
SCIENCE CHINA
Information Sciences

November 2020, Vol. 63 210202:1–210202:14

https://doi.org/10.1007/s11432-020-3000-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Focus on Multi-source Information Fusion

Fully distributed variational Bayesian non-linear filter

with unknown measurement noise in sensor networks

Yu LIU1,2, Jun LIU1*, Congan XU1, Gang LI2 & You HE1

1Research Institute of Information Fusion, Naval Aviation University, Yantai 264001, China;
2Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

Received 13 May 2020/Revised 18 June 2020/Accepted 9 July 2020/Published online 22 October 2020

Abstract In practical applications, the measurement noise statistics is usually unknown or may change

over time. However, most existing distributed filtering algorithms for sensor networks are constructed based

on exact knowledge of measurement noise statistics. Therefore, under situations with measurement uncer-

tainty, the existing algorithms may result in deteriorated performance. To solve such problems, a distributed

adaptive cubature information filter based on variational Bayesian (VB-DACIF) is proposed here. Firstly,

the predicted estimates of interest from inclusive neighbours are fused by minimizing the weighted Kullback-

Leibler average, in which the cubature rule is utilized to tackle system nonlinearity. Then, the free form

variational Bayesian approximation is applied to recursively update both the local estimate and the precision

matrices of sensing nodes. Finally, the posterior Cramér-Rao lower bound is exploited to evaluate perfor-

mance of the proposed VB-DACIF. Simulation results with a maneuvering target tracking scenario validates

the feasibility and superiority of the proposed VB-DACIF.
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1 Introduction

Distributed state estimation (DSE) with networked sensors has attracted a great amount of attention in

recent years. In the distributed paradigm, neighboring nodes iteratively communicate local state related

information with each other, and the entire network is finally expected to reach a global decision (to some

degree) [1–4]. Unlike the centralized schemes [5,6], where measurement information from different sensors

is integrated in the so-called fusion center, DSE algorithms accomplish estimation tasks in a distributed

manner, and no fusion center or local observability of each node is required. Due to its easy scalability

for adding new nodes or removing existing nodes and robust to node failures [7,8], DSE algorithms have

been extensively researched in fields such as environmental monitoring, intelligent transportation and

target tracking [9, 10].

The well-known Kalman consensus filter [1,11] performs an average consensus only on prior estimates

and works well when the target of interest can be jointly observed by the inclusive neighbors. The consen-

sus on measurements (CM) [2,12] approach performs consensus on measurement information obtained by

neighboring nodes, but it requires sufficient consensus iterations to ensure filtering stability. On the other

hand, from an information-theoretic perspective, the consensus on information (CI) approach proposed
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in [13] guarantees filtering stability for any number (even a single one) of consensus iterations, but the

estimation accuracy may deteriorate since a conservative fusion rule is adopted. To take advantage of the

complementary benefits of both approaches, the so-called hybrid CMCI (HCMCI) was proposed in [2,3].

However, all these approaches require multiple communication iterations between consecutive sampling

intervals to achieve an acceptable performance, and hence may result in heavy burden on computation

and communication. To alleviate this issue, the diffusion-based Kalman filter was proposed in [14], but

it requires local joint detectability at each node which is generally impractical as discussed in [2, 15].

Recently, an innovative distributed hybrid information fusion (DHIF) scheme was proposed in [4], which

only requires single communication iteration between neighboring nodes and is robust against the exis-

tence of nodes with no sensing abilities. Although the above-mentioned algorithms are designed for linear

systems, it can be further extended to nonlinear systems by directly applying the extended Kalman filter

(EKF) as presented in [16, 17]. Other efforts to handle nonlinearities for distributed filtering include

the unscented Kalman filter (UKF) based algorithms [18, 19], and the particle filter (PF) based algo-

rithms [20, 21]. However, the UKF needs to adjust the scaling parameter and may halt its operation

in the case of negative weights, while the PF suffers from huge amount of computation. The cubature

Kalman filter (CKF) presented in [22] may be a remedy to avoid parameter tuning and negative weights

in UKF, and is more computationally efficient compared with the PF-based algorithms. More about the

CKF-based DSE algorithms can be found in [23–25].

The aforementioned algorithms are derived with full knowledge of measurement noise statistics. How-

ever, it is unrealistic to accurately model the measurement noise statistics for sensor nodes deployed in a

changeable environment. Adaptive filtering is the most common approach to address this issue of param-

eter uncertainty, in which the noise statistics and dynamic state are simultaneously estimated from the

obtained measurements [26]. As one of the most general noise adaptive filtering techniques, the Bayesian

approach, such as state augmentation [27], interacting multiple models [28], and particle filters [29], has

attracted increasing popularity in tackling state estimation problems. In [30], an adaptive Kalman filter

based on the free form variational Bayesian (VB) approximation was proposed to jointly estimate the

dynamic state and measurement noise covariance, which benefits from lower computational load and

analytical tractability. This work was further extended to the nonlinear filtering problems in [31], in

which the unknown measurement noise covariance is modelled by an inverse Wishart distribution that

takes noise correlations into account. In [32], a VB adaptive cubature information filter (CIF) based on

Wishart distribution was presented from the perspective of information filtering. However, these VB-

based algorithms are carried out in a centralized manner. Recently, a VB consensus CKF (VB-CCKF)

was proposed in [33] to handle the measurement uncertainty in a distributed style. However, it bears

inherent drawbacks of the consensus-based approaches that require multiple communication iterations

between neighboring nodes.

Motivated by the studies mentioned above, a distributed adaptive cubature information filter based

on VB (VB-DACIF) is proposed for nonlinear filtering with measurement uncertainty. In the proposed

VB-DACIF, prior estimates from the neighboring nodes are fused before measurement update by mini-

mizing the weighted Kullback-Leibler divergence (KLD), which is effective to assimilate information with

possible unknown correlated errors [34]. Then, the free form VB approximation combined with the DHIF

scheme is used to recursively approximate the unknown measurement noise covariance and update the

posterior estimate for each node. During each cycle of VB recursion, only a single communication iter-

ation is required, which mitigates the computational burden for the entire network compared with the

consensus-based schemes. The main contributions are summarized as follows: (1) an extension of DHIF to

nonlinear systems with measurement uncertainty is proposed from an information-theoretic point of view;

(2) with resort to the VB approximation, a distributed adaptive cubature information filter based on

KLD is derived; (3) the estimation performance of the proposed VB-DACIF is evaluated by the posterior

Cramér-Rao lower bound (PCRLB).

