp −
1

nt

ns+nt
∑

q=ns+1

ATxq

∥

∥

∥

∥

∥

2

= argmin
A

tr(ATXMXTA), (1)
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where tr(·) denotes the trace of a matrix, M ∈ R
(ns+nt)×(ns+nt) is the maximum mean discrepancy

(MMD) matrix, and the element (M)pq of this matrix is computed by

(M)pq =















1
nsns

, xp,xq ∈ DS ,

1
ntnt

, xp,xq ∈ DT ,

− 1
nsnt

, otherwise.

(2)

The distributions between patterns XS in the source domain and objects XT in the target domain

under new feature representation ZS = ÂTXS = [z1, z2, . . . , zns
] ∈ R

k̃×ns and ZT = ÂTXT =

[zns+1, zns+2, . . . , zns+nt
] ∈ R

k̃×nt are drawn close. One classifier learnt by patterns in the source domain

under new feature representation can be used to classify objects in the target domain mapped into this

new space. It is worth noting that the transformation matrix Â acquired by (1) varies with the input

X. Thus, the new feature representation of patterns will be different when matching distributions of

the target domain data and different source domain data, and the discernment information contained in

these data under new representation are diverse.

If there are two source domain data sets DSi
, DSj

, i 6= j, and one target domain data set DT , the

transformation matrices Âi, Âj ∈ R
k×k̃ can be obtained by matching distributions with two inputs

[xSi

1 ,xSi

2 , . . . ,xSi

Ni
,xT

1 ,x
T
2 , . . . ,x

T
NT

] ∈ R
k×(Ni+NT) and [x

Sj

1 ,x
Sj

2 , . . . ,x
Sj

Nj
,xT

1 ,x
T
2 , . . . ,x

T
NT

] ∈ R
k×(Nj+NT).

The new feature representation of patterns in the i-th, j-th source and target domains is given by

{

x̂Si
p = ÂT

i x
Si
p , p = 1, . . . , Ni,

x̂
Sj
p = ÂT

j x
Sj
p , p = 1, . . . , Nj ,

(3)

and
{

x̂Ti
q = ÂT

i x
T
q , q = 1, . . . , NT ,

x̂
Tj
q = ÂT

j x
T
q , q = 1, . . . , NT .

(4)

Similarly, let the union of the i-th and j-th source domain data sets DSi∪Sj
= DSi

∪DSj
and the target

domain data set DT be input data. The transformation matrix Âi,j ∈ R
k×k̃ can be acquired using (1)

with the input [xSi

1 ,xSi

2 , . . . ,xSi

Ni
,x

Sj

1 ,x
Sj

2 , . . . ,x
Sj

Nj
,xT

1 ,x
T
2 , . . . ,x

T
NT

] ∈ R
k×(Ni+Nj+NT ). One gets the

new feature representation by














x̃Si
p = ÂT

i,jx
Si
p , p = 1, . . . , Ni,

x̃
Sj
p = ÂT

i,jx
Sj
p , p = 1, . . . , Nj,

x̃
Ti,j
q = ÂT

i,jx
T
q , q = 1, . . . , NT .

(5)

It is obvious that the new feature representations of one pattern xSi
p using Âi and Âi,j are different, i.e.,

{x̂Si
p 6= x̃Si

p }Ni

p=1. In other words, the important properties (geometric properties, statistical properties,

or side information) obtained by matching the singleton source data set and the target domain data set

will be different from those obtained by adapting the union of several source domain data sets and the

target domain data set. Therefore, the discernment information involved in the union of several source

domain data sets under new feature representation is different from that in the singleton source domain

data sets. The classification results obtained by the auxiliary of the union of source domain data sets

will provide some extra complementary knowledge for combination. It is interesting and judicious to use

this operation for augmenting information sources.

