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Abstract For computations on large-scale graphs, one often resorts to parallel algorithms. However, paral-

lel algorithms are difficult to write, debug and analyze. Worse still, it is difficult to make algorithms parallelly

scalable, such that the more machines are used, the faster the algorithms run. Indeed, it is not yet known

whether any PTIME computational problems admit parallelly scalable algorithms on shared-nothing systems.

Is it possible to parallelize sequential graph algorithms and guarantee convergence at the correct results as

long as the sequential algorithms are correct? Moreover, does a PTIME parallelly scalable problem exist on

shared-nothing systems? This position paper answers both questions in the affirmative.
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1 Introduction

When processing large-scale graphs, parallel computations are often a must. Several parallel systems have

been developed for graph computations, e.g., Pregel [1], PowerGraph [2], and Giraph++ [3]. However,

to make effective use of parallel graph computations, at least two issues have to be addressed.

The first issue concerns the programming models of parallel graph systems. Parallel algorithms are

difficult to write, debug, and analyze [4]. On the one hand, a large number of sequential (single-machine)

graph algorithms are already in place. On the other hand, to use Pregel, for instance, one has to “think

like a vertex” and recast the existing algorithms into a vertex-centric model; similarly when programming

with other parallel graph systems. The recasting is nontrivial for people who are not very familiar with

parallel models. This makes these parallel systems a privilege for experienced users.

The second issue involves the effectiveness of parallel algorithms. When we turn to a parallel graph

system, we assume that when provided with more processors (computing nodes), we can make effective

use of the additional resources and speed up the execution of our algorithms. However, is this assump-

tion always correct? Parallel systems typically adopt the shared-nothing architecture nowadays. On

such a system, the use of more processors is often accompanied by heavier communication among these

processors. As a consequence, while the use of more processors may distribute the computational cost,

the parallel runtime of our algorithms may not necessarily be reduced. For instance, algorithms for

single-source shortest path are “essentially not scalable with an increasing number of machines” [5].

These concerns highlight the need for studying the following problems.
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Parallelization. Is it possible to parallelize existing sequential graph algorithms? That is, we want a

system such that we can “plug” sequential graph algorithms into it as a whole (subject to minor changes),

and it parallelizes the computation across a cluster of processors. Moreover, the parallelized computation

(a) should converge at the correct results under a generic condition, as long as the sequential algorithms

plugged in are correct; and (b) should not degrade the performance of the existing parallel systems.

Intuitively, parallelization allows us to reuse existing sequential algorithms for parallel computations

without making substantial changes, such that we can “think sequential” instead of “think parallel”.

This would make parallel graph computations accessible to a large group of users who know conventional

graph algorithms covered in undergraduate textbooks, and reduce the total cost of ownership (TCO).

Parallel scalability. How should we characterize the effectiveness of parallel algorithms? A natural cri-

terion is parallel scalability [6], which measures speedup over sequential algorithms by parallelization, such

that the more processors we use, the faster the parallel algorithms run. Intuitively, a parallelly scalable

algorithm is able to scale with big data by adding processors when required. Of course, parallel scalabil-

ity is not the only criterion for evaluating parallel algorithms. However, if an algorithm is not parallelly

scalable, the chances are that it may not be able to cope with real-life graphs when they grow very large.

Parallel scalability is difficult to achieve, especially on shared-nothing systems. To the best of our

knowledge, parallelly scalable algorithms on such systems are only available for intractable problems

such as subgraph isomorphism [7–9]. When it comes to tractable (PTIME, polynomial-time computable)

problems, no parallelly scalable algorithm is yet available on shared-nothing systems. Moreover, it is

known that for graph simulation (a quadratic-time problem), parallelly scalable algorithms are beyond

reach [10]. This suggests that parallel scalability requests a departure from the polynomial hierarchy in

classical computational complexity theory [11]. An immediate question is, on shared-nothing systems,

whether there exists any PTIME computational problem that admits parallelly scalable algorithms at all.

