
SCIENCE CHINA
Information Sciences

October 2020, Vol. 63 209401:1–209401:3

https://doi.org/10.1007/s11432-019-2684-9

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. LETTER .

A synthesis method for logic circuits in

RRAM arrays

Xiaole CUI1, Xiao MA1, Feng WEI1 & Xiaoxin CUI2*

1Shenzhen Graduate School, Peking University, Shenzhen 518055, China;
2Institute of Microelectronics, Peking University, Beijing 100871, China

Received 6 July 2019/Revised 9 September 2019/Accepted 14 October 2019/Published online 19 May 2020

Citation Cui X L, Ma X, Wei F, et al. A synthesis method for logic circuits in RRAM arrays. Sci China Inf Sci,

2020, 63(10): 209401, https://doi.org/10.1007/s11432-019-2684-9

Dear editor,
Resistive RAM (RRAM) based logic circuits have
attracted much attention in recent years. The IM-
PLY (material implication) gates are the first pub-
lished RRAM logic gate family [1], and many syn-
thesis methods based on the IMPLY gates have
been proposed and discussed in literature. These
synthesis methods are all concerned with logic cir-
cuits in a single RRAM row. In this study, we
propose a synthesis method for logic circuits in an
RRAM array based on the multi-input IMPLY and
OR gates.

The multi-input IMPLY gate [2], which repre-
sents logic states with the resistance states of the
RRAM cells, as presented in Figure 1(a), realizes
the function Q = A1 + · · ·+An +Q. This repre-
sents a multi-input NOR gate when the output cell
Q is in the high resistance state (HRS). Figure 1(b)
presents the multi-input OR gate [2], it can be used
together with the IMPLY gate in the RRAM ar-
ray because this gate also represents logic states
with the resistance states of the RRAM cells, and
the applied voltages are compatible. It is noted
that the IMPLY and OR functions can be real-
ized if the polarities of the RRAM devices and the
applied voltages are reversed simultaneously. The
equivalent IMPLY and OR gates are presented in
Figures 1(c) and (d), respectively. The equivalent
gates share the same constraints of input counts,
whose computation and simulation are presented
in the supplementary file, because of the same cir-

cuit structure. All the IMPLY and OR gates in
Figures 1(a)–(d) only require one cycle for oper-
ation if the resistance states of the RRAM cells
have been set correctly. Further, if the gates in
Figures 1(a) and (d) are deployed in the RRAM
row, the gates in Figures 1(b) and (c) realize the
same logic functions in the column of the same
array. This property enables designers to imple-
ment in-array logic circuits. The proposed synthe-
sis method of the in-array logic circuit consists of
two phases.

Phase 1. Circuit mapping.

The mapping process works as follows.

Step 1. Transform each minterm in the stan-
dard SOP (sum of product) expression of the logic
function into the NOR form using de Morgan’s
law.

Step 2. Sort the NOR cubes in the order of
number of variables. The NOR cubes are par-
titioned into two groups. Group A contains the
NOR cubes that cannot be mapped into a single
RRAM row, and all remaining NOR cubes are in
group B.

Step 3. Map the NOR cubes in group A. Se-
lect the NOR cube with the maximum number of
variables in the group and partition the variables
of the selected NOR cube into several subgroups
while considering the constraints of array size. The
variables in each subgroup are mapped to a single
RRAM row. Map the variables in each subgroup
to the RRAM array row by row, and delete the

*Corresponding author (email: cuixx@pku.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2684-9&domain=pdf&date_stamp=2020-5-19
https://doi.org/10.1007/s11432-019-2684-9
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2684-9
https://doi.org/10.1007/s11432-019-2684-9


Cui X L, et al. Sci China Inf Sci October 2020 Vol. 63 209401:2

DC

A D B

E

E

F

G

G

C

B A

F

CB

P Q

E F G H

A B C D E F G

H I J

D

V
cond

−V
cond

−V
cond

−V
cond −V

set −V
set

−V
set

−V
set

V
cond

V
cond V

set
V
set

V
set V

set

...A
1

A
1

A
1

A
1 A

2

A
2

A
2

A
2

A
n

A
n

A
n

A
n

A
n−1

A
n−1

Q

R
GND

GND

...

R
GND

... Q

R
GND

GND

...