If there are n original source domain data sets, one can obtain 2n−n− 1 new source domain data sets

by simple merging operation; e.g., three singleton source domain data sets as DS1
, DS2

, DS3
can yield

extra four new source domain data sets as DS1∪S2
, DS1∪S3

, DS2∪S3
, DS1∪S2∪S3

. Thus, there will be 2n−1

information sources (i.e., n singleton source domain data sets and 2n−n−1 unions of several source domain

data sets) that can help to classify objects in the target domain. In applications, the classification results

with low reliabilities usually lead to bad combination result using Dempster’s rule [20]. The combination

result is expected to be very close to the ground truth when the (high-quality) information sources provide
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reliable classification results. Therefore, it is desirable to select some high-quality information sources to

produce better classification results for combination.

For singleton source domain data set selection, there will be little useful information in some individual

source domains with low domain-consistency (it can be measured by MMD [30] orA-distance [31], and the

bigger the MMD value or A-distance value, the smaller the domain-consistency) for object classification.

The accuracy in the target domain is very low by the auxiliary of singleton source domain data set with

very big distribution discrepancy to the target domain data set; i.e., the classification results obtained

by low-quality singleton source domain data sets have a bad influence on the combination result. Thus,

we select the most consistent one to get reliable classification results for reducing the negative influence

as much as possible.

For unions of several source domain data sets selection, the augmented new information sources involve

all knowledge in multiple singleton source domains. More information will be preserved after matching

distributions compared with the singleton source domain data sets. The accuracy can be improved to

some degree using the new information sources, so we select some (more than one) unions of several source

domain data sets to produce extra classification results for combination. In practice, the new information

sources which involve the most consistent source domain data set usually have much useful discernment

information for classifying objects. Therefore, the unions of several source domain data sets insisting of

the singleton source domain data set with the highest domain-consistency are simply selected.

We select the most consistent singleton source domain data set and some unions of several (i.e.,

2, 3, . . . , n) source domain data sets as high-quality information sources. When n source domain data

sets are available, the number of selected information sources will be 1+C1
n−1+C2

n−1+· · ·+Cn−1
n−1 = 2n−1.

We aim to effectively combine the multiple classification results yielded by the selected 2n−1 high-quality

information sources. We use the belief functions framework here to combine multiple classification results

because it can well model uncertainty and it has been already successfully used in real applications [32,

33], e.g., data classification [34], data clustering [35], decision making [32], fault prediction [36, 37] and

information fusion [21].

3.2 Weighted combination of transfer classification

We consider a frame of discernment (FoD) Ω = {ω1, ω2, . . . , ωc} consisting of c exclusive and exhaustive

elements. In c-class classification problem, the element ωi represents the i-th class, and the FoD Ω is

the class space. The power set denoted by 2Ω is the set of all subsets of Ω. It contains 2|Ω| elements,

where |Ω| is the cardinality of Ω. For example, if the FoD is Ω = {ω1, ω2, ω3}, the power set of Ω can be

denoted by 2Ω = {∅, {ω1}, {ω2}, {ω3}, {ω1, ω2}, {ω1, ω3}, {ω2, ω3},Ω}.

The basic belief assignment (BBA) also called mass function is defined as a mapping from 2Ω to [0, 1],

and satisfies
∑

A∈2Ω m(A) = 1 and m(∅) = 0, where m(A) represents the belief that one is willing to

commit exactly A and not to any of its subsets. The element A is called a focal element of the BBA when

m(A) > 0. If all the focal elements are singletons, the BBA m(·) is said to be Bayesian BBA. In c-class

classification problem, m(A) represents the support degree of one object assigned to the singleton class

(e.g., A = ωi, i = 1, . . . , c) or the union of several classes (e.g., A = {ωi, ωj}, i 6= j) which characterizes

the partial ambiguity. The upper and lower bounds of probability called belief function Bel(·) and the

plausibility function Pl(·) are respectively defined by Bel(A) =
∑

B⊆A m(B) and Pl(A) =
∑

B∩A 6=∅ m(B).