The rest of this paper is arranged as follows. Section 2 formulates the nonlinear DSE problem with mea-

surement uncertainty, and briefly reviews some relative preliminaries. Derivation of the proposed VB-

DACIF is detailed in Section 3. The PCRLB analysis is presented in Section 4. A maneuvering target
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tracking scenario is considered in Section 5. Finally, some concluded remarks are given in Section 6.

2 Problem formulation

To be clear, some notations are defined in advance. R
n denotes the Euclidean space of n-dimension.

The inverse and transpose of arbitrary matrix A are denoted by A−1 and AT, respectively. The trace

of A is written as tr(A). In represents the n-dimensional identity matrix. E{·} denotes the statistical

expectation operator.

2.1 System model

Consider a sensor network composed of two types of nodes: communication nodes and sensor nodes. The

former is able to process local information and communicate with its neighboring nodes, while the latter

is also capable of sensing information from the surveillance area. The communication topology between

nodes is denoted by an undirected graph G = (S, C, E). Here, S and C represent the set of sensor nodes

and communication nodes, respectively. N = S ∪C is the set of all nodes in the network, and E ⊆ N ×N
is the edge set such that (i, j) ∈ S if node i is able to communicate with node j. Ni = {j|(i, j) ∈ E , ∀j 6= i}
represents the immediate neighbors of node i. Further, Ji = Ni ∪ {i} denotes the inclusive neighbors of

node i.

Consider the following discrete-time nonlinear dynamic system:

xk = f(xk−1) +wk−1, (1)

zi,k = hi(xk) + vi,k, i ∈ S, (2)

where xk ∈ R
n denotes the state vector and zi,k ∈ R

m is the measurement of node i. f(·) is the nonlinear
state transition function. h(·) denotes the measurement function. wk−1 ∼ N(0,Qk−1) is the Gaussian

process noise with zero-mean and covariance. vi,k ∼ N(0,Ri,k) is the zero-mean Gaussian measurement

noise with unknown covariance Ri,k. To facilitate the proposed VB-DACIF in the information form,

the precision matrix Λi,k = R−1
i,k , i.e., inverse of the measurement noise covariance, is used in the later

derivation. Since Wishart distribution is a conjugate prior for the unknown precision matrix of a Gaussian

distribution with known mean [35], the precision matrix of each sensor node can be modeled by

W (Λi,k; vi,k,Vi,k) = c |Λi,k|(vi,k−m−1)/2
exp

(

−1

2
Tr
(

V −1
i,k Λi,k

))

, (3)

where vi,k is the degree of freedom, Vi,k is the positive scale matrix, and c is the normalization factor

independent of Λi,k.

2.2 Information fusion based on Kullback-Leibler divergence

From the perspective of information theory, the KLD can be used to measure the difference between two

probability density functions (PDFs) p(x) and q(x). The KLD is defined as follows:

KLD(q(x) ‖p(x) ) =
∫

q(x)log

(
q(x)

p(x)

)

dx. (4)

The weighted Kullback-Leibler average (KLA) over a set of PDFs {pi(x)} with relative weights wi is

defined by

p̄i(x) = argmin
p(x)

∑

i∈N

wiKLD(q(x) ‖p(x) ) , (5)

where wi > 0 satisfies
∑

i∈N wi = 1. It can be seen from (5) that minimizes the sum of information gains

from the initial set of PDFs {pi(x)}. Such a choice best describes the current knowledge of the estimated

state and may yield an information gain as small as possible [36]. Therefore, it is rational to exploit (5)
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for information fusion. It has been shown in [34] that the weighted KLA defined by (5) is consistent with

the normalized weighted geometric mean of the initial PDFs, which can be formulated as

p̄i(x) =

∏

i∈N [pi(x)]wi

∫ ∏

i∈N [pi(x)]widx
. (6)

It can be seen that Eq. (6) provides a more explicit expression than (5), and thus can be utilized

to integrate the given set of PDFs {pi(x)} for a more accurate solution. Further, if the given PDFs in

(6) are Gaussian with pi(x) = N(x;µi,Pi), then the obtained p̄ is also Gaussian and takes the form

p̄(x) = N(x; µ̄, P̄ ) with

P̄−1 =
∑

i∈N

wiP
−1
i , P̄−1µ̄ =

∑

i∈N

wiP
−1
i µi. (7)

The proof is available in [34] and hence omitted here. By writing (7) in information form, one has

Ȳ =
∑

i∈N

wiYi, ȳ =
∑

i∈N

wiyi, (8)

where Yi = P−1
i , yi = P−1

i µi. It is worth mentioning that the fusion rule (6) coincides with the so-

called generalized covariance intersection (GCI) which was discussed in [37–39] as a generalization of the

covariance intersection originally designed for Gaussian PDFs [40]. It is well known that GCI provides a

fusion strategy that is robust against the unknown correlations between diverse information sources.

2.3 Variational Bayesian approximation

The joint distribution of xk andΛk = {Λi,k|i ∈ S} can be approximated by the VB approximation [30,35]

as follows:

p(xk,Λk|Zk) ≈ q(xk)q(Λk), (9)

where Zk = {z1, z2, . . . , zk} denotes the collective measurements of all sensor nodes up to time instant

k, with zk = {zi,k|i ∈ S}. q(xk) and q(Λk) are the unknown approximated posterior PDFs, which can

be obtained by minimizing the KLD between true posterior distribution and the approximation

(q(xk), q(Λk)) = argmin
q(xk)q(Λk)

KLD(q(xk)q(Λk)‖p(xk,Λk|Zk)) . (10)

The optimal solution to (10) is achieved with the following equations [32]:

ln q̂(xk) =

∫

ln p(zk,xk,Λk|Zk−1)q(Λk)dΛk + c1, (11)

ln q̂(Λk) =

∫

ln p(zk,xk,Λk|Zk−1)q(xk)dxk + c2, (12)

where q̂(xk) and q̂(Λk) are the desired PDFs. c1 and c2 are terms independent of xk and Λk, respectively.

