
SCIENCE CHINA
Information Sciences

. Supplementary File .

Distributed self-triggered formation control for
multi-agent systems

Jiantao SHI1,2, Jun SUN1,2, Yuhao YANG1,2 & Donghua ZHOU3*

1Nanjing Research Institute of Electronic Technology, Nanjing 210039, China;
2Key Laboratory of Intellisense Technology, CETC, Nanjing 210039, China;

3College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China

Appendix A Proof of the Theorems in this leter

(1) Proof of Theorem 1: Choose a Lyapunov function candidate for the MAS as follows:

V (t) = ξ
T (t)(IN ⊗ P )ξ(t), (A1)

where P > 0 is a symmetric positive definite matrix obtained from (4). Calculating the time derivative of V (t), one has

V̇ (t) = ξ̇
T (t)(IN ⊗ P )ξ(t) + ξ

T (t)(IN ⊗ P )ξ̇(t)

= ξ
T
(t)

(

IN ⊗ (A
T
P + PA) − 2µH ⊗ PBB

T
P
)

ξ(t) − 2ξ
T
(t)(µIN ⊗ PBB

T
P )ē(t)

= ξ
T
(t)

(

IN ⊗ (A
T
P + PA) − 2µH ⊗ PBB

T
P
)

ξ(t) − 2µ

N
∑

i=1

ξi(t)PBB
T
P ēi(t)

(A2)

Let ξ̃(t) , (UT ⊗ In)ξ(t), then it can be obtained that

ξ
T (t)

(

IN ⊗ (AT
P + PA) − 2µH ⊗ PBB

T
P
)

ξ(t)

=
N
∑

i=1

ξ̃
T
i (t)(AT

P + PA − 2µλiPBB
T
P )ξ̃i(t).

(A3)

By choosing a sufficiently large µ such that µλ1 > 1, one has

A
T
P + PA − 2µλiPBB

T
P 6 A

T
P + PA − 2PBB

T
P = −δI, (A4)

where the last equation is derived by using (4). It follows from (A3) that

ξ
T
(t)

(

IN ⊗ (A
T
P + PA) − 2µH ⊗ PBB

T
P
)

ξ(t) 6 −δ‖ξ(t)‖
2
. (A5)

From (A3-A5), it can be obtained that

V̇ (t) 6 −δ

N
∑

i=1

‖ξi(t)‖
2 − 2µ

N
∑

i=1

ξi(t)PBB
T
P ēi(t)

6 −δ

N
∑

i=1

‖ξi(t)‖
2 + 2µ‖PBB

T
P‖

N
∑

i=1

‖ξi(t)‖‖ēi(t)‖

6 −δ

N
∑

i=1

‖ξi(t)‖
2
+ 2µ‖PBB

T
P‖

N
∑

i=1

∑

j∈Ni

aij‖ξi(t)‖ · ‖ēj(t)‖ + 2µ‖PBB
T
P‖

N
∑

i=1

∑

j∈Ni

aij‖ξi(t)‖ · ‖ēi(t)‖

6 −δ

N
∑

i=1

‖ξi(t)‖
2 + µ‖PBB

T
P‖

N
∑

i=1

∑

j∈Ni

aij(θ‖ξi(t)‖
2 +

1

θ
‖ēj(t)‖

2) + µ‖PBB
T
P‖

N
∑

i=1

di(θ‖ξi(t)‖
2 +

1

θ
‖ēi(t)‖

2)

=

N
∑

i=1

{

(−δ + 2µdiθ‖PBB
T
P‖)‖ξi(t)‖

2 + 2µ
di

θ
‖PBB

T
P‖‖ēi(t)‖

2}
,

(A6)
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where the third “ 6 ” in (A6) comes from the following inequality

2µ‖PBB
T
P‖

N
∑

i=1

‖ξi(t)‖‖ēi(t)‖ 6 2µ‖PBB
T
P‖

N
∑

i=1

∑

j∈Ni

aij‖ξi(t)‖‖ēi(t)‖

6 2µ‖PBB
T
P‖

N
∑

i=1

∑

j∈Ni

aij‖ξi(t)‖ · ‖ēi(t)‖ + 2µ‖PBB
T
P‖

N
∑

i=1

∑

j∈Ni

aij‖ξi(t)‖ · ‖ēj(t)‖

where θ is a positive scalar defined in Theorem 1. For each i, define the triggering condition as:

‖ēi(t)‖ 6
γiλi

1 + γi

‖ξi(t
i
k)‖, t ∈ [tik, t

i
k+1). (A7)

where γi is defined in Theorem 1. For simplicity and intuition, this triggering condition can be written as ‖ēi(t)‖ =
γiλi
1+γi

‖ξi(t
i
k)‖ (t ∈

[tik, t
i
k+1)).