In this work, the classification results (i.e., sources of evidence) characterized by simple Bayesian

BBA under the class space Ω are combined by Dempster’s rule (a.k.a., DS rule) [20] because of its

associative and commutative properties. Let us consider two distinct pieces of evidencem1 andm2 (m1 =

[m1({ω1}),m1({ω2}), . . . ,m1(Ω)],m2 = [m2({ω1}),m2({ω2}), . . . ,m2(Ω)]), the combination results of

DS rule denoted by m = m1 ⊕m2 is mathematically defined by

{

m(A) = m1 ⊕m2(A) =
∑

B,C∈2Ω|B∩C=A
m1(B)m2(C)

1−K
,

m(∅) = 0,
(6)
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where K =
∑

B∩C=∅|B,C∈2Ω m1(B)m2(C), and it measures the degree of conflict between two BBAs.

The symbol ⊕ denotes the DS combination operator.

Let us assume that DSi
= {(xSi

p , ySi
p )}Ni

p=1 is the most consistent source domain data set and the

selected singleton source domain data set and the unions of several source domain data sets can be

denoted by D̃r
Si
, r = 1, . . . , 2n−1. Let {m̃r,p}

Ni

p=1, r = 1, . . . , 2n−1 and {mr,q}
NT

q=1 be the classification

results characterized by Bayesian BBAs of source domain data {(xSi
p , ySi

p )}Ni

p=1 and the unseen object

xT
q in the target domain. The 2n−1 classification results {mr,q}

NT

q=1 can be combined by DS rule. It is

worth noting that the classification results obtained by the selected (high-quality) information sources

should have diverse weights because the domain-consistency of different information sources is diverse

and they may correlate to each other to some extent. Shafer [20] proposed a discounting operation before

combining multiple classification results with weight β ∈ [0, 1]. It is employed here before combining

multi-source information to make the combination results more representative of what is expected (i.e.,

ground truth). The discounting method is computed by

{

βm(A) = β ·m(A), A ⊂ Ω, A 6= Ω,
βm(Ω) = 1− β + β ·m(Ω).

(7)

If the BBA is completely reliable, one takes β = 1 and gets βm(A) = m(A), A ⊆ Ω. If β = 0, it indicates

that the source of evidence is not reliable at all, and the mass value of all the focal elements will be

discounted to the total ignorance. One can obtain βm(A) = 0, βm(Ω) = 1, A ⊂ Ω, A 6= Ω, and it plays a

neural role on the combination.

We want to learn the weighting factors to discount the multiple sources of evidence for reducing the bad

influence of reliability and correlation on the combination. The weights will be learnt by an optimization

procedure with DS rule based on the knowledge (labeled patterns) in the source domain, i.e., the optimal

weights should make the combination results as close as possible to the ground truth for patterns in the

most consistent source domain. Let {tp = [tp,1, tp,2, . . . , tp,c, tp,c+1]}
Ni

p=1 ∈ R
c+1 be the ground truth1) of

source domain data {(xSi
p , ySi

p )}Ni

p=1, the optimal weights β = [β1, . . . , β2n−1 ] (βr ∈ [0, 1], r = 1, . . . , 2n−1)

will be obtained by minimizing

β̂ = argmin
β

Ni
∑

p=1

∥

∥

∥

∥

2n−1

⊕
r=1

βrm̃r,p − tp

∥

∥

∥

∥

2

. (8)

The discounting operation aims to reduce the bad influence on the fusion by tuning the ignorance

degree of each BBA, and it can take full advantage of complementary knowledge in the augmentation

information sources. The weighting factors are optimized by the patterns in the most consistent source

domain which are all involved in the selected information sources. It is a classical constrained nonlinear

least squares problem that can be solved by active-set algorithm [38] or heuristic algorithm. The fmincon

function in MATLAB is used to compute the weighting factors. The time cost of obtaining β̂ is related

to the size of data sets and the number of the augmented information sources. The larger the size of

data sets or the bigger the number of the information sources, the higher the time cost. In applications,

the weighting factors should be learnt from scratch for different tasks with different source combination.

The discounted results {β̂rmr,q}
NT

q=1 using (7) with weighting factors β̂r can be combined by

mq =
2n−1

⊕
r=1

β̂rmr,q. (9)

In this work we use the argument of the max of plausibility for making the classification decision; i.e., the

unseen object xT
q will be committed to the class with the biggest plausibility value by ω = argminl Pl(ωl).