Since q(xk) and q(Λk) are coupled with each other, it is intractable to obtain analytical solutions to (11)

and (12). However, a fix-point iteration technique can be exploited to approximate the expected sufficient

statistics, which will be discussed in detail later.

3 Distributed adaptive nonlinear filter based on weighted KLA and VB ap-

proximation

In actual applications, the measurement noise statistics of each sensor node is usually unknown or may

change over time. Therefore, it is not practical to determine the measurement noise statistics ahead

of time, which will make the conditions for traditional algorithms violated. To address state estimation

problems with uncertain measurement noise, the VB approach is combined with the weighted KLA-based

fusion rule to simultaneously estimate the state of interest and the noise statistics. With the third-degree
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cubature quadrature rule [22] embedded into the filtering framework, a novel VB-DACIF for nonlinear

system is proposed, which can be derived as follows.

Since only one iteration is allowed for each node i ∈ N to communicate with its neighbors, it is

impossible for all nodes to obtain the global measurements Zk. In such a case, at time instant k,

the available information sources are only the prior estimates and current measurements of node i and

its neighbors. The goal is to achieve estimates of xk and Λk as accurately as possible with available

information from the inclusive neighbors.

Assume at time instant k− 1, the local posterior PDF of xk−1 for node i follows Gaussian distribution

pi(xk−1) = N(xk−1; x̂i,k−1|k−1,Pi,k−1|k−1) (13)

and the local posterior PDF of Λi,k−1 for node i is subject to Wishart distribution, i.e.,

pi(Λi,k−1) = W (Λi,k−1; vi,k−1,Vi,k−1). (14)

Based on the prediction step of CKF, xk is predicted at node i by

pi(xk|k−1) = N(xk; x̂i,k|k−1,Pi,k|k−1), (15)

where

x̂i,k|k−1 =
1

2n

2n∑

s=1

f(χi,s,k−1|k−1), (16)

Pi,k|k−1 =
1

2n

2n∑

s=1

f(χi,s,k−1|k−1)f
T(χi,s,k−1|k−1)− x̂i,k|k−1x̂

T
i,k|k−1 +Qk−1. (17)

Here, χi,s,k−1|k−1 =
√
Pi,k−1|k−1ξs+x̂i,k−1|k−1, ξs is the s-th column vector of the n-dimensional identity

matrix [22, 41].

The dynamic of Λi,k is modelled to ensure that the prediction of precision matrix is subject to Wishart

distribution as well. Similar to [32], the predicted PDF of Λi,k can be written as

pi(Λi,k|k−1) = W (Λi,k; vi,k|k−1,Vi,k|k−1), (18)

where

vi,k|k−1 = ρvi,k−1, Vi,k|k−1 = BVi,k−1B
T, (19)

and ρ is the discount parameter satisfying 0 < ρ 6 1. The parameter ρ = 1 corresponds to stationary

variances, which means no decay of information. Smaller values of ρ increase their assumed fluctuations of

time with more decay of information. To maintain the expected measurement precision matrix unchanged

at the predicted step, a rational choice for B is B = In/
√
ρ.

To better describe the prior distribution of state xk, the KLA over the predicted PDFs from the

inclusive neighbors j ∈ Ji is fused based on (5). Then, the fused PDF x̂i,k|k−1 is Gaussian distributed

as follows:

p̄i(xk|k−1) = N(xk|k−1; x̄i,k|k−1, P̄i,k|k−1), (20)

P̄−1
i,k|k−1 =

∑

j∈Ji

wi,j,kP
−1
j,k|k−1, (21)

P̄−1
i,k|k−1x̄i,k|k−1 =

∑

i∈Ji

wi,j,kP
−1
j,k|k−1x̂j,k|k−1, (22)

where wi,j,k > 0,
∑

i∈Ji
wi,j,k = 1 is the weight that node i assigns to the information received from node

j. Similar to (8), the corresponding information form can be written as

Ȳi,k|k−1 =
∑

j∈Ji

wi,j,kYj,k|k−1, (23)
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ȳi,k|k−1 =
∑

i∈Ji

wi,j,kŷj,k|k−1, (24)

where

Yj,k|k−1 = P−1
j,k|k−1, ŷj,k|k−1 = P−1

j,k|k−1x̂j,k|k−1. (25)

Such a fusion strategy provides a consistent estimate robust to unknown correlations among the set of

predicted PDFs {pj(xk|k−1), j ∈ Ji}. However, the optimality is sacrificed to guarantee the consistency.

Consequently, the KLA fusion may be too conservative especially when {pj(xk|k−1), j ∈ Ji} are less

correlated. It is possible that some nodes produce estimates of very low confidence. If such estimates

are assigned with relatively high weight wi,j,k, the fused estimate will become less confident. This is

especially challenging for sensor networks where only one communication iteration is allowed between

neighboring nodes. Therefore, the selection of wi,j,k is of critical importance for (23) and (24) to offer

satisfactory results. The optimal wi,j,k can be determined by minimizing the trace of Ȳ −1
i,k|k−1, which can

be regarded as a semidefinite programming problem (SDP) [42]. The selection of wi,j,k is not the focus

of this paper, and the interested reader can refer to [4] and references therein for more details. For the

sake of computational efficiency, in this note, a suboptimal solution presented in [43] is adopted, where

wi,j,k is computed by

wi,j,k =
1/tr(Pj,k|k−1)

∑

j∈Ji
1/tr(Pj,k|k−1)

. (26)

Since the prediction steps of xk and Λi,k are separable and independent, similar to (11), the VB

marginal for xk at node i can be rewritten as

ln q̂i(xk) = E
q̂(Λi,k)

{

ln p(
⌣

z i,k|xk,
⌣

Λi,k)p̄
i(xk|k−1)

}

+ c1, (27)

where
⌣

Λi,k = {Λj,k, j ∈ Ji} and
⌣

zi,k = {zj,k, j ∈ Ji}. Substituting (20) and (19) into (27), one has

ln q̂i(xk) = −1

2
E

q̂(Λj,k)







