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Dear editor,
This study reports the discovery of active dis-
turbance rejection control (ADRC). Second-order
linear ADRC (LADRC), the basic and most
popular ADRC, can be interpreted as a modi-
fied proportional-integral-derivative (PID) control.
LADRC filters the PID feedback compensator
with a second-order low-pass filter; it also adds
a pre-filter. Simultaneously, each given PID con-
troller can be viewed as a special case of a second-
order LADRC feedback compensator whose ob-
server bandwidth is positive infinity.

Since it was proposed by Han [1], ADRC has
been known to have an intrinsic relationship with
PID control in philosophy and methodology [2],
and it is often used in practice to replace PID con-
trol. However, revealing the mathematical rela-
tionship between ADRC and PID is tough because
the original version of ADRC is nonlinear and dif-
ficult to analyze. Gao [3] simplified this original
version to LADRC and opened the door of analysis
via the classical control theory. Tian and Gao [4]
found that second-order LADRC has a structure
that combines a feedback compensator and a pre-
filter. Yuan et al. [5] and Zhang et al. [6] respec-
tively analyzed the frequency properties of second-
order LADRC and almost discovered its relation-
ship to PID control. Unfortunately, Ref. [5] in-
correctly connected two controller bandwidth pa-
rameters to proportional-derivative (PD) control,
whereas, although Ref. [6] pointed out that the

feedback compensator is a phase-lead element in
series with an integrator, Ref. [6] missed the rela-
tionship to PID control.

Based on the above analysis, this study proposes
a new interpretation of the second-order LADRC
feedback compensator. Herein, it is viewed as a
PID controller filtered using a second-order low-
pass filter, which strengthens the ability to sup-
press high frequency measurement noise. Further-
more, a modified bandwidth parameter tuning ap-
proach is proposed. For each given PID control
with positive parameters, the tuning approach can
construct a family of LADRCs whose compen-
sator’s Bode plot converges to that of the PID
controller at low frequencies whose bandwidth can
be arbitrarily large. Hence, each PID controller
can be individually viewed as a special case of the
LADRC feedback compensator.

In the following, a lowercase letter is used to
represent a time-domain signal, whereas the corre-
sponding capital letter is used to describe the sig-
nal in the frequency-domain, e.g., y(t) and Y (s);
here j is the symbol for an imaginary number.

Introduction of second-order LADRC. Consider
the following second-order plant:

ÿ = −a1ẏ − a2y + bu, (1)

where u and y are the input and output signals,
respectively. The parameters a1, a2, and b are un-
known while b is assumed positive. The problem
is to design an output feedback controller to track
a reference signal r.
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Let b0 > 0 be a nominal value of b; hence, we
re-write (1) as

ÿ = −a2y − a1ẏ + (b− b0)u+ b0u.

Let f = −a2y − a1ẏ + (b − b0)u. The plant (1)
has second-order Han canonical form

ÿ = b0u+ f, (2)

wherein f is called total disturbance.
Introducing state variables x1 = y, x2 = ẏ, and

extended state x3 = f , Eq. (2) can be written in
state space as











ẋ1 = x2,

ẋ2 = x3 + b0u,

ẋ3 = ḟ ,

(3)

y = x1. (4)

To estimate x1, x2, and x3, a linear extended
state observer (LESO) for (3) and (4) is designed
as follows:















˙̂x1 = β1(y − x̂1) + x̂2,

˙̂x2 = β2(y − x̂1) + x̂3 + b0u,

˙̂x3 = β3(y − x̂1),

(5)

where β1, β2, and β3 are tuning parameters. Let
l1, l2 be two tuning parameters; hence

u = [l2(r − x̂1)− l1x̂2 − x̂3]/b0. (6)

The plant (1), LESO (5), and controller (6) are
the LADRC, which is called second-order because
the Han canonical form (2) is second-order.

A PID interpretation of second-order LADRC.
Substituting (6) into (5), we obtain















˙̂x1 = −β1x̂1 + x̂2 + β1y,

˙̂x2 = −(β2 + l2)x̂1 − l1x̂2 + β2y + l2r,

˙̂x3 = −β3x̂1 + β3y.

(7)

Considering (7) and (6) as a double-input-
single-output system with two inputs y and r with
an output u, the transfer functions from y and r
to u are as follows:

U(s)

Y(s)
=− (β1l2+β2l1+β3)s

2+(β2l2+β3l1)s+β3l2
b0s[s2+(β1+l1)s+β1l1+β2+l2]

,

U(s)

R(s)
=

l2(s
3+β1s

2+β2s+β3)

b0s[s2+(β1+l1)s+β1l1+β2+l2]
.