The proposed ECAMI method also can jointly work with deep domain adaptation techniques. In appli-

cations, the multiple classification results for combination are yielded by different augmented information

1) It is characterized by one binary vector, and all elements will be zero but tpl =1 if the real class is ωl. In this work,

the combination result contains an ignorance class Ω, so one extra component tp,c+1 = 0 is included to compute the mean

square error.
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sources after aligning the distribution between the source and target domains by shallow or deep domain

adaptation techniques. The pseudo code of ECAMI is shown in Algorithm 1, and one toy example to

clearly illustrate the proposed method is given as follows.

Algorithm 1 ECAMI

Input: The n source domain data sets: DSi
= {(xSi

p , y
Si
p )}Ni

p=1
, i = 1, . . . , n and one target domain data set: DT =

{xT
q }

NT
q=1

.

1: Generate more information sources by simply merging source domain data sets;

2: Select some high-quality information sources;

3: Obtain the weighting factors by (8);

4: for q = 1 to NT do

5: Obtain multiple classification results by the auxiliary of selected high-quality information sources;

6: Discount these sources of evidence using (7);

7: Combine discounted results by DS rule with (6);

8: Make class decision using plausibility function value Pl(·);

9: end for

Output: Class decisions.

Example 1. Let us consider that there are three source domain data sets DS1
, DS2

, DS3
and one target

domain data set DT . The class space is Ω = {ω1, ω2, ω3}, and the most consistent source domain data set

is DS1
. The augmentation operation yields four new information sources DS1∪S2

, DS1∪S3
, DS2∪S3

and

DS1∪S2∪S3
. The selected high-quality information sources are DS1

, DS1∪S2
, DS1∪S3

and DS1∪S2∪S3
. For

one unseen object x, the classification results obtained by these high-quality information sources based

on domain adaptation are given by

m1(ω1) = 0.20, m1(ω2) = 0.50, m1(ω3) = 0.30; m2(ω1) = 0.40, m2(ω2) = 0.30, m2(ω3) = 0.30;

m3(ω1) = 0.10, m3(ω2) = 0.50, m3(ω3) = 0.40; m4(ω1) = 0.50, m4(ω2) = 0.20, m4(ω3) = 0.30.

It is assumed that the weighting factors learnt by the optimization operation are β̂ = [0.7 0.8 0.9 0.7].

The discounted results using (7) are given by

β̂1m1(ω1) = 0.14, β̂1m1(ω2) = 0.35, β̂1m1(ω3) = 0.21, β̂1m(Ω) = 0.30;

β̂2m2(ω1) = 0.32, β̂2m2(ω2) = 0.24, β̂2m2(ω3) = 0.24, β̂2m(Ω) = 0.20;

β̂3m3(ω1) = 0.09, β̂3m3(ω2) = 0.45, β̂3m3(ω3) = 0.36, β̂3m(Ω) = 0.10;

β̂4m4(ω1) = 0.35, β̂4m4(ω2) = 0.14, β̂4m4(ω3) = 0.21, β̂4m(Ω) = 0.30.

The combination of the four pieces of discounted classification results using (6) are computed by m =

⊕4
r=1

β̂rmr = [0.08 0.58 0.33 0.01]. One can find that the plausibility value Pl(ω2) = 0.58 + 0.01 = 0.59

is the biggest, so the unseen object x is committed to class ω2.

4 Experiment

4.1 Benchmark datasets

The widely used datasets Office+Caltech-10, VLSC and Office-31 were regarded as the benchmarks to

evaluate the effectiveness of ECAMI. Four domains are involved in Office+Caltech-10: Amazon (A),

Caltech (C), DSLR (D), Webcam (W). VLSC has four different domains, i.e., VOC2007 (V), LabelMe

(L), SUN09 (S), Caltech101 (C). Office-31 is a database for object recognition, and consists of three

domains, Amazon (A), DSLR (D), Webcam (W). The basic information about them is shown in Table 1.