It follows from (A7) that ‖ēi(t)‖ 6 γiλi‖ξi(t)‖. Substituting this equation into (A6), and considering Lemma 1 and the

definitions of γi, σi, θ, one can get the following result:

V̇ (t) 6
N
∑

i=1

(σi − 1)(δ − 2µdiθ‖PBB
T
P‖)‖ξi(t)‖

2
. (A8)

Therefore, for any 0 < σi < 1 and 0 < θ <
δ

2µmaxi{di}‖PBBT P‖
, the inequality V̇ (t) < 0 can be guaranteed.

In the following, the trigger condition will be analyzed. According to (4) and the definitions of wi(t) and ηi(t), it can be obtained

that

‖ėi(t)‖ = ‖ẇi(t)‖ = λi‖η̇i(t)‖ 6 ‖A‖‖ei(t)‖ + λi‖Aηi(t
i
k)‖ + λi‖µBK[

∑

j∈Ni

aij(ηi(t
i
k) − ηj(t

i
k)) + giηi(t

i
k)]‖. (A9)

So the evolution of ‖ei(t)‖ for t ∈ [tik, t
i
k+1) is bounded by the solution of the following equation

‖ṗi(t)‖ = ‖A‖‖pi(t)‖ + λi‖Aηi(t
i
k)‖ + λi‖µBK[

∑

j∈Ni

aij(ηi(t
i
k) − ηj(t

i
k)) + giηi(t

i
k)]‖, (A10)

with pi(t
i
k) = 0. The solution of (A10) is given in (A11).

‖pi(t)‖ =

λi‖Aηi(t
i
k)‖ + λi‖µBK[

∑

j∈Ni

aij(ηi(t
i
k) − ηj(t

i
k)) + giηi(t

i
k)]‖

‖A‖
(e

‖A‖(t−ti
k
)
− 1).

(A11)

From (A7) and (A10), one has that an upper bound of the time for ei(t) to evolve from 0 to
γiλi
1+γi

‖ηi(t
i
k)‖ satisfies (A12).

λi‖Aηi(t
i
k)‖ + λi‖µBK[

∑

j∈Ni

aij(ηi(t
i
k) − ηj(t

i
k)) + giηi(t

i
k)]‖

‖A‖
(e‖A‖(t−ti

k
) − 1) =

γiλi

1 + γi

‖ηi(t
i
k)‖.

(A12)

Moreover considering Assumption 3, the triggering time can be chosen as (5) in Theorem 1. This completes the proof.

(2) Proof of Theorem 2:Consider the Lyapunov function candidate

V (t) = ŵ
T (t)(IN ⊗ Q)ŵ(t), (A13)

where Q is a symmetric positive definite matrix obtained from (8). Calculating the time derivative of V (t), one has

V̇ (t) = ˙̂w
T
(t)(IN ⊗ Q)ŵ(t) + ŵ

T
(t)(IN ⊗ Q) ˙̂w(t)

= ŵ
T (t)[IN ⊗ (AT

Q + QA) − 2µH ⊗ QBB
T
Q]ŵ(t) + 2µ

N
∑

i=1

∑

j∈Ni

ŵi(t)QBB
T
Q(êj(t) − êi(t)).

