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Appendix A Proof of Theorem 1

The proof procedure is given as follows.

Define the Lyapunov functions as

V̄0j = ξ̃Tj Pj ξ̃j (A1)

with j = 1, 2, ..., n− 1.

According to (6), the time derivatives of V̄0j can be computed as

˙̄V 0j =
˙̃
ξTj Pj ξ̃j + ξ̃Tj Pj

˙̃
ξj

= ξ̃Tj (Wj − LjVj)
TPj ξ̃j + δTj HT

j Pj ξ̃j + ξ̃Tj Pj(Wj − LjVj)ξ̃j + ξ̃Tj PjHjδj

=

[
ξ̃j

δj

]T [
Pj(Wj − LjVj) + (Wj − LjVj)

TPj PjHj

HT
j Pj 0

][
ξ̃j

δj

]
.

(A2)

Construct the auxiliary functions as

Sj = V̄0j +

∫ t

0
(∥zj∥2 − γ2

j ∥δj∥
2)dt. (A3)

In view of (A2), the time derivatives of Sj can be derived as

Ṡj = ˙̄V 0j + ∥zj∥2 − γ2
j ∥δj∥

2

=

[
ξ̃j

δj

]T [
(PjWj − PLjVj) + (PjWj − PLjVj)

T + TT
j Tj PjHj

HT
j Pj −γ2

j I

][
ξ̃j

δj

]
.

(A4)

Hence, if Theorem 1 holds, we can get Sj = V̄0j +
∫ t
0 (∥zj∥2 − γ2

j ∥δj∥
2)dt 6 0 under the zero initial condition based on

Ṡj < 0. In other words,
∫ t
0 (∥zj∥2 − γ2

j ∥δj∥
2)dt 6 0 can be satisfied. That is, the robust H∞ performance ∥zj∥22 6 γ2

j ∥δj∥22
holds.

Appendix B Proof of Theorem 2

Based on the backstepping algorithm, the proof procedure of Theorem 2 is given as follows.

Step 1: Define ε1 = x1 − xd and consider the following Lyapunov function:

V̄1 =
1

2
ε21. (B1)

According to (11), the time-derivative of V̄1 can be given as

˙̄V 1 = ε1ε̇1

= ε1(x2 + d̂1 + d̃1 − ẋd)

= ε1(ε2 + u∗
1 + d̂1 + d̃1 − ẋd),

(B2)
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where ε2 = x2 − u∗
1, and u∗

1 is a virtual control law which can be designed as

u∗
1 = −k1ε1 − d̂1 + ẋd. (B3)

As a result, the equation (B2) can be simplified as

˙̄V 1 = −k1ε
2
1 + ε1ε2 + ε1d̃1. (B4)

Step 2: Consider the Lyapunov function:

V̄2 = V̄1 +
1

2
ε22. (B5)

Computing its time-derivative yields

˙̄V 2 = ˙̄V 1 + ε2ε̇2

= −k1ε21 + ε1ε2 + ε1d̃1 + ε2(ẋ2 − u̇∗
1)

= −k1ε21 + ε1ε2 + ε1d̃1 + ε2(x3 + d̂2 + d̃2 − ∂u∗
1

∂x1
ẋ1 − ∂u∗

1

∂ξ̂1

˙̂
ξ1 − ∂u∗

1

∂xd ẋ
d − ∂u∗

1

∂ẋd ẍ
d)

= −k1ε21 + ε1ε2 + ε1d̃1 + ε2(ε3 + u∗
2 + d̂2 + d̃2 − ∂u∗

1
∂x1

(x2 + d̂1 + d̃1)−
∂u∗

1

∂ξ̂1
(W1ξ̂1 + L1d̃1)