Huang L Q, et al. Sci China Inf Sci November 2020 Vol. 63 210203:10

Table 1 Basic information of the selected benchmark datasets

Dataset Domain Feature Sample Class

Office+Caltech-10

Amazon (A) 800 958 10

Caltech (C) 800 1123 10

DSLR (D) 800 157 10

Webcam (W) 800 295 10

VLSC

VOC2007 (V) 4096 3376 5

LabelMe (L) 4096 2656 5

SUN09 (S) 4096 3282 5

Caltech101 (C) 4096 1415 5

Office-31

Amazon (A) 800 2715 31

DSLR (D) 800 482 31

Webcam (W) 800 776 31

4.2 Domain adaptation techniques and fusion methods

Several state-of-the-art domain adaptation techniques were used for reducing distribution difference be-

tween the source and target domains. They are briefly listed and summarized as below.

• Geodesic flow kernel (GFK) [6]: GFK models the domain shift by integrating an infinite number of

subspaces that characterize changes in geometric and statistical properties to learn new representations.

• Correlation alignment (CORAL) [39]: It minimizes the domain shift by aligning the second-order

statistics of domain distributions.

• Transfer component analysis (TCA) [3]: This method tries to discover a new feature representation

across domains by mining the marginal distribution difference.

• Joint distribution adaptation (JDA) [4]: The marginal and conditional distributions are both adopted

to acquire a robust new feature representation.

• Transfer joint matching (TJM) [40]: It jointly matches the distributions and re-weights patterns to

learn the feature representation which is invariant to both distribution difference and irrelevant patterns.

• Balanced distribution adaptation (BDA) [7]: This method adaptively uses the importance of the

marginal and conditional distribution difference at iteration when learning the new representation.

• Deep adaptation network (DAN): The DAN enhances substantially by mean-embedding matching

of the multi-layer representations across domains. The deep features are made more transferable, while

the domain discrepancy is further reduced via the use of multiple kernel learning.

• Adversarial discriminative domain adaptation (ADDA): It combines the discriminative modeling,

untied weight sharing, and a GAN loss to match the distributions.

We tested the performance of ECAMI method using Dempster’s rule with learnt weights (i.e., ECAMI-

WDS) with respect to related fusion approaches, i.e., MV method, weighted majority vote (WMV)

method, average fusion (AF) method, weighted average fusion (WAF) method and DS rule without

considering weights (e.g., ECAMI-DS).

4.3 Experiment setting and implementation details

The experiments to verify the effectiveness of ECAMI method are briefly introduced in the sequel.

• K-nearest neighbor (KNN)/support vector machine (SVM)2): The standard machine learning meth-

ods directly use labeled patterns in the source domain to classify objects in the target domain without

any pre-processing.

• GFK/CORAL/TCA/JDA/TJM/BDA: In these experiments, a new feature representation is ob-

tained by adapting distributions, and the KNN classification model is used to classify unseen objects.

2) The standard machine learning techniques are used in the domain adaptation methods, and the selection of base

classification model is out of scope of this paper. In previous studies [3, 4, 7, 40], the KNN is often regarded as the base

classifier in the domain adaptation task, so we also use it to classify objects in our proposed ECAMI-WDS method. The

classification performance of related combination methods by SVM are also tested in the experiments.
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• Selected best source domain (SBSD): In this experiment, the source domain which is most consistent

to the target domain is used to provide knowledge for building classification model, and the unseen objects

in the target domain can be classified by this model.

• TCA/JDA/TJM/BDA+MV/WMV/AF/WAF/DS: In these experiments, the domain adaptation

method (i.e., TCA, JDA, TJM, BDA) is first applied to match distributions, and the fusion operation

(i.e., MV, WMV, AF, WAF, DS) is employed to combine multiple classification results yielded by different

individual source domains. They do not augment the information sources.

• TCA/JDA/TJM/BDA/DAN/ADDA+ECAMI-MV/WMV/AF/WAF/DS: These experiments con-

sidering information sources augmentation are used to combine classification results yielded by high-

quality information sources using different fusion methods.