∑

j∈Ji

(zj,k − hj(xk))
TΛj,k(zj,k − hj(xk))







−1

2
(xk − x̄i,k|k−1)

TP̄−1
i,k|k−1(xk − x̄i,k|k−1) + c1

= −1

2

∑

j∈Ji

E
q̂(Λj,k)

{
tr
(
(zj,k − hj(xk))

TΛj,k(zj,k − hj(xk))
)}

−1

2
tr
(

(xk − x̄i,k|k−1)
TP̄−1

i,k|k−1(xk − x̄i,k|k−1)
)

+ c1

= −1

2

∑

j∈Ji

tr

(

E
q̂(Λj,k)

{Λj,k}(zj,k − hj(xk))(zj,k − hj(xk))
T

)

−1

2
tr
(

P̄−1
i,k|k−1(xk − x̄i,k|k−1)(xk − x̄i,k|k−1)

T
)

+ c1. (28)

Here, for matrices A, B, and C, tr(ABC) = tr(BCA) is exploited to obtain the result.

It can be observed from (28) that q̂i(xk) is also Gaussian with the PDF given by

q̂i(xk) = N(xk; x̄i,k|k,Pi,k|k). (29)

Substituting (29) into (28) and matching terms in both sides of (28), one has

Yi,k|k = Ȳi,k|k−1 +
∑

j∈Ji

H
T
j,kΛ̂j,kHj,k

︸ ︷︷ ︸

uj,k

, (30)

yi,k|k = ȳi,k|k−1 +
∑

j∈Ji

H
T
j,kΛ̂j,k(z̃j,k +Hj,kxj,k|k−1)

︸ ︷︷ ︸

Uj,k

, (31)
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where

Pi,k|k = Y −1
i,k|k, xi,k|k = Y −1

i,k|kyi,k|k, (32)

Λ̂j,k = E
q̂(Λj,k)

{Λj,k} = vj,kVj,k, z̃j,k = zj,k − ẑj,k|k−1, (33)

and the predicted measurement ẑj,k can be computed by

ẑj,k|k−1 =
1

2n

2n∑

s=1

hj(χj,s,k|k−1). (34)

Here, χj,s,k|k−1 =
√
Pj,k|k−1ξs+ x̂j,k|k−1. By taking advantage of the statistical linear error propagation

methodology [6, 44], the pseudo-measurement matrix can be calculated by

Hj,k = PT
j,xz,k|k−1P

−1
j,k|k−1, (35)

where

Pj,xz,k|k−1 =
1

2n

2n∑

s=1

χj,s,k|k−1h
T
j (χj,s,k|k−1)− x̂j,k|k−1ẑ

T
j,k|k−1. (36)

Note that the update steps (30) and (31) are almost the same as that in [18] except for the cubature rule

and Λ̂j,k.

Similar to (12), the VB marginal for Λj,k can be rewritten as

ln q̂i(Λi,k) = E
q̂i(xk)

{ln p(zi,k|xk,Λi,k)p
i(Λi,k|k−1)}+ c2. (37)

By exploiting (19) in (37), one has

ln q̂i(Λi,k) =
vi,k|k−1 −m

2
ln |Λi,k| −

1

2
tr
(

V −1
i,k|k−1Λi,k

)

−1

2
E

q̂i(xk)

{
(zi,k − hi(xk))

TΛi,k(zi,k − hi(xk))
}
+ c2

=
vi,k|k−1 −m

2
ln |Λi,k| −

1

2
tr
(

V −1
i,k|k−1Λi,k

)

−1

2
E

q̂i(xk)

{
tr
(
(zi,k − hi(xk))

TΛi,k(zi,k − hi(xk))
)}

+ c2

=
vi,k|k−1 −m

2
ln |Λi,k| −

1

2
tr
(

V −1
i,k|k−1Λi,k

+ E
q̂i(xk)

{
(zi,k − hi(xk))(zi,k − hi(xk))

TΛi,k

})

+ c2. (38)

It can be observed from (38) that q̂i(Λi,k) also follows Wishart distribution given by

q̂i(Λi,k) = W (Λi,k; vi,k,Vi,k). (39)

Substituting (39) into (38) and matching terms in both sides of (38), one has

vi,k = vvi,k|k−1 + 1, (40)

V −1
i,k = V −1

i,k|k−1 +

∫

(zi,k − hi(xk))(zi,k − hi(xk))
TN(xk; x̂i,k|k,Pi,k|k)dx. (41)

The integral in (41) can be approximated by exploiting the cubature quadrature rule as follows:

Pi,zz =

∫

(zi,k − hi(xk))(zi,k − hi(xk))
TN(xk; x̂i,k|k,Pi,k|k)dx

=
1

2n

2n∑

s=1

(zi,k − hi(χi,s,k))(zi,k − hi(χi,s,k))
T, (42)

where χi,s,k =
√

Pi,k|kξs + xi,k|k.

The above steps give one cycle of the proposed VB-DACIF, which can operate recursively with new

measurements available. Details of the proposed VB-DACIF are summarized in Algorithm 1.
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Algorithm 1 VB-DACIF implemented at node i

Input: The posterior estimates x̂i,k−1|k−1, Pi,k−1|k−1, vi,k−1, and Vi,k−1 at time instant k − 1.