Contributions & organization. This position paper provides an informal overview of our latest

efforts to the above problems. We present GRAPE [12], a recent graph system that supports parallelization.

We also report new results on the parallel scalability of PTIME computational problems.

(1) Parallelization (Section 2). We present GRAPE, a parallel graph engine [12], based on a fixpoint

model with partial evaluation and incremental computation. It adopts a shared-nothing architecture in

which each processor runs a sequential algorithm on a fragment of a partitioned graph and communicates

with other processors via message passing. It supports a simple programming model that takes existing

sequential graph algorithms, and parallelizes their computation without the need for revising their logic.

Better still, the computation guarantees to converge at the correct results under a monotone condition,

as long as the sequential algorithms are correct. As shown in [12,13], besides its programming simplicity,

GRAPE performs better than or is at least comparable to the state-of-the-art parallel graph systems.

(2) Parallel scalability (Section 3). We formalize the notion of parallel scalability following [6] by taking

the sequential complexity of single-machine algorithms as a yardstick. We identify a simple sufficient

condition for determining whether a certain graph algorithm is parallelly scalable on shared-nothing

systems, by simulating existing efficient algorithms developed for shared-memory systems.

(3) Parallelly scalable algorithms (Section 4). Based on the identified condition, we show that parallel

scalability is within the reach of PTIME computational problems. As constructive proofs, we develop

parallel algorithms for graph connectivity and minimum spanning trees, two well-known PTIME problems

in graph theory. We show that these algorithms are parallelly scalable under the GRAPE model. To the

best of our knowledge, these are the first PTIME algorithms with provable parallel scalability.

(4) Open problems (Section 5). This position paper is by no means a survey of the development in this

area. It rather aims to incite interest in this subject. Hence we identify open issues for future work.

Related work. We characterize the related work as follows.

Parallelization. Several parallel graph systems are already in place (see [14] for a survey). These

systems, either vertex-centric or block-centric, require recasting sequential algorithms into a new model

and revising the logic of the algorithms. Prior work on parallelization has focused on the instruction or

operator level [15,16] by breaking dependencies via symbolic and automatic analyses. There has also been

work at the data partition level [17], to perform multi-level partition (“parallel abstraction”) and adapt
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locality-optimized access to different parallel abstractions. In contrast, GRAPE aims to parallelize sequen-

tial algorithms as a whole, and make parallel computation accessible to end users, while Refs. [15–17]

target experienced developers of parallel algorithms. There have also been tools for translating imperative

code to MapReduce, e.g., word count [18]. GRAPE advocates a different approach, by parallelizing the

runs of sequential graph algorithms to benefit from data-partitioned parallelism, without translation.

Parallel scalability. Parallel scalability has been studied for PRAM (parallel random access machine),

a shared-memory parallel model [6]. Under PRAM, all processors can directly access globally shared

memory, each step of computation is either a RAM operation or a read/write access to the shared

memory, and each read/write takes a unit time. PRAM has three variants, i.e., EREW, CREW, and

CRCW [19], based on how read and write access conflicts to the same shared memory cell are resolved.

For the strongest CRCW PRAM with n processors and m shared memory cells, one step can be simulated

by the weakest EREW PRAM in O(log n) steps with n processors and m+ n shared memory cells [20].

Therefore, in this paper, we consider w.l.o.g. EREW, hereafter simply referred to as PRAM.

A number of parallelly scalable algorithms have been developed for PRAM, e.g., connectivity [21],

bi-connectivity [22], co-connectivity [23], and minimum spanning tree [21]. Each of these problems has

been shown to admit a PRAM algorithm in polylog|G| time with O(|G|) processors. Then by Brent’s

scheduling principle [24], for any n 6 |G|, there exists a PRAM algorithm running in |G|polylog|G|/n
time with n processors for these problems. In 1997, Spencer [25] showed that the directed breadth-first

search problem and topological order problem both admit PRAM algorithms in O( |V | log2 n
n1/3 ) time with

n processors, for any (|E|/|V |)3/2 6 n 6 |V |3 (assuming |V | = O(|E|)). Note that if n = (|E|/|V |)3/2,
then the runtime is O( |V |3/2 log2 |E|√

|E|
). By Brent’s scheduling principle [24], for any n 6 (|E|/|V |)3/2, there

exists a PRAM algorithm running in O( |E| log2 |E|
n ) time with n processors for each of them.