Thus, we obtain a block diagram of the second-
order LADRC shown in Figure 1(a), where the
plant

P (s) = b/(s2 + a1s+ a2),

the feedback compensator

C(s)=
(β1l2+β2l1+β3)s

2+(β2l2+β3l1)s+β3l2
b0s[s2+(β1+l1)s+β1l1+β2+l2]

,

and the pre-filter

C1(s)=
l2(s

3+β1s
2+β2s+β3)

(β1l2+β2l1+β3)s2+(β2l2+β3l1)s+β3l2
.
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Figure 1 (Color online) Frequency analysis of the feed-
back compensator of second-order LADRC. (a) Block dia-
gram of second-order LADRC; (b) Bode plots of C(s) and
CPID(s), in which Kc = 2.5, τI = 1.777, τD = 0.4.

As the pre-filter C1(s) is discussed in [6], this
study focuses on the compensator C(s). Let

KC =
β2l2 + β3l1

b0(β1l1 + β2 + l2)
, (8)

τI =
β2l2 + β3l1

β3l2
, τD =

β1l2 + β2l1 + β3

β2l2 + β3l1
, (9)

ωL=
√

β1l1+β2+l2, ξL=
β1+l1

2
√
β1l1+β2+l2

, (10)

and

CPID(s) = KC [1 + 1/(τIs) + τDs],

FL(s) = ω2
L/(s

2 + 2ξLωLs+ ω2
L);

hence, it is easy to verify

C(s) = CPID(s)FL(s). (11)

Thus, the feedback compensator C(s) is a par-
allel form PID controller CPID(s) filtered by a
second-order low-pass filter FL(s).
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The low-pass filter FL(s) has two results: when
ω ≫ ωL, it has |FL(jω)| ≪ 1 such that

|C(jω)P (jω)| ≪ |CPID(jω)P (jω)|,

which implies that LADRC is much better than
PID in reducing the effect of high-frequency mea-
surement noise. Next, when ω ≪ ωL, it has
|FL(jω)| ≈ 1 and C(jω) ≈ CPID(jω), which means
at low-frequencies, C(s) is similar to CPID(s).

Remark 1. With KP = KC , KI = KC/τI , and
KD = KcτD, Eq. (11) can be written as

CPID(s) = KP +KI/s+KDs. (12)

Both (11) and (12) are commonly used in control
literature.

Convergence theorem and discussions. Next, we
compare C(s) and CPID(s) in the frequency do-
main.

Theorem 1. Let ωo be a positive tuning param-
eter called observer bandwidth. Suppose β1, β2,
and β3 are generated with

β1 = 3ωo, β2 = 3ω2
o, β3 = ω3

o , (13)

whereas b0, l1, and l2 are generated by solving (8)
and (9). Then, for each Kc, τI , τD > 0, arbitrary
large ω̄ > 0, and arbitrary small ǫ, φ > 0, there
exists ω∗ > 0 such that, if ωo > ω∗, then for each
ω ∈ (0, ω̄), we have

|CPID(jω)| > |C(jω)| > |CPID(jω)|(1 + ǫ)−1,

∠CPID(jω) > ∠C(jω) > ∠CPID(jω)− φ.

The proof of Theorem 1 is provided in Appen-
dix A. Theorem 1 rigorously establishes an intu-
itive relationship between PID control and second-
order LADRC, which is illustrated in Figure 1(b),
where the black solid line is the Bode plot of
CPID(s), whereas the colored lines are the Bode
plots of C(s) with different ωo. By increasing
the observer bandwidth ωo to infinity, the Bode
plot of C(s) converges to the Bode plot of CPID(s)
at low-frequencies, while the low-frequency band-
width also increases to positive infinity. Hence,
CPID(s) can be viewed as a special case of C(s) at
ωo = +∞.

Theorem 1 will benefit the research of LADRC
in two ways, including parameter tuning and sta-
bilization. Theorem 1 proposes a modified band-
width tuning approach: (1) to choose KC , τI , and
τD; (2) to increase ωo and generate β1, β2, β3,
l1, l2, and b0. Theorem 1 guarantees that with
the tuned parameters, second-order LADRC has
a gain and phase margin similar to that of the
PID controller with parameters KC , τI , and τD.
This tuning approach is suitable for cases where

an old but well-functioning PID controller is re-
placed with LADRC.

Theorem 1 also aids in understanding the sta-
bilizing ability of the LADRC and PID control. A
linear-time-invariant controller’s stabilizing ability
can be described through its low-frequency Bode
plot. If an LADRC controller and a PID con-
troller have similar Bode plots at low-frequencies,
it implies that they have similar stabilizing ability.
Hence, using the justification results of PID [7],
Theorem 1 proposes a new approach to justify the
ability of LADRC to stabilize uncertain and non-
linear plants, or the ability of the modified LADRC
approaches discussed in [8] to deal with time delay.
In addition, Theorem 1 can aid the understanding
of the PID mechanism in the frequency domain
by considering a PID controller as a low-frequency
approximation of its corresponding LADRC feed-
back compensator together with LADRC’s stabi-
lizing ability [9].
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