Time update:

1: Compute the predicted x̂i,k|k−1 and Pi,k|k−1 via Eqs. (16) and (17);

2: Compute the predicted vi,k|k−1, Vi,k|k−1 via Eq. (19);

3: Fuse the predicted estimates obtained from j ∈ Ji via Eqs. (20)–(25);

Recursive measurement update:

4: Initialization: set Y 0

i,k|k
= Ȳi,k|k−1, ŷ0

i,k|k
= ȳi,k|k−1, vi,k = vi,k|k−1 + 1, V 0

i,k
= Vi,k|k−1;

5: VB approximation;

6: for l = 1 : L do

7: Compute the local measurement information contribution: if i ∈ S, Λ̂l
i,k

= vi,kV
l−1

i,k
, ul

i,k
= H

T

i,kΛ̂i,k(z̃i,k −

Hi,kxi,k|k−1), U l
i,k

= H
T

i,kΛ̂i,kHi,k; if i ∈ C, ul
i,k

= 0, U l
i,k

= 0;

8: Update the local posterior estimate

Y l
i,k|k = Ȳi,k|k−1 +

∑

j∈Ji

U l
j,k, yl

i,k|k = ȳi,k|k−1 +
∑

j∈Ji

ul
j,k;

P l
i,k|k = (Y l

i,k|k)
−1, x̂l

i,k|k = (Y l
i,k|k)

−1yl
i,k|k;

9: Generate cubature points χl
i,s,k

=
√

P l
i,k|k

ξs + xl
i,k|k

and update the scale matrix by

(V l
i,k)

−1 = (V l−1

i,k
)−1 +

1

2n

2n
∑

s=1

(zi,k − hi(χ
l
i,s,k))(zi,k − hi(χ

l
i,s,k))

T;

10: end for

11: Set ŷi,k|k = ŷL
i,k|k

, Yi,k|k = Y L
i,k|k

, x̂i,k|k = (Y L
i,k|k

)−1ŷL
i,k|k

, Pi,k|k = (Y L
i,k|k

)−1, Vi,k = V L
i,k

;

Output: The updated estimates x̂i,k|k, Pi,k|k , vi,k , and Vi,k at time instant k.

4 Analysis of the Cramér-Rao lower bound

The posterior Cramér-Rao lower bound (PCRLB), defined as the inverse of the Fisher information matrix

(FIM), can be utilized to indicate the best possible performance that an algorithm is able to achieve [45,

46]. In [46], a framework to derive the filtering PCRLB has been proposed for discrete-time nonlinear

dynamic systems. Here, PCRLB is used to evaluate the performance of the proposed VB-DACIF.

Proposition 1. The Fisher information submatrix J(xk) for estimating the state xk follows the recur-

sion

J(xk+1) =
[
Qk + FkJ

−1(xk)F
T
k

]−1
+
∑

i∈S

HT
i,k+1R

−1
i,k+1Hi,k+1, (43)

where Fk = ∂f(xk)
∂xk

and Hi,k+1 =
∂H(xk+1)

∂xk+1
are Jacobian matrices with respect to xk and xk+1, respec-

tively.

Proof. According to [46], J(xk) can be recursively computed by

J(xk+1) = D22
k −D21

k

[
J(xk) +D11

k

]−1
D12

k (44)

with

D11
k = E{−∆xk

xk
log p(xk+1|xk)}, (45)

D12
k = (D21

k )T = E{−∆xk
xk+1

log p(xk+1|xk)}, (46)

D22
k = E{−∆

xk+1

xk+1
logP (xk+1|xk)}+

∑

i∈S

E{−∆
xk+1

xk+1
log p(zi,k+1|xk+1)}, (47)

where ∆y
x = ▽x▽T

y and ▽ is the gradient operator. Since wk and vi,k are both Gaussian, one has

− log p(xk+1|xk) =
1

2
[xk+1 − f(xk)]

T
Q−1

k [xk+1 − f(xk)] + c3, (48)

− log p(zi,k+1|xk+1) =
1

2
[zi,k+1 − hi(xk+1)]

T
R−1

i,k [zi,k+1 − hi(xk+1)] + c4. (49)
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Here, c3 and c4 are constants independent of xk and xk+1. By exploiting (48) and (49) in (45)–(47), one

has 





D11
k = FT

k Q−1
k Fk;

D12
k = (D21

k )T = −FT
k Q−1

k ;

D22
k = Q−1

k +
∑

i∈S

HT
i,k+1R

−1
i,k+1Hi,k+1.

(50)

By substituting (50) into (44) and exploiting the matrix inversion lemma [47], the desired result in (43)

is obtained.

5 Simulations

Performance of the proposed VB-DACIF is validated in this section by considering a typical air-traffic

control scenario. The target of interest moves in a horizontal plane and conducts a maneuvering turn at a

constant turn rate Ω, where Ω is known. The dynamic of target is modeled by the following equation [22]:

xk =













1
sinΩT

Ω
0

cosΩT − 1

Ω
0

0 cosΩT 0 − sinΩ 0

0
1− cosΩT

Ω
1

sinΩT

Ω
0

0 sinΩT 0 cosΩT 0

0 0 0 0 1













xk−1 +wk−1, (51)

where xk = [xk, ẋk, yk, ẏk,Ω]
T is the target state, wk−1 ∼ N(0,Qk−1) is the Gaussian process noise, in

which the covariance is given by

Qk−1 = 0.1

















T 3

3

T 2

2
0 0 0

T 2

2
T 0 0 0

0 0
T 3

3

T 2

2
0

0 0
T 2

2
T 0

0 0 0 0 10−5T

















,

and T = 1 s denotes the sampling interval between consecutive time instants. The measurement of each

node is comprised of range and bearing of the interested target and is modelled by

zi,k =





√

(xk − xi)2 + (yk − yi)2

arctan

(
yk − yi
xk − xi

)



+ vi,k, (52)

where (xi, yi) is the position of the i-th sensor node, vi,k ∼ N(0,Ri,k) denotes the Gaussian measure-

ment noise. The considered sensor network consists of 4 sensor nodes and 8 communication nodes, the

communication topology of which is depicted by Figure 1. Define a measurement noise covariance

R0 =

[

σ2
r σrθ

σθr σ2
θ

]

,

where σr = 10 m, σθ = 0.2◦, σrθ = σθr = 0.034 m◦, which is the same as that in [32]. The true

measurement noise covariances are modelled by

Ri,k =







R0, if k < k0;
[

(ασr)
2 σrθ

σθr (ασθ)
2

]

, else,
(53)
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Figure 1 (Color online) Communication topology of the

sensor network.

Figure 2 (Color online) True and estimated trajectories

of the maneuvering target.

where the time instants k0 for the sensor nodes are 10, 16, 20, and 25, respectively, and the corresponding

scale parameters α are, respectively, 10, 8, 5, and 9.