R
GND

(a)

(c)

(e)

(b)

(d)

Figure 1 (Color online) RRAM based circuits. (a) Multi-
input IMPLY gate [2]; (b) multi-input OR gate [2];
(c) equivalent IMPLY gate; (d) equivalent OR gate; (e) in-
array circuit for the example circuit.

current NOR cube in group A. Then, select the
NOR cube with the maximum number of variables
in the current group and repeat these operations.
This process continues until group A is empty or
there is no available RRAM row space.

Step 4. Map the NOR cubes in group B.
The NOR cubes in group B are mapped to the
rows that are not occupied by the NOR cubes in
group A. The mapping of each row in the RRAM
array consists of three sub-steps.

Sub-step 1. Select the NOR cube with the
maximum number of variables in the current
group B and map its variables to an empty row.

Sub-step 2. Map the NOR cubes contain-
ing the redundant variables with respect to the
mapped NOR cubes in the current row.

First, select the unmapped NOR cube contain-
ing the maximum number of redundant variables
with respect to the mapped NOR cube in the cur-
rent row.

If there are enough available RRAM cells in the
current row, then map the variables other than the
redundant variables in the selected NOR cube into
the current row. Then, select the unmapped NOR
cube containing the maximum number of redun-
dant variables with respect to the mapped NOR
cubes in the current row, and map all variables
other than the redundant variables in this cube to
the current row, if there are available RRAM cells
in the current row.

Otherwise, select the unmapped NOR cube con-
taining the sub-maximum number of redundant
variables with respect to the mapped NOR cubes

in the current row, and map the non-redundant
variables in this cube to the current row if there
are available RRAM cells in the row.

This process continues until the current row is
full or none of the NOR cubes in group B con-
tain the redundant variables with respect to the
mapped NOR cubes in the current row. Then,
delete such mapped NOR cubes in group B.

Sub-step 3. Fill in the remainder of the avail-
able RRAM cells in the current row.

If there are still available cells in the current
row, it selects the unmapped NOR cube with the
maximum number of variables that can be mapped
to the current row in the current group one by one,
and maps their variables to the current row. This
process continues until all the available cells in the
current row are filled. These mapped NOR cubes
are then deleted from group B.

Select and map the NOR cubes in the current
group using the three sub-steps above in a row-
wise order, if empty rows are available. This pro-
cess continues until the current group B is empty
or none of the rows in the RRAM array are avail-
able. The circuit mapping is completed success-
fully if the process stops with the former condi-
tion, whereas it fails if the process stops with the
latter condition.

The circuit with the logic function F =

ABC DEFGHIJ +BCDE F GHPQ+CDEFG+

BEFG+ADEG+ACEG+ABEG+AEFG+EF is
considered as an example to illustrate the mapping
process.

The target here is to map the logic function F

to an 8 × 8 RRAM array.
Step 1. The logic function above is transformed

into

F
′

= A+B +C +D + E + F +G+H + I + J

+B + C +D +E + F +G+H + P +Q

+C +D + E + F +G+B + E + F +G

+A+D + E +G+ A+C +E +G

+A+B + E +G+ A+ E + F +G+ E + F

by the de Morgan’s law.
Step 2. In the 8 × 8 RRAM array, a maximum

of seven variables can be mapped to one row be-
cause the rightmost cell in each row is reserved for
the intermediate value. For the transformed F ′ in
Step 1, the first two NOR cubes belong to group A
and the other NOR cubes belong to group B.

Step 3. A+B + C +D +E +F+G+H+ I +J is
selected first as it contains the maximum num-
ber of variables. The variables A,B,C,D,E, F ,
and G are mapped to Cell(1, 1)–Cell(1, 7), and
the variables H , I, and J are mapped to



Cui X L, et al. Sci China Inf Sci October 2020 Vol. 63 209401:3

Cell(2, 1)–Cell(2, 3), respectively. Then the NOR

cube B + C +D + E + F +G+H + P +Q is se-
lected, and its variables are mapped to the third
and fourth rows, as presented in Figure 1(e).

Step 4. The NOR cube C +D + E + F +G,
which contains the maximum number of variables
in the current group B, is selected. The variables
C, D, E, F , and G are mapped to Cell(5, 1)–

Cell(5, 5), respectively. Both B + E + F +G and

A+ E + F +G have three redundant variables,
i.e., E, F and G with respect to the mapped NOR
cube, and the variables B and A are mapped to
Cell(5, 6) and Cell(5, 7), respectively. All the avail-
able cells in the fifth row are filled. Following the
same process, the remaining four NOR cubes are
mapped to the sixth row. The circuit mapping
is thus completed successfully because the circuit
only occupies six rows in the 8 × 8 array.