(A14)

Similar to the analysis in Theorem 1, one has

V̇ (t) 6
N
∑

i=1

{

(−ε + 2µdiθ‖QBB
T
Q‖)‖ŵi(t)‖

2 +
2µdi

θ
‖QBB

T
Q‖‖êi(t)‖

2}
. (A15)

Triggering condition of agent i is designed as

‖êi(t)‖ 6
πi

1 + πi

‖ŵi(t
i
k)‖, (A16)

it follows that

‖êi(t)‖ 6 πi‖ŵi(t)‖. (A17)
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Substituting (A17) into (A15) yields

V̇ (t) 6
N
∑

i=1

(σi − 1)(ε − 2µθdi‖QBB
T
Q‖)‖ŵi(t)‖

2
, (A18)

then for any 0 < σi < 1 and 0 < θ <
ε

2µmaxi{di}‖PBBTP‖
, it can be obtained V̇ (t) < 0.

It follows from (A16) that

‖ŵi(t)‖ 6 (1 +
πi

1 + πi

)‖ŵi(t
i
k)‖, (A19)

which implies

‖w̃i(t)‖ 6 ‖wi(t)‖ + (1 +
πi

1 + πi

)‖ŵi(t
i
k)‖. (A20)

Furthermore, one has

ẇi(t) = Awi(t) − µBK
[

∑

j∈Ni

aij

(

ŵi(t
i
k) − ŵj(t

i
k)

)

+ giŵi(t
i
k)

]

.
(A21)

Then it can be obtained that

‖wi(t)‖ 6
1

‖A‖
‖µBK

∑

j∈Ni

aij

(

ŵi(t
i
k) − ŵj(t

i
k)

)

+ giŵi(t
i
k)‖(e

‖A‖(t−ti
k
) − 1). (A22)

Moreover, one can obtain that

‖ ˙̂ei(t)‖ = ‖A‖(‖êi(t)‖ + ‖ŵi(t
i
k)‖) + ‖µBK

∑

j∈Ni

aij

(

ŵi(t
i
k) − ŵj(t

i
k)

)

‖ + ‖LC‖‖w̃i(t)‖ (A23)

Substituting (A20) and (A22) into (A23), one has

‖ ˙̂ei(t)‖ 6 ‖A‖(‖êi(t)‖ + ‖ŵi(t
i
k)‖) + ‖µBK

∑

j∈Ni

aij

(

ŵi(t
i
k) − ŵj(t

i
k)

)

‖ + ‖LC‖
[

‖wi(t)‖ + (1 +
πi

1 + πi

)‖ŵi(t
i
k)‖

]

6 ‖A‖‖êi(t)‖ + (‖A‖ + ‖LC‖(1 +
πi

1 + πi

))‖ŵi(t
i
k)‖ + ‖µBK

∑

j∈Ni

aij

(

ŵi(t
i
k) − ŵj(t

i
k)

)

‖

+ ‖LC‖
[ 1

‖A‖
‖µBK

∑

j∈Ni

aij

(

ŵi(t
i
k) − ŵj(t

i
k)

)

‖(e‖A‖(t−ti
k
) − 1)

]

= ‖A‖‖êi(t)‖ + ‖LC‖
[ 1

‖A‖
‖µBK

∑

j∈Ni

aij

(

ŵi(t
i
k) − ŵj(t

i
k)

)

‖
]

e
‖A‖(t−ti

k
) +

[

‖A‖ + ‖LC‖(1 +
πi

1 + πi

)
]

‖ŵi(t
i
k)‖

+ ‖µBK
∑

j∈Ni

aij

(

ŵi(t
i
k) − ŵj(t

i
k)

)

‖ − ‖LC‖
[ 1

‖A‖
‖µBK

∑

j∈Ni

aij

(

ŵi(t
i
k) − ŵj(t

i
k)

)

‖
]

.

(A24)

Then it follows that

‖ ˙̂ei(t)‖ 6 s1‖êi(t)‖ + s2e
s1(t−ti

k
) + s3, t ∈ [tik, t

i
k+1) (A25)

where s1, s2, s3 are defined in Theorem 2.