− ∂u∗
1

∂xd ẋ
d − ∂u∗

1

∂ẋd ẍ
d),

(B6)

where ε3 = x3 − u∗
2, and u∗

2 is a virtual control law. Similarly, the virtual control law u∗
2 can be designed as

u∗
2 = −k2ε2 − ε1 − d̂2 +

∂u∗
1

∂x1
(x2 + d̂1) +

∂u∗
1

∂ξ̂1
W1ξ̂1 +

∂u∗
1

∂xd
ẋd +

∂u∗
1

∂ẋd
ẍd. (B7)

Substituting (B7) into (B6) yields

˙̄V 2 = −k1ε
2
1 − k2ε

2
2 + ε2ε3 + ε1d̃1 + ε2d̃2 − ε2(

∂u∗
1

∂x1
d̃1 +

∂u∗
1

∂ξ̂1
L1d̃1). (B8)

Step 3: Consider the Lyapunov function:

V̄3 = V̄2 +
1

2
ε23. (B9)

It can be obtained that

˙̄V 3 = ˙̄V 2 + ε3ε̇3

= −k1ε21 − k2ε22 + ε2ε3 + ε1d̃1 + ε2d̃2 − ε2(
∂u∗

1
∂x1

d̃1 +
∂u∗

1

∂ξ̂1
L1d̃1) + ε3(ẋ3 − u̇∗

2)

= −k1ε21 − k2ε22 + ε2ε3 + ε1d̃1 + ε2d̃2 − ε2(
∂u∗

1
∂x1

d̃1 +
∂u∗

1

∂ξ̂1
L1d̃1) + ε3(ε4 + u∗

3 + d̂3 + d̃3

− (
2∑

q=1

∂u∗
2

∂xq
(xq+1 + d̂q + d̃q) +

2∑
q=1

∂u∗
2

∂ξ̂q
(Wq ξ̂q + Lq d̃q) +

3∑
q=1

∂u∗
2

∂xd(q−1) x
d(q))),

(B10)

where ε4 = x4 − u∗
3, and the virtual control law u∗

3 is designed as

u∗
3 = −k3ε3 − ε2 − d̂3 +

2∑
q=1

∂u∗
2

∂xq
(xq+1 + d̂q)+

2∑
q=1

∂u∗
2

∂ξ̂q
(Wq ξ̂q) +

3∑
q=1

∂u∗
2

∂xd(q−1)
xd(q). (B11)

Substituting (B11) into (B10), one obtains

˙̄V 3 = −k1ε
2
1 − k2ε

2
2 − k3ε

2
3 + ε3ε4 + ε1d̃1 + ε2d̃2 + ε3d̃3 − ε2(

∂u∗
1

∂x1
+

∂u∗
1

∂ξ̂1
L1)d̃1 − ε3(

2∑
q=1

∂u∗
2

∂xq
d̃q +

2∑
q=1

∂u∗
2

∂ξ̂q
Lq d̃q). (B12)

Step j(4 6 j 6 n− 1): Consider the following Lyapunov function

V̄j = V̄j−1 +
1

2
ε2j , (B13)

where εj = xj − u∗
j−1.

Its time-derivative can be derived as

˙̄V j = ˙̄V j−1 + εj ε̇j

= −
j−1∑
q=1

kqε2q + εj−1εj +
j−1∑
q=1

εq d̃q −
j−1∑
λ=2

(ελ(
λ−1∑
s=1

∂u∗
λ−1

∂xs
d̃s +

λ−1∑
s=1

∂u∗
λ−1

∂ξ̂s
Lsd̃s)) + εj(ẋj − u̇∗

j−1)

= −
j−1∑
q=1

kqε2q + εj−1εj +
j−1∑
q=1

εq d̃q −
j−1∑
λ=2

(ελ(
λ−1∑
s=1

∂u∗
λ−1

∂xs
d̃s +

λ−1∑
s=1

∂u∗
λ−1

∂ξ̂s
Lsd̃s)) + εj(εj+1 + u∗

j + d̂j + d̃j

−
j−1∑
q=1

∂u∗
j−1

∂xq
(xq+1 + d̂q + d̃q)−

j−1∑
q=1

∂u∗
j−1

∂ξ̂q
(Wq ξ̂q + Lq d̃q)−

j∑
q=1

∂u∗
j−1

∂xd(q−1) x
d(q)),

(B14)

where εj+1 = xj+1 − u∗
j .