The true trajectory is generated according to (51) with initial state x0 = [1000 m, 300 m/s, 1000 m,

0 m/s, −3◦/s]T. Initial estimate for each sensor is randomly chosen from N(x0,P0) with P0 =

diag(100 m2, 25 m2/s2, 100 m2, 25 m2/s2, 100 mrad2/s2). The total time span is K = 100. For a

fair comparison, a total number of M = 100 independent Monte Carlo experiments are conducted.

The proposed VB-DACIF is compared with the CubICF [17], HCCKF [24], and CLCP-UKF [19], which

are not conscious of the measurement noise covariance change at k0. The suggested scaling parameter

κ = 3− n for CLCP-UKF is negative in the considered scenario, which often causes the algorithm to fail

to operate and hence κ = 1 is used here to avoid divergence [41]. Since the proposed VB-DACIF only

requires a single communication iteration, VB-CCKF presented in [33] with only one consensus iteration is

chosen for comparison. Similar to [32], initial parameters for both VB-CCKF and VB-DACIF are v0 = 1

and V0 = 2R−1
0 . The discount factor is set to ρ = 0.9 for all VB filters, unless stated otherwise. PCRLB

is exploited as the benchmark to check the effectiveness of all the algorithms under consideration. The

root mean square error (RMSE) [22] and disagreement of estimates (DoE) [7] are introduced to evaluate

the estimation performance of different algorithms.

The true and estimated tracks by different algorithms in a certain simulation run are shown in Figure 2.

It can be seen that CLCP-UKF and CubICF can hardly track the target, while other algorithms have

satisfactory tracking results. Figures 3–5 show the RMSE in position, velocity and turn rate averaged

over all simulation runs, in which the results of VB-CCKF and VB-DACIF are obtained with only one

VB iteration. As is presented in Figure 3, CLCP-UKF diverges after a short period of time. CubICF

and HCCKF have good results before k = 50, but result in large errors when k > 60 due to unawareness

of change of the measurement noise covariance. Compared with the above algorithms, VB-CCKF has

relatively small RMSE, but the value is much larger than that of VB-DACIF, which is closer to that of

the PCRLB. As for velocity and turn rate shown in Figures 4 and 5, the results are similar to that in

Figure 3. It should be noted that before divergence, CubICF and HCCKF have relatively smaller RMSE

than VB-CCKF. The reason may be that VB-CCKF does not have accurate estimation of noise covariance

since only one consensus iteration and VB iteration are conducted. However, this phenomenon does not

occur when using the proposed VB-DACIF. During the simulation time, VB-DACIF always has much

lower RMSE in position, velocity or turn rate, and is closer to the PCRLB, which indicates relatively

higher estimation accuracy.

Disagreement of estimates from different sensors are shown in Figure 6. It can be seen that esti-

mates from different sensors obtained by CLCP-UKF are quite far away from each other, which finally

leads to divergence of DoE. CubICF, VB-CCKF, and HCCKF have relatively lower DoE compared with

CLCP-UKF, but have much larger DoE than VB-DACIF, which indicates that each node achieves better
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Figure 3 (Color online) Position RMSE for different al-

gorithms over time.

Figure 4 (Color online) Velocity RMSE for different al-

gorithms over time.
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Figure 5 (Color online) Turn rate RMSE for different

algorithms over time.

Figure 6 (Color online) DoEs for different algorithms.

Table 1 Averaged RMSEs for different algorithms

Position (m) Velocity (m/s) Turn rate (deg/s)

CubICF 131.473 206.281 18.004

HCCKF 120.344 41.010 7.200

CLCP-UKF 123.210 908.755 59.644

VB-CCKF 64.694 34.689 3.281

VB-DACIF 36.025 14.470 1.627

consensus on estimates with exploitation of VB-DACIF.

Table 1 gives RMSEs in position, velocity and turn rate estimated by different algorithms with only

one VB iteration. The result is similar to that shown in Figures 3–5. It can be seen that the VB-based

algorithms exhibit smaller RMSEs than traditional distributed algorithms, which indicates that estimates

obtained by VB-based algorithms are of higher accuracy. In addition, the proposed VB-DACIF shows

almost half the RMSEs of VB-CCKF, which suggests that the performance of the proposed VB-DACIF

is greatly improved by incorporating the diffusion strategy.

To further compare the VB-based algorithms, Tables 2–4 present the averaged position, velocity and

turn rate RMSEs with varying VB iterations, and the averaged DoEs with varying VB iterations are

shown in Table 5. It can be observed that the proposed VB-DACIF always has lower RMSE and DoE

than the existing VB-CCKF regardless of VB iterations. Furthermore, for the proposed VB-DACIF,
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Table 2 Averaged position RMSEs (m) with different VB iterations

Algorithm L = 1 L = 2 L = 3 L = 4 L = 5

VB-CCKF 64.694 62.015 63.198 64.271 64.871

VB-DACIF 36.025 35.739 37.874 38.244 38.486

Table 3 Averaged velocity RMSEs (m/s) with different VB iterations

Algorithm L = 1 L = 2 L = 3 L = 4 L = 5

VB-CCKF 34.689 34.490 34.388 35.356 36.170

VB-DACIF 14.470 14.386 14.214 14.392 14.645

Table 4 Averaged turn rate RMSEs (deg/s) with different VB iterations

Algorithm L = 1 L = 2 L = 3 L = 4 L = 5

VB-CCKF 3.281 3.214 3.121 3.289 3.312

VB-DACIF 1.627 1.622 1.617 1.620 1.621

Table 5 DoEs with different VB iterations

Algorithm L = 1 L = 2 L = 3 L = 4 L = 5

VB-CCKF 40.725 36.120 31.026 30.579 30.192

VB-DACIF 21.066 20.310 20.086 19.984 19.927
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Figure 7 (Color online) Comparison of averaged position

RMSE with different ρ.

Figure 8 (Color online) Comparison of averaged velocity

RMSE with different ρ.

the position RMSE no longer decreases when L = 2, while the velocity and turn rate RMSEs no longer

decrease when L = 3. As the number of VB iterations increases, the obtained DoE decreases all the time.

Therefore, L = 3 is chosen for later discussion and comparison.