We randomly selected one domain as the target domain, and the remainder as the source domains.

There will be 4 × (23 − 1) = 28, 4 × (23 − 1) = 28 and 3 × (22 − 1) = 9 cross-domain classification

tasks for Office+Caltech-10, VLSC and Office-31 respectively. The tasks are shown in the first column of

Tables A1–A7 in Appendix A. The item in the right side of the arrow is the data set in the target domain,

and the left represents the singleton source domain data set (e.g., A, V) or the union of several source

domain data sets (e.g., AC, VL). The weights of WMV and WAF were estimated by the accuracy in

the source domains ηi as wi =
ηi∑
i ηi

for testing the excellent classification performance of ECAMI-WDS.

The classification performances of the benchmarks based on different domain adaptation techniques are

shown in Tables A1–A7. The maximum classification accuracy are marked in bold, and the reserved

information sources are characterized by gray background for convenience.

4.4 Experiment results and analyses

From Tables A1–A11, one can see that the classification performance is poor when directly using KNN

or SVM because standard machine learning methods cannot work well when the distributions between

domains are quite different, and the shallow or deep domain adaptation techniques improve the accuracy

with different degree by adopting distributions. The classification accuracy in the target domain via

TCA/JDA/TJM/BDA+MV/WMV/AF/WAF/DS lies between the maximum and minimum accuracies

based on (existing) multiple individual source domains. The accuracy of the union of several source

domain data sets (e.g., CW → A) is higher than only using the corresponding singleton source domain

data set (e.g., C→A and W→A) in many cases. Our experiment results show that the simple merg-

ing operation improves the accuracy more or less because all information in multiple individual source

domains is included in the union of several source domain data sets. More useful information is ob-

tained after adopting distributions, so the union of several source domain data sets can provide some

extra knowledge for classifying objects in the target domain. We also find the accuracy based on ECAMI-

MV/WMV/AF/WAF/DS is higher than that of MV/WMV/AF/WAF/DS in general because more useful

information is obtained from the augmented information sources. These experiment results validate the

interest of information sources augmentation for improving the classification performance. When high-

quality information sources are used to yield classification results for combination, the ECAMI-WDS

method improves the accuracy a lot compared with other fusion methods. In applications, the clas-

sification results usually have different qualities and may be correlated to each other in some degree.

The discounting operation can successfully reduce the bad influence of quality and correlation among

information sources. In some extreme cases, ECAMI-WDS produces lower accuracy than other fusion

methods because the negative influence may not be completely eliminated by only using the classical

Shafer’s discounting operation. Overall, the ECAMI-WDS method produces higher accuracy than other

fusion methods in general. We also tested the classification performance of ECAMI-WDS and related

combination methods on data sets Office+Caltech-10 and Office-31 when regarding SVM as the base

classifier, and the experiment results are reported in Tables A10 and A11 in Appendix A. One can see

that the ECAMI-WDS usually can achieve the highest classification accuracy. The classification perfor-

mance of ECAMI-WDS and related combination methods varies with the selection of base classifier, but

the improvement trend of accuracy does not change. The analysis of the results of Tables A1–A7 shows
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Table 2 Time cost (s) of proposed and related combination methods with TCA on Office+Caltech-31

Task ECAMI-MV ECAMI-WMV ECAMI-AF ECAMI-WAF ECAMI-DS ECAMI-WDS

{C, D, W}→A 0.06 0.06 0.05 0.06 0.36 5.09

{A, D, W}→C 0.05 0.05 0.05 0.07 0.22 6.06

{A, C, W}→D 0.07 0.05 0.05 0.05 0.30 1.88

{A, C, D}→W 0.05 0.07 0.05 0.06 0.19 1.01

Table 3 Time cost (s) of proposed and related combination methods with TCA on VLSC