By designing u∗
j as

u∗
j = −kjεj − εj−1 − d̂j +

j−1∑
q=1

∂u∗
j−1

∂xq
(xq+1 + d̂q) +

j−1∑
q=1

∂u∗
j−1

∂ξ̂q
Wq ξ̂q +

j∑
q=1

∂u∗
j−1

∂xd(q−1)
xd(q). (B15)
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The equation (B14) can be transformed into

˙̄V j = −
j∑

q=1

kqε
2
q + εjεj+1 +

j∑
q=1

εq d̃q −
j∑

λ=2

(ελ(

λ−1∑
s=1

∂u∗
λ−1

∂xs
d̃s +

λ−1∑
s=1

∂u∗
λ−1

∂ξ̂s
Lsd̃s)). (B16)

Step n: Construct the Lyapunov function

V̄n = V̄n−1 +
1

2
ε2n. (B17)

We can obtain the time-derivative of V̄n as

˙̄V n = ˙̄V n−1 + εnε̇n

= −
n−1∑
q=1

kqε2q + εn−1εn +
n−1∑
q=1

εq d̃q −
n−1∑
λ=2

(ελ(
λ−1∑
s=1

∂u∗
λ−1

∂xs
d̃s +

λ−1∑
s=1

∂u∗
λ−1

∂ξ̂s
Lsd̃s)) + εn(ẋn − u̇∗

n−1)

= −
n−1∑
q=1

kqε2q + εn−1εn +
n−1∑
q=1

εq d̃q −
n−1∑
λ=2

(ελ(
λ−1∑
s=1

∂u∗
λ−1

∂xs
d̃s +

λ−1∑
s=1

∂u∗
λ−1

∂ξ̂s
Lsd̃s)) + εn(f0(x1, x2, ..., xn)

+ x̂n+1 + b0u+ e2 − u̇∗
n−1),

(B18)

Note that the following equation holds:

u̇∗
n−1 =

n−1∑
q=1

∂u∗
n−1

∂xq
(xq+1 + d̂q + d̃q) +

n−1∑
q=1

∂u∗
n−1

∂ξ̂q
(Wq ξ̂q + Lq d̃q) +

n∑
q=1

∂u∗
n−1

∂xd(q−1)
xd(q). (B19)

Then, based on (12), we can derive that

˙̄V n = −
n∑

q=1

kqε
2
q +

n−1∑
q=1

εq d̃q + εne2 −
n∑

λ=2

(ελ(

λ−1∑
s=1

∂u∗
λ−1

∂xs
d̃s +

λ−1∑
s=1

∂u∗
λ−1

∂ξ̂s
Lsd̃s)). (B20)

For the sake of simplicity, define ∆λ =
λ−1∑
s=1

∂u∗
λ−1

∂xs
d̃s +

λ−1∑
s=1

∂u∗
λ−1

∂ξ̂s
Lsd̃s. One can obtains

˙̄V n = −
n∑

q=1
kqε2q +

n−1∑
q=1

εq d̃q + εne2 −
n∑

λ=2
ελ∆λ

6 −k1ε21 −
n−1∑
q=2

kqε2q − knε2n + ∥ε1∥
∥∥∥d̃1∥∥∥+

n−1∑
q=2

∥εq∥
∥∥∥d̃q∥∥∥+ ∥εn∥ ∥e2∥+

n−1∑
λ=2

∥ελ∥ ∥∆λ∥+ ∥εn∥ ∥∆n∥

6 −k1ε21 −
n−1∑
q=2

kqε2q − knε2n +
ε21
2

+
d̃21
2

+
n−1∑
q=2

(
ε2q
2

+
d̃2q
2
) +

ε2n
2

+
e22
2

+
n−1∑
λ=2

(
ε2λ
2

+
∆2

λ
2

) +
ε2n
2

+
∆2

n
2

= −(k1 − 1
2
)ε21 −

n∑
q=2

(kq − 1)ε2q +
n−1∑
q=1

d̃2q
2

+
n∑

λ=2

∆2
λ
2

+
e22
2
.