To investigate the influence of discount factor ρ on the estimation performance of VB-based algorithms,

ρ is set to vary within [0.5, 1], at the increment of 0.02 in the simulations below. The resultant averaged

position, velocity and turn rate RMSEs with different ρ are presented in Figures 7–9. It can be seen

that both algorithms achieve better performance with a larger ρ. From the perspective of RMSE, a

satisfactory estimation performance can be fulfilled when ρ falls within [0.9, 1]. In addition, for a certain

ρ, the proposed VB-DACIF always gets lower RMSEs than VB-CCKF, which is similar to the above

analysis with ρ = 0.9. The averaged DoEs with different ρ are shown in Figure 10. With increase of

discount factor ρ, a lower DoE is obtained by both algorithms, which indicates that the estimate obtained

by each node becomes closer to each other and a better consensus on estimate is achieved. Compared

with the existing VB-CCKF, the proposed VB-DACIF has relatively lower averaged DoE, which is about

half of that of VB-CCKF.
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Figure 9 (Color online) Comparison of averaged turn rate

RMSE with different ρ.

Figure 10 (Color online) Comparison of averaged DoE

with different ρ.

6 Conclusion

To tackle the nonlinear DSE problems with measurement uncertainty, a VB-DACIF is proposed. For

each node in the sensor network, according to KLD-based fusion strategy, KLA over the local predicted

PDFs received from its inclusive neighbors are integrated to better characterize the state of interest.

Then, the free form VB approximation is exploited to jointly estimate the state and measurement noise

statistics. During the filtering procedure, nonlinearity of the system is handled by CKF. The estimation

performance is further evaluated by the posterior Cramér-Rao lower bound. Simulations with a ma-

neuvering target tracking scenario indicate that the proposed VB-DACIF outperforms VB-CCKF and

other existing distributed estimation algorithms. In future research, the problem of distributed nonlinear

filtering with unknown non-Gaussian process or measurement noise will be further investigated, and the

maximum correntropy criterion may be a feasible solution.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 61790550,

91538201, 61531020, 61671463). The authors give their sincere thanks to the anonymous reviewers for their constructive

comments of the manuscripts.

References

1 Olfati-Saber R, Fax J A, Murray R M. Consensus and cooperation in networked multi-agent systems. Proc IEEE,

2007, 95: 215–233

2 Kamal A T, Farrell J A, Roy-Chowdhury A K. Information weighted consensus filters and their application in dis-

tributed camera networks. IEEE Trans Autom Control, 2013, 58: 3112–3125

3 Battistelli G, Chisci L, Mugnai G, et al. Consensus-based linear and nonlinear filtering. IEEE Trans Autom Control,

2015, 60: 1410–1415

4 Wang S C, Ren W. On the convergence conditions of distributed dynamic state estimation using sensor networks: a

unified framework. IEEE Trans Control Syst Technol, 2018, 26: 1300–1316

5 Chandra K P B, Gu D W, Postlethwaite I. Square root cubature information filter. IEEE Sens J, 2013, 13: 750–758

6 Lee D J. Nonlinear estimation and multiple sensor fusion using unscented information filtering. IEEE Signal Process

Lett, 2008, 15: 861–864

7 Olfati-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays.

IEEE Trans Autom Control, 2004, 49: 1520–1533

8 Talebi S P, Werner S. Distributed Kalman filtering and control through embedded average consensus information

fusion. IEEE Trans Autom Control, 2019, 64: 4396–4403

9 Song B, Kamal A T, Soto C, et al. Tracking and activity recognition through consensus in distributed camera networks.

IEEE Trans Image Process, 2010, 19: 2564–2579

10 Kwon C, Hwang I. Sensing-based distributed state estimation for cooperative multiagent systems. IEEE Trans Autom

Control, 2019, 64: 2368–2382

11 Olfati-Saber R. Kalman-consensus filter: optimality, stability, and performance. In: Proceedings of the 48th IEEE

Conference on Decision and Control (CDC), Shanghai, 2009. 7036–7042

12 Li W L, Jia Y M. Distributed consensus filtering for discrete-time nonlinear systems with non-Gaussian noise. Signal

https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1109/TAC.2013.2277621
https://doi.org/10.1109/TAC.2014.2357135
https://doi.org/10.1109/TCST.2017.2715849
https://doi.org/10.1109/JSEN.2012.2226441
https://doi.org/10.1109/LSP.2008.2005447
https://doi.org/10.1109/TAC.2004.834113
https://doi.org/10.1109/TAC.2019.2897887
https://doi.org/10.1109/TIP.2010.2052823
https://doi.org/10.1109/TAC.2018.2867341


Liu Y, et al. Sci China Inf Sci November 2020 Vol. 63 210202:14

Process, 2012, 92: 2464–2470

13 Hu C, Lin H S, Li Z H, et al. Kullback-Leibler divergence based distributed cubature Kalman filter and its application

in cooperative space object tracking. Entropy, 2018, 20: 116

14 Cattivelli F S, Lopes C G, Sayed A H. Diffusion strategies for distributed Kalman filtering: formulation and performance

analysis. In: Proceedings of the 1st IAPR Workshop on Cognitive Information Processing, 2008. 36–41

15 Hu J W, Xie L H, Zhang C S. Diffusion Kalman filtering based on covariance intersection. IEEE Trans Signal Process,

2012, 60: 891–902

16 Kamal A T, Bappy J H, Farrell J A, et al. Distributed multi-target tracking and data association in vision networks.

IEEE Trans Pattern Anal Mach Intell, 2016, 38: 1397–1410

17 Jia B, Pham K D, Blasch E, et al. Cooperative space object tracking using space-based optical sensors via consensus-

based filters. IEEE Trans Aerosp Electron Syst, 2016, 52: 1908–1936

18 Wang S C, Lyu Y, Ren W. Unscented-transformation-based distributed nonlinear state estimation: algorithm, analysis,

and experiments. IEEE Trans Control Syst Technol, 2019, 27: 2016–2029

19 Battistelli G, Chisci L, Fantacci C. Parallel consensus on likelihoods and priors for networked nonlinear filtering. IEEE

Signal Process Lett, 2014, 21: 787–791

20 Mohammadi A, Asif A. Distributed consensus + innovation particle filtering for bearing/range tracking with commu-

nication constraints. IEEE Trans Signal Process, 2015, 63: 620–635

21 Hlinka O, Hlawatsch F, Djuric P M. Consensus-based distributed particle filtering with distributed proposal adaptation.