However, PRAM is a theoretical model and is hard to implement. In contrast to PRAM, parallel

systems typically adopt the shared-nothing architecture in practice, for which communication cost is in-

evitable. A variety of simulation techniques have been developed for transforming the PRAM algorithms

to the shared-nothing models and making them practical [26]. It has been shown that each PRAM algo-

rithm with n processors and m memory, where m is polynomial in n, can be simulated deterministically

on a module parallel computer (MPC) of n RAM processors with O(logm/ log logm) memory redun-

dancy and O(log n/ log logn) slowdown [27]. MPC is a fully connected parallel computer comprising a

number of RAM processors, each with an associated memory module. All requests that arrive at a mem-

ory module in a given cycle are processed sequentially. The MPC model is very different from GRAPE

model. We will elaborate on the differences between our results and those of [26] in Section 3.

It is shown in [28, 29] that a PRAM algorithm using t time with n total memory and n processors

can be simulated by a MapReduce algorithm, in O(t) rounds using at most O(n) reducers and memory.

The work, however, does not consider communication cost. While some PRAM algorithms for graph

connectivity have been transformed to a vertex-centric model [30], parallel scalability has not been con-

sidered. In contrast, we study simulation strategies for general PTIME graph problems not limited to

graph connectivity, under GRAPE model that subsumes vertex-centric models and MapReduce [12].

On shared-nothing systems, parallelly scalable algorithms have been developed for graph pattern

matching by subgraph isomorphism [7,8] and homomorphism [9]. However, to our knowledge, no PTIME

parallelly scalable graph algorithms are currently known. Worse yet, no parallelly scalable algorithm ex-

ists for graph simulation when the number of processors can be as large as the size of a graph [10]. This

work provides the first PTIME algorithms with proven parallel scalability on shared-nothing systems.

2 Parallelizing sequential graph algorithms

In this section, we show how GRAPE parallelizes existing sequential graph algorithms.

We consider a graph G = (V,E, L), directed or undirected, where (1) V is a finite set of nodes; (2) E

⊆ V × V is a set of edges; and (3) each node v in V (resp. edge e ∈ E) carries a label L(v) (resp. L(e)),
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indicating its content, as found in social networks, knowledge bases and property graphs.

Shared-nothing system. GRAPE adopts a shared-nothing architecture, and supports data parti-

tioned parallelism. Employing a master P0 and a set of n workers (i.e., processors) P1, . . . , Pn, GRAPE

operates on a graph G that is fragmented into (F1, . . . , Fn). For i ∈ [1, n], each worker Pi hosts a fragment

Fi in G. Each fragment Fi = (Vi, Ei, Li) is a subgraph of G such that E =
⋃

i∈[1,m]Ei, V =
⋃

i∈[1,m] Vi.

To simplify the presentation, we consider edge-cut partitions [31, 32] in this paper. Nevertheless,

GRAPE supports any partitioner strategy picked by users, e.g., vertex-cut partitions [33] and hybrid

cut [34]. Under an edge-cut partition, denote by (1) Fi.I the set of nodes v ∈ Vi such that there exists

a cut edge (v′, v) from a node v′ in Fj (i 6= j); (2) Fi.O the set of nodes v′ in some Fj such that there

exists a cut edge (v, v′) from v ∈ Vi (i 6= j); and (3) F .O =
⋃

i∈[1,m] Fi.O, and F .I =
⋃

i∈[1,m] Fi.I. A

cut edge from Fi to Fj has a copy in each of Fi and Fj . We refer to nodes in Fi.I (or Fi.O) as border

nodes of Fi. Note that F .I = F .O.