It is obvious that the evolution of êi(t) for t ∈ [tik, t
i
k+1) is bounded by the solution of the following equation:

‖q̇i(t)‖ 6 s1‖qi(t)‖ + s2e
s1(t−ti

k
)
+ s3. (A26)

With q(tik) = 0, the solution of (A26) is given by

‖qi(t)‖ = e
s1(t−ti

k
)[s3

s1
+ s2(t − t

i
k)

]

−
s3

s1
. (A27)

From (A17) and (A27), one has that the upper bound of the time for ‖êi(t)‖ to evolve from 0 to
πi

1+πi
‖ŵi(t

i
k)‖ satisfies the following

equation:

e
s1(t−ti

k
)[
s3 + s1s2(t − t

i
k)

]

− s3 =
s1πi

1 + πi

‖ŵi(t
i
k)‖. (A28)

which can be rewritten as

s1s2̺ + s3 = εe
−s1̺

, (A29)

where ̺ = t − tik, ε = s3 +
s1πi
1+πi

‖ŵi(t
i
k)‖.

Considering the fact that εe−s1̺ approaches zero and s1s2̺ approaches positive infinity as ̺ goes to infinity and ε > s3. It can

be obtained that there exists a positive scalar ̺ that solves this equation. Therefore, the triggering time instant could be chosen

as tik+1 = tik + ̺. The proof is now completed.
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Figure B1 Communication topology of the MAS.

Appendix B Simulation results

In order to illustrate the effectiveness of the obtained theoretical results, the proposed self-triggered formation control scheme is

applied to an example system by a numerical simulation. Consider a MAS of 4 agents indexed by 0, 1, 2 and 3, in which 0 is

referred as the leader and agents indexed by 1, 2 and 3 are the followers. The topology of the MAS is shown in Figure B1. The

individual dynamics of agents have the following parameters:

A =





0.8 −0.2

−0.25 0.75



 , B =





1

1



 , C =





1 0

0 1



 .

Choose σ1 = 0.1, σ2 = 0.2, σ3 = 0.3, δ = 0.01, θ = 0.003. By solving the Riccati function, on can get that P =




1.0367 −0.1431

−0.1431 0.0268



, K = [0.8936 − 0.1163]. Choosing L =





1.5 0

0 1.43



, σ1 = 0.1, σ2 = 0.2, σ3 = 0.3, α = 0.2, θ = 0.003 for

the observer-based control protocol. Using the control schemes under the self-triggered condition given in this letter, the formation

trajectory and the observation trajectory profiles of the MAS using the observers of the MAS are shown in Figure B2. Moreover,

the formation errors of the MAS using the self-triggered static output feedback control and the observer-based self-triggered control

are shown in Figure B3 and Figure B4, respectively. Moreover, the triggering instants of each agent in the formation are shown in

Figure B5.

In the simulation results, it can be observed that the scheduled formation has been reached and maintained for the MAS under

the proposed protocols. Specially, the formation performance can be shown clearly by the formation errors’ evolution curves given

in Figure B3 and B4, from which it can be observed that the formation errors approach zero as time goes to infinity. That is, the

desired formation configuration is achieved.

Remark. Comparing Figure B2(a) with Figure B2(b), one can find that the performance of the static output-based formation

controller is better than the observer-based one. Because, in this simulation, the measurement matrix C is an identity matrix,

which means that the states of agents can be obtained, however, with respect to the observer-based formation control, the state

estimation errors exist inevitably. Such that the formation control performance is affected. However, the application conditions

of static output-based formation control are not easy to meet. Usually, observer-based formation control schemes are widely used.

Therefore, it is very important to improve the performance of observers. According to the literature on observer-based control and

estimation, choosing the appropriate observer gain matrix and initial values of observers can improve the performance of observers.

This problem will be investigated in our future work.
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Figure B2 Trajectory profiles of the MAS. (a) Trajectory profiles of the MAS using the self-triggered static output feedback

control; (b) Trajectory profiles of the MAS using the observer-based self-triggered control.
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Figure B3 The formation errors of the MAS using the self-triggered static output feedback control. (a) The formation error of

agent 1; (b) The formation error of agent 2; (c) The formation error of agent 3
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Figure B4 The formation errors of the MAS using the observer-based self-triggered control. (a) The formation error of agent 1;

(b) The formation error of agent 2; (c) The formation error of agent 3
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Figure B5 The triggering instants of each agent in the formation. (a) Triggering instants in self-triggered static output feedback

control; (b) Triggering instants in observer-based self-triggered control.
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