IEEE Trans Signal Process, 2014, 62: 3029–3041

22 Arasaratnam I, Haykin S. Cubature Kalman filters. IEEE Trans Autom Control, 2009, 54: 1254–1269

23 He S M, Shin H, Xu S Y, et al. Distributed estimation over a low-cost sensor network: a review of state-of-the-art.

Inf Fusion, 2020, 54: 21–43

24 Chen Q, Yin C, Zhou J, et al. Hybrid consensus-based cubature Kalman filtering for distributed state estimation in

sensor networks. IEEE Sens J, 2018, 18: 4561–4569

25 Chen Q, Wang W C, Yin C, et al. Distributed cubature information filtering based on weighted average consensus.

Neurocomputing, 2017, 243: 115–124

26 Mehra R. Approaches to adaptive filtering. IEEE Trans Autom Control, 1972, 17: 693–698

27 Maybeck P S. Stochastic Models, Estimation, and Control. Orlando: Academic Press, 1982

28 Li X R, Bar-Shalom Y. Recursive multiple model approach to noise identification. IEEE Trans Aerosp Electron Syst,

1994, 30: 671–684

29 Storvik G. Particle filters for state-space models with the presence of unknown static parameters. IEEE Trans Signal

Process, 2002, 50: 281–289

30 Sarkka S, Nummenmaa A. Recursive noise adaptive kalman filtering by variational Bayesian approximations. IEEE

Trans Autom Control, 2009, 54: 596–600

31 Sarkka S, Hartikainen J. Non-linear noise adaptive Kalman filtering via variational Bayes. In: Proceedings of IEEE

International Workshop on Machine Learning for Signal Processing (MLSP), 2013

32 Dong P, Jing Z L, Leung H, et al. Variational Bayesian adaptive cubature information filter based on wishart distri-

bution. IEEE Trans Autom Control, 2017, 62: 6051–6057

33 Shen K, Jing Z L, Dong P. A consensus nonlinear filter with measurement uncertainty in distributed sensor networks.

IEEE Signal Process Lett, 2017, 24: 1631–1635

34 Battistelli G, Chisci L. Kullback-Leibler average, consensus on probability densities, and distributed state estimation

with guaranteed stability. Automatica, 2014, 50: 707–718

35 Bishop C M. Pattern Recognition and Machine Learning. Berlin: Springer, 2006

36 Akaike H. Information theory and an extension of the maximum likelihood principle. Berlin: Springer, 1998

37 Hurley M B. An information theoretic justification for covariance intersection and its generalization. In: Proceedings

of the 5th International Conference on Information Fusion, 2002. 505–511

38 Julier S, Uhlmann J K. General decentralized data fusion with covariance intersection. In: Handbook of Multisensor

Data Fusion. Boca Raton: CRC Press, 2017. 339–364

39 Wang B L, Yi W, Hoseinnezhad R, et al. Distributed fusion with multi-bernoulli filter based on generalized covariance

intersection. IEEE Trans Signal Process, 2017, 65: 242–255

40 Julier S J, Uhlmann J K. A non-divergent estimation algorithm in the presence of unknown correlations. In: Proceed-

ings of American Control Conference, 1997, 4: 2369–2373

41 Jia B, Xin M, Cheng Y. High-degree cubature Kalman filter. Automatica, 2013, 49: 510–518

42 Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004

43 Niehsen W. Information fusion based on fast covariance intersection filtering. In: Proceedings of the 5th International

Conference on Information Fusion, 2002, 2: 901–904

44 Liu G L, Worgotter F, Markelic I. Square-root sigma-point information filtering. IEEE Trans Autom Control, 2012,

57: 2945–2950

45 Leong P H, Arulampalam S, Lamahewa T A, et al. A Gaussian-sum based cubature Kalman filter for bearings-only

tracking. IEEE Trans Aerosp Electron Syst, 2013, 49: 1161–1176

46 Tichavsky P, Muravchik C H, Nehorai A. Posterior Cramer-Rao bounds for discrete-time nonlinear filtering. IEEE

Trans Signal Process, 1998, 46: 1386–1396

47 Golub G H, van Loan C F. Matrix Computations. 4th ed. Baltimore: Johns Hopkins University Press, 2012

https://doi.org/10.1016/j.sigpro.2012.03.009
https://doi.org/10.3390/e20020116
https://doi.org/10.1109/TSP.2011.2175386
https://doi.org/10.1109/TPAMI.2015.2484339
https://doi.org/10.1109/TAES.2016.140506
https://doi.org/10.1109/TCST.2018.2847290
https://doi.org/10.1109/LSP.2014.2316258
https://doi.org/10.1109/TSP.2014.2367468
https://doi.org/10.1109/TSP.2014.2319777
https://doi.org/10.1109/TAC.2009.2019800
https://doi.org/10.1109/JSEN.2018.2823908
https://doi.org/10.1016/j.neucom.2017.03.004
https://doi.org/10.1109/TAC.1972.1100100
https://doi.org/10.1109/7.303738
https://doi.org/10.1109/78.978383
https://doi.org/10.1109/TAC.2008.2008348
https://doi.org/10.1109/TAC.2017.2704442
https://doi.org/10.1109/LSP.2017.2751611
https://doi.org/10.1016/j.automatica.2013.11.042
https://doi.org/10.1109/TSP.2016.2617825
https://doi.org/10.1016/j.automatica.2012.11.014
https://doi.org/10.1109/TAC.2012.2193708
https://doi.org/10.1109/TAES.2013.6494405
https://doi.org/10.1109/78.668800

	Introduction
	Problem formulation
	System model
	Information fusion based on Kullback-Leibler divergence
	Variational Bayesian approximation

	Distributed adaptive nonlinear filter based on weighted KLA and VB approximation
	Analysis of the Cramér-Rao lower bound
	Simulations
	Conclusion