Programming model. Consider a graph computation problem Q. Using our familiar terms, we

refer to an instance Q of Q as a query of Q. To answer queries Q ∈ Q on graphs G, GRAPE takes a

PIE program ρ = (PEval, IncEval, Assemble), which consists of three (existing) sequential algorithms as

follows:

◦ PEval is a sequential algorithm for Q. Given Q ∈ Q and G, it computes answers Q(G) to Q in G.

◦ IncEval is a sequential incremental algorithm for Q. Given Q, G, Q(G) and updates M to graph G,

it computes changes ∆O to Q(G) such that Q(G⊕M) = Q(G)⊕∆O. Here S ⊕∆S applies ∆S to S.

◦ Assemble collects partial answers computed locally at each worker by PEval and IncEval, and combines

them into a complete answer; it is typically simple.

Both PEval and IncEval can be existing sequential algorithms, with the following additions. (1) PEval

declares a set x̄ of status variables for each fragment Fi, and a candidate set Ci of nodes in Fi. Intuitively,

the status variables of nodes in Ci, denoted by Ci.x̄, are the candidates to be updated during incremental

computation (see below). We refer to Ci.x̄ as the update parameters of fragment Fi. (2) PEval also defines

an aggregate function faggr to resolve conflicts, when an update parameter in Ci.x̄ is given multiple values

by different workers in parallel computation. These definitions are shared with IncEval.

Example 1. Consider graph simulation [35], for which a query is a graph pattern Q = (VQ, EQ, LQ),

where (a) VQ is a set of query nodes, (b) EQ is a set of query edges, and (c) each node u in VQ carries a

label LQ(u). A graph G = (V,E, L) matches a pattern Q via simulation if there exists a binary relation

R ⊆ VQ × V such that (1) for each query node u ∈ VQ, there exists a node v ∈ V such that (u, v) ∈ R,

and (2) for each pair (u, v) ∈ R, (a) LQ(u) = L(v), and (b) for each query edge (u, u′) in Eq, there exists

an edge (v, v′) in graph G such that (u′, v′) ∈ R. There exists a unique maximum such relation (possibly

empty) [35], denoted by Q(G), which can be computed in O((|VQ|+ |EQ|)(|V |+ |E|)) time [36].

GRAPE parallelizes graph simulation with a PIE program ρ = (PEval, IncEval, Assemble) as follows.

◦ PEval. PEval is the sequential simulation algorithm of [35]. It declares a Boolean status variable

x(u,v) for each query node u in VQ and each node v in Fi, indicating whether v matches u, initialized

true. It takes Fi.I as candidate set Ci. PEval specifies min as its aggregate function faggr, taking the

order false ≺ true (we will elaborate it shortly). As shown in Figure 1(a), PEval (lines 1–15) is identical

to the algorithm of [35], except the underlined parts to cope with status variables. For each node u ∈ VQ,

it starts with a set sim(u) of candidate matches v in Fi (lines 1–5), and iteratively removes from sim(u)

nodes that violate the simulation condition (lines 6–14). It uses post(v) and pre(v) for successors and

predecessors of node v, respectively (see [35]). It refines matches sim(u) for all u ∈ VQ, and ends up with

Q(Fi).

◦ IncEval. As shown in Figure 1(b), IncEval is the sequential incremental graph simulation algorithm

of [37] in response to edge deletions. If x(u,v) is changed to false by message Mi, it is treated as deletion of

“cross edges” from v ∈ Fi.O. Using a stack (line 1), it starts with changed status variables in Mi, propa-

gates the changes to affected area, and removes from sim those matches that become invalid (lines 4–9).

IncEval is semi-bounded [37]: its cost is decided by the sizes of “updates” |Mi| and changes to the

affected area necessarily checked by all incremental algorithms for simulation; it is not decided by |Fi|.
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Figure 1 GRAPE for graph simulation. (a) PEval and (b) IncEval for simulation.