(B21)

From Theorem 1, it can be seen that ∆λ and d̃q are bounded. Meanwhile, according to [1,2], by properly selecting the

parameters β1 and β2 in ESO, the estimation errors e1 and e2 can be limited small enough. Then, one can obtain that
n−1∑
q=1

d̃2q
2
+

n∑
λ=2

∆2
λ
2

+
e22
2

is bounded. Hence, according to [3], the variables εp (p = 1, 2, ..., n) will converge to the neighborhoods

of zeros asymptotically by selecting k1 > 1
2
and kq > 1. Thus, x1 will converge to the neighborhood of xd asymptotically.

This completes the proof.

Appendix C Numerical simulation

In this section, in order to demonstrate the effectiveness of proposed methods, numerical simulations are conducted. Without

loss of generality, a second order control system is considered as follows:{
ẋ1 = x2 + d1,

ẋ2 = f0(x1, x2) + bu+ w.
(C1)

Assume that d1 = a sin(ω0t+ φ), where the frequency information ω0 = 2 is known. Set a = 0.5, φ = π
3
, H1 = I, and δ

is a bounded random signal (∥δ∥ 6 0.5) in this simulation. Then, we can get W1 =

[
0 2

−2 0

]
, V1 =

[
1 0

]
.

The desired trajectory is selected as xd = sin(t). The nonlinear function f0(x1, x2) = x2
1 + x2, the parameters b0 = 1,

and ∆b = 0.2 are adopted. The disturbance w is assumed to be w = 0.2 + sin(0.1t+ π
6
).

For the above second order system, the EADC can be written as

u = −
1

b0
((1 + k1k2)x1 + (k1 + k2)x2 − (1 + k1k2)x

d + (k1 + k2)d̂1 − (k1 + k2)ẋ
d + f0(x1, x2) + x̂3 + V1W1ξ̂1 − ẍd). (C2)

The parameters for the DO, ESO, and controller are selected as L1 = [9.20, 7.69]T , α = 0.1, β1 = −5, and β2 = −50.

The initial conditions of x1 and x2 are 1 and 0.5, respectively. Based on these parameters, the simulation results are shown

as follows.
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Figure C1 shows the performance of DO in estimating the unmatched disturbance d1, from which we can see that the

proposed DO can estimate the actual value of d1 precisely and rapidly. Similarly, it can be concluded from Figure C2

that the proposed ESO can estimate the matched disturbance f1(u,w) effectively. The two figures have demonstrated the

effectiveness of proposed DO and ESO in disturbance estimation.

On the basis of disturbance estimation, the controller (C2) is designed. It can be seen from Figure C3 that the state x1

can track the desired trajectory xd precisely under the proposed EADC. Moreover, comparisons with linear ADRC method

proposed in [2] are given. The bandwidth of ESO for the linear ADRC is selected as 20. From Figure C4 we can see that,

compared to the linear ADRC method, the control accuracy has been significantly improved by the proposed EADC.
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Figure C1 The performance of DO in estimating d1.

0 20 40 60 80 100
-20

-15

-10

-5

0

5

10

Time(s)

E
st

im
at

e 
o
f 

f 1
(u

,w
)

f
1
(u,w)

Output of ESO

(a) Estimate of f1(u,w)
 

90 92 94 96 98 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Time(s)

E
st

im
at

e 
o
f 

f 1
(u

,w
)

f
1
(u,w)

Output of ESO

(b) Partial enlargement

Figure C2 The performance of ESO in estimating f1(u,w).
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Figure C3 The performance of EADC.
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