Task ECAMI-MV ECAMI-WMV ECAMI-AF ECAMI-WAF ECAMI-DS ECAMI-WDS

{L, S, C}→V 0.06 0.05 0.05 0.05 0.29 2.09

{V, S, C}→L 0.05 0.06 0.04 0.05 0.20 2.42

{V, L, C}→S 0.06 0.05 0.05 0.05 0.30 2.53

{V, L, S}→C 0.05 0.05 0.04 0.05 0.21 1.82

Table 4 Time cost (s) of proposed and related combination methods with TCA on Office-31

Task ECAMI-MV ECAMI-WMV ECAMI-AF ECAMI-WAF ECAMI-DS ECAMI-WDS

{D, W}→A 0.05 0.07 0.06 0.06 0.34 0.83

{A, W}→D 0.05 0.08 0.08 0.05 0.15 0.60

{A, D}→W 0.05 0.05 0.06 0.05 0.26 0.44

that the proposed method improves the average classification accuracy at least 2.91%, 4.85%, 4.97%,

2.29%, 1.99%, 3.48% for Office+Caltech-10, 4.75% for VLSC and 7.67%, 4.81% for Office-31 compared

with different state-of-the-art domain adaptation techniques. In Tables A8 and A9 in Appendix A, one

can see that the accuracy is improved a lot when using deep domain adaptation techniques because the

CNN can extract more transferable feature across domains. The classification results yielded by DAN or

ADDA are more reliable for combination, so the classification accuracy of ECAMI-WDS with deep do-

main adaptation methods is higher than that with shallow domain adaptation methods. The experiment

results demonstrate the ECAMI-WDS method jointly working with shallow or deep domain adaptation

methods can effectively improve the classification performance.

4.5 Time cost experiment

In this work, we focus on the combination of classification results yielded by augmented information

sources with different shallow or deep domain adaptation methods. The time of distribution alignment

operation with different shallow or deep domain adaptation is all included in the proposed and compar-

ative methods, so we only tested the time cost of different combination methods for comparison. We

tested the time cost on a laptop with Intel (R) Core (TM) i7-7700HQ CPU@2.80 GHz, 8 G RAM. The

experiment results of different data sets with TCA are reported in Tables 2–4. One can see that the time

cost of ECAMI-WDS is higher than other related methods. The combination methods (e.g., ECAMI-

MV, ECAMI-WMV, ECAMI-AF, ECAMI-WAF) are linear, and the complexity is low. The time cost

is related to the number of information sources and the size of data sets. The proposed ECAMI-WDS

needs to learn the weighting factors and this operation results in some extra time cost. Thus, the time

cost of ECAMI-WDS is higher than the other methods.

5 Conclusion

A new method called ECAMI for solving multi-source domain adaptation issue has been proposed in

this paper. In fusion systems, more information sources could generate good combination results, and

we regard the union of several source domain data sets as new information sources to provide extra

classification results for combination. More extra information can be acquired from the union of source

domain data sets to get higher classification accuracy. However, the low-quality information sources
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will yield unreliable classification results, and lead to bad influence on the fusion result. In practice,

high-quality information sources can produce quite reliable classification results, so we select some high-

quality information sources for improving accuracy as much as possible. The singleton source domain

data set which has the highest domain-consistency to the target domain data set is chosen, and the

unions of several source domain data sets involving the most consistent source domain data set are

also selected. The reliabilities/weights of the classification results obtained by the auxiliary of selected

information sources are usually different because the domain-consistency between domains is diverse, and

the information sources may be correlated to each other in some degree. Thus, the classification results

must be discounted before fusing by appropriate weighting factors to reduce the influence of domain-

consistency and correlation. The optimal weights are computed by an optimization operation based on

the patterns in the source domain. The effectiveness of ECAMI method has been clearly demonstrated

by comparing its classification performance with respect to several state-of-the-art domain adaptation

approaches and some related fusion methods on three benchmark datasets. The experiment results show

that ECAMI based on belief functions and information sources augmentation provides higher accuracy

than other tested methods. The ECAMI method will be further evaluated with other combination

methods, e.g., PCR rules [41]. One interesting and challenging research direction is to consider a totally

unseen target domain (without both data and labels), and we will focus on this topic with multiple source

domains in our future work.
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