◦ Assemble. Assemble (not shown) simply takes Q(G) =
⋃

i∈[1,n] Q(Fi), the union of sim at each Fi. 2

Parallel model. Under the bulk synchronous parallel model (BSP) [38], given a query Q ∈ Q, GRAPE

posts the same Q to all workers, and executes a PIE program in supersteps as a simultaneous fixpoint

computation defined as follows, by treating IncEval as its intermediate consequence operator:

R0
i = PEval(Q,F 0

i [x̄]), (1)

Rr+1
i = IncEval(Q,Rr

i , F
r
i [x̄],Mi), (2)

where i ∈ [1, n], r is the superstep index, Rr
i is the partial result in step r at worker Pi, F

0
i = Fi, F

r
i [x̄] is

fragment Fi at the end of superstep r (including its update parameters Ci.x̄), and Mi denotes messages

sent to Pi, i.e., changes to Ci.x̄. More specifically, the parallel computation is conducted as follows.

(1) Partial evaluation (PEval). In the first superstep, PEval computes the partial answers R0
i = Q(Fi)

at each worker Pi on its local fragment Fi, in parallel for all i ∈ [1, n]. After Q(Fi) is computed, each

worker generates a message consisting of update parameters Ci.x̄ and sends it to master P0.

Continuing with Example 1, at the end of the process, PEval sends Ci.x̄ = {x(u,v) |u ∈ VQ, v ∈ Fi.I}
to master P0. Upon receiving messages from all workers, P0 changes x(u,v) to false if it is false in one

of the messages. This is handled by aggregate function faggr (min) specified in PEval. GRAPE identifies

those variables that become false, groups them into messages Mj , and sends Mj to processor Pj .

The connection between PEval and partial evaluation is as follows. Given a function f(s, d) and the s

part of its input, partial evaluation is to specialize f(s, d) with respect to the known input s [39]. That

is, it performs the part of f ’s computation that depends only on s, and generates a partial answer, i.e., a

residual function f ′ that depends on the as yet unavailable input d. For PEval at each processor Pi, the

local fragment Fi is its known input s, while the data residing at other processors accounts for the yet

unavailable input d. As the first step of parallel computation, PEval computes Q(Fi) as partial evaluation.

(2) Incremental computation (IncEval). In the following supersteps, the partial answers Q(Fi)’s are

iteratively updated by IncEval. More specifically, (a) master P0 applies faggr to the messages from the

last superstep to resolve conflicts. These aggregated values are routed to the relevant workers. (b) Upon

receiving the message Mi, worker Pi incrementally computes Rr+1
i = Q(Fi ⊕Mi) with IncEval in parallel

for i ∈ [1, n], by treating Mi as updates. At the end of each superstep, worker Pi sends a message to P0

that consists of changes to the update parameters Ci.x̄ of Fi just as in PEval.

Continuing with Example 1, at the end of its process, IncEval sends to master P0 updated values of

status variables in Ci.x̄, i.e., x(u,v) that is changed from true to false in this superstep for v ∈ Fi.I.
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Intuitively, graph computations are often iterative. If Q(G) cannot be obtained in one round by PEval,

GRAPE exchanges selected partial results as messages between processors, and IncEval incrementally

computes Q(Fi⊕Mi) = Q(Fi)⊕∆Oi, by treating message Mi to Pi as updates to the update parameters

of Fi, reusing the old output Q(Fi). Incremental computation is often more efficient than recomputing

Q(Fi ⊕Mi) from scratch, since in practice, Mi is typically small, and so is ∆Oi. Better still, it may be

bounded: its cost depends only on the sizes of the message Mi to and changes ∆Oi to the output Q(Fi),

not on the size |Fi| of the entire fragment Fi [40, 41], minimizing unnecessary recomputation.

(3) Termination. The process proceeds until it reaches a fixpoint, i.e., no more changes to update

parameters. At this point Assemble is invoked to combine all partial answers into Q(G).