Phase 2. Computation.

The result of the logic function is obtained by
four computation steps.

Step 1. Input: First, all the RRAM cells in
the array are reset to HRS simultaneously. Then,
the corresponding cells are set into the low resis-
tance state (LRS) in each row if their input state
is logic 1. The set operations consume at most k
cycles if the circuit occupies k rows.

Step 2. Compute the NOR cubes that occupy
multiple rows. For each NOR cube that occupies
multiple RRAM rows, each corresponding bit in
different rows is OR-ed, and the intermediate re-
sults are stored in the RRAM cells in the first row
they occupy. This requires only a single cycle. All
the rows storing the intermediate results perform
NOR operations in the same cycle, and the results
of the NOR cubes are stored in the corresponding
rightmost RRAM cells.

Step 3. Compute the NOR cubes that are
mapped in a single row. For each row occupied
by a complete NOR cube or several NOR cubes,
compute the first NOR cube and store the results
in the rightmost RRAM cell of this row. Then,
the other NOR cubes are OR-ed, one by one, by
the IMPLY operations, and the results are stored
in the rightmost cell in the row iteratively until all
the NOR cubes in this row are computed.

Step 4. Output: The intermediate results
stored in the cells in the rightmost column are OR-
ed and the final result is stored in one of these cells.

In the example presented in Figure 1(e), Step 1
requires at most seven cycles because the set op-
erations have to be executed row by row. In
Step 2, it executes Cell(1, i) = Cell(1, i)+Cell(2, i)

and Cell(3, i) = Cell(3, i) + Cell(4, i), i = 1–7,
and the results of the two NOR cubes are com-
puted and stored in Cell(1, 8) and Cell(3, 8), si-
multaneously. In Step 3, for the fifth row in Fig-
ure 1(e), the NOR operation is applied to the
cells C, D, E, F , G and Cell(5, 8), and the re-

sult of C +D + E + F +G is stored in Cell(5, 8).

Then B + E + F +G + Cell(5, 8) is computed by
the multi-input IMPLY operation, and the in-
termediate result is stored in Cell(5, 8). Finally,

A+ E + F +G+Cell(5, 8) is computed and stored
in Cell(5, 8). Similar computations are performed
in the sixth row. In Step 4, it computes Cell(1, 8)+
Cell(3, 8) + Cell(5, 8) + Cell(6, 8). The final result
is stored in Cell(1, 8) as the output of the logic
function.

Experiments. The proposed array-oriented syn-
thesis method of the logic circuit is applied to
some benchmark circuits with different number of
columns. The synthesis results show that, for most
cases, the circuits generated by our proposed two-
dimensional synthesis method outperform those
counterparts that are generated by the previous
one-dimensional synthesis methods.

The details of the data and the discussion can
be found in the supplementary file.

Conclusion. This study proposes a synthesis
method for logic circuit in the RRAM array. As-
suming a logic function which has m and n NOR
cubes in the original group A and B, respectively,
it is mapped to k rows in the RRAM array. The
generated circuit totally requires m + n + k + 3
cycles, including one initialization operation, k set
operations, m+1 OR operations, and n+1 multi-
input IMPLY operations, to obtain the final result.

Acknowledgements This work was supported by Shen-

zhen Science and Technology Innovation Committee (Grant

No. JCYJ20170412150411676).

Supporting information Appendixes A–C. The sup-

porting information is available online at info.scichina.com

and link.springer.com. The supporting materials are pub-

lished as submitted, without typesetting or editing. The

responsibility for scientific accuracy and content remains

entirely with the authors.

References

1 Borghetti J, Snider G S, Kuekes P J, et al. ‘Memristive’
switches enable ‘stateful’ logic operations via material
implication. Nature, 2010, 464: 873–876

2 Xie L, Nguyen H A D, Taouil M, et al. Boolean logic
gate exploration for memristor crossbar. In: Proceed-
ings of International Conference on Design and Technol-
ogy of Integrated Systems in Nanoscale Era, Istanbul,
2016. 1–6

info.scichina.com
link.springer.com
https://doi.org/10.1038/nature08940