Convergence. The correctness of the fixpoint computation is characterized as follows. For a graph

computation problem Q, we say that GRAPE correctly parallelizes a PIE program ρ if for all queries Q ∈ Q
and graphs G, it reaches a fixpoint and returns Q(G). Moreover, (a) its sequential algorithm PEval is

correct for Q if for all queries Q ∈ Q and graphs G, it computes Q(G); (b) its sequential incremental

algorithm IncEval is correct for Q if it returns Q(G ⊕M) by computing the changes ∆O to old output

Q(G), for changes (messages) M to update parameters; and (c) Assemble is correct for Q if it computes

Q(G) by assembling the partial answers from all workers, when GRAPE reaches a fixpoint.

It is shown that under BSP, GRAPE [12] correctly parallelizes a PIE program ρ for a graph computation

problem Q if (a) PEval, IncEval, and Assemble of ρ are correct for Q, and (b) PEval and IncEval satisfy

a monotonic condition. The condition is as follows: for all status variables x ∈ Ci.x̄, i ∈ [1, n], (a) the

values of x are from a finite set computed from the active domain of G, and (b) there exists a partial

order px on the values of x such that IncEval updates x in the order of px. That is, x draws values from

a finite domain (condition (a) above), and x is updated “monotonically” following px (condition (b)).

For example, the correctness of the PIE program of Figure 1 for graph simulation is warranted by

the convergence condition. Indeed, the sequential algorithms [35,37] (PEval and IncEval) are correct and

monotonic: x(u,v) is initially true for each border node v, and is changed at most once to false.

Properties. GRAPE has the following unique features.

(1) GRAPE aims to help users develop parallel programs, especially those who are more familiar with

conventional sequential programming. To program with GRAPE, one only needs to provide a PIE program,

which consists of (existing) sequential algorithms with minor changes. GRAPE parallelizes the sequential

algorithms as a whole. As a result, users do not have to “think parallel” when programming with GRAPE.

(2) Under a monotone condition, GRAPE parallelization guarantees to converge at the correct results

as long as the sequential algorithms are correct. This works regardless of partitioning strategy used, and

it is not limited to edge-cut and vertex-cut. Nonetheless, different strategies may yield partitions with

various degrees of skewness and stragglers, which have an impact on the performance.

(3) As shown in [12], GRAPE substantially outperforms most state-of-the-art parallel graph systems

in efficiency, for the following reasons. (a) GRAPE inherits existing optimization techniques developed

for sequential graph algorithms, since it executes sequential algorithms on graph fragments, which are

graphs themselves. (b) GRAPE reduces the costs of iterative graph computations by using IncEval, to

minimize unnecessary recomputations, irrespective of whether IncEval is bounded or not. The performance

improvement has been validated by Alibaba Group, where GRAPE has been deployed.

(4) As shown in [13], PIE programs also work under asynchronous models and guarantee to converge

under a generic condition as long as the sequential algorithms plugged in are correct. Better yet, under

an adaptive asynchronous model, GRAPE is 4.8 times faster than under BSP on average.

3 Parallel scalability

In this section, we first formalize the notion of parallel scalability following [6]. We then provide a simple

condition for deciding whether a graph computation problem is parallelly scalable.

Parallel scalability. We start with parallel cost. Consider a PIE program ρ for a graph computation

problem Q. Given a query Q ∈ Q, it computes Q(G) in a graph G that is partitioned and distributed
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across a cluster of n workers, such that each worker Pi hosts a fragment Fi of G, and maxi∈[1,n] |Fi| =
Õ(|G|/n), where |G| denotes the size of G and the notation Õ(·) hides logarithmic factors. The workers

are pairwise connected by bi-directional communication channels. Under BSP, assume that ρ takes k

rounds to reach a fixpoint. Denote by Tρ(G,Q, n) the total time taken by ρ. Then

Tρ(G,Q, n) =
∑

r∈[1,k]

(

maxi∈[1,n]t
(i,r)
Cmp

)

+
∑

r∈[1,k]

(

maxi∈[1,n]t
(i,r)
Cmm

)

,

where t
(i,r)
Cmp (resp. t

(i,r)
Cmm) denotes the computational (resp. communication) cost incurred by worker i in

round r. Intuitively, the parallel cost of ρ in each round is determined by the maximum computational

and communication costs inflicted by individual workers. The runtime of ρ is the sum of the costs in

k rounds. While the cost can be further reduced by overlapping computation and communication, to

simplify the presentation, we simply take the sum of t
(i,r)
Cmp and t

(i,r)
Cmm for each worker under BSP.

Parallel scalability. We revise the criterion of [6] for the effectiveness of parallel algorithms. Consider

a sequential algorithm A for Q, referred to as a yardstick for Q. Denote by Tmax
A (m,Q) the maximum

time taken by A for computing Q(G) on a single machine over all possible graphs G, where |G| = m, and

by Tmax
ρ (m,Q, n) the maximum Tρ(G,Q, n) using n processors.

We say that a PIE program ρ is parallelly scalable for Q relative to A if for all queries Q ∈ Q,

Tmax
ρ (m,Q, n) = Õ

(

Tmax
A (m,Q)

n

)

,

where n ≪ m, i.e., the number of workers is much smaller than the sizes of graphs, and |Q| ≪ m, where

|Q| is the size of Q, as commonly found in practice. We assume w.l.o.g. that Tmax
A (m,Q) is Ω(m) for all

Q ∈ Q and sequential algorithms A, since reading the input G and Q alone takes |G| + |Q| = m + |Q|
time.

Intuitively, parallel scalability measures parallel speedup over sequential algorithms. It is a relative

measure w.r.t. a yardstick algorithm A. A parallelly scalable PIE program ρ reduces the sequential

runtime of A when n increases. Hence it is able to scale with large G by adding processors as needed.

We say that ρ is parallelly scalable for Q if ρ is parallelly scalable relative to all sequential algorithms.

A computation problem Q is parallelly scalable if there exists a parallelly scalable PIE program for Q.

A sufficient condition. We next identify a condition under which Q is parallelly scalable.

Theorem 1. LetQ be a graph computation problem such that Tmax
A (m,Q) is Ω(m) for all queriesQ ∈ Q

and sequential algorithms A for Q. Then Q is parallelly scalable if there exists a PRAM algorithm such

that for each Q ∈ Q, it computes Q(G) with O(|G|) processors in polylog(|G|) time, as long as n 6
√

|G|,
where n is the number of workers used by PIE programs. 2

Intuitively, Theorem 1 allows us to identify parallelly scalable problems by capitalizing on existing

PRAM algorithms. A number of PRAM algorithms are already in place. Many graph computation

problems are known to admit a PRAM algorithm in polylog(|G|) time with O(|G|) processors, e.g.,

graph connectivity [21], minimum spanning trees [21], bi-connectivity [22], co-connectivity [23], and ear

decomposition [42,43]. Theorem 1 tells us that parallelly scalable PIE programs exist for these problems

on shared-nothing GRAPE. Here we consider |Q| ≪ |G| and hence do not list |Q| as a separate parameter.

The condition in Theorem 1 differs from the simulation theorem of [26] as follows. The simulation

of [26] incurs heavy memory redundancy, which is more staggering than slowdown in practice. Moreover,

the simulation technique in [26] is not constructive, i.e., it only shows the existence of such an MPC

algorithm but does not tell us how to develop one. In contrast, Theorem 1 does not inflict substantial

memory redundancy, and its proof below shows how to construct a parallelly scalable GRAPE program.

Proof. Let B be a PRAM algorithm having the properties described in Theorem 1. We provide a PIE

program ρ to simulate B such that Tρ(G,Q, n) = Õ(|G|/n) for each Q ∈ Q when n 6
√

|G|. To avoid

confusion, we refer to the computing nodes of B and ρ as processors and workers, respectively.

As a roadmap, below we first outline how to simulate the processors and memory cells of B with their
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counterparts of ρ. We then provide the three functions of ρ, i.e., PEval, IncEval, and Assemble. Finally,

we show that ρ takes Õ(|G|/n) time in total and is parallelly scalable; hence so is problem Q.

Simulation strategy. We use the following notations. (1) Denote by k the number of processors used

by B. (2) The memory of B can be divided into two parts, namely, input memory cells and extra memory

cells. Denote by l and q the sizes of the two parts, respectively. One can verify that k, l, and q are all

Õ(|G|) as follows: (a) l = |Q|+ |G| = O(|G|) for each given query Q by |Q| ≪ |G|; (b) k = O(|G|) since
B uses O(|G|) processors; and (c) B accesses q = O(|G|polylog(|G|)) = Õ(|G|) extra memory cells since

B computes Q(G) with O(|G|) processors in polylog(|G|) time. To simplify the discussion, we assume

w.l.o.g. that k, l, and q are all multiples of n; it is easy to extend our proof to cover generic k, l, and

q. (3) We denote the processors and the memory cells of B with their IDs. For example, extra cell j of

B stands for the j-th extra cell. (4) We use f(t), g(t), and h(t) to denote functions ⌈tn/k⌉, ⌈tn/l⌉, and
⌈tn/q⌉, respectively, where ⌈·⌉ is the ceiling function such that ⌈a⌉ is the least integer no less than a.

(5) We use λ(t) to denote t − q · (⌈tn/q⌉ − 1)/n. That is, λ(t) is q/n if t is divisible by q/n, otherwise

λ(t) is the remainder.

The PIE program ρ simulates the processors, input cells, and extra cells of B as follows. (1) Each

worker of ρ simulates k/n processors of B. Processor t of B is simulated by worker Pf(t) of ρ. (2) Let

d1, . . . , dl be the inputs of B. Then the inputs of ρ are (1, d1), . . . , (l, dl), each identified by an ID. The

inputs are distributed across the workers such that graph G is partitioned and distributed evenly. Thus,

the size of inputs on each Pi is li = Õ(|G|/n). PEval of ρ redistributes the inputs such that input (j, dj)

resides at worker Pg(j). (3) Each worker of ρ accesses q/n extra cells in addition to its local input. We use

(i, j) to denote the j-th extra cell on Pi. The extra cell s of B is simulated by the extra cell (h(s), λ(s))

of ρ.

In our simulation, (1) if processor t conducts local computation, then worker Pf(t) carries out the same

computation, (2) if t accesses input dj , then Pf(t) accesses input (j, dj) at Pg(j) via communication, and

(3) if t accesses extra cell s, then Pf(t) accesses extra cell (h(s), λ(s)) via communication.

The PIE program. We next implement the simulation under GRAPE. Observe that each step of a

PRAM program has three phases: (1) read from a shared memory cell; (2) conduct a local computation;

and (3) write to a shared memory cell [19]. The PIE program ρ simulates one step of B using two

supersteps: one for the local computation and the other for auxiliary operations of memory access.

Complications arise from two mismatches. (a) Each processor of B executes different instructions in

different steps, and different processors execute different instructions in the same step. In contrast, the

PIE program ρ has only three functions, i.e., PEval, IncEval, and Assemble. (b) A PRAM algorithm B can

directly access all memory cells, while each worker of ρ can directly access only its local memory cells.

We deal with the mismatches as follows. (a) We program PEval and IncEval to treat diverse instruc-

tions of B as subroutines. PEval employs an index from input to decide which subroutines to run, and

IncEval uses an ID tuple encoded in update parameters to select right subroutines. (b) We simulate the

reading and writing of B by storing the memory access requests as memory access tuples in the update

parameters of ρ. GRAPE realizes the memory access by encoding these tuples as messages from workers to

master P0. The master P0 collects messages from workers and routes them to the corresponding workers.

To pass these messages, we employ a graphGW as additional input along the same lines as [12,13]. Here

GW is an undirected graph with n2 nodes and n(n− 1)/2 edges. For each i ∈ [1, n], nodes wi,1, . . . , wi,n

in GW are assigned to worker Pi. For each i 6= j ∈ [1, n], there is an edge between wi,j and wj,i. The

ID tuple is stored in the status variable of wi,i as part of its update parameter. Meanwhile, the memory

access tuples are stored in the status variable of wi,j , which encode requests for Pj to read from Pi and

for Pi to write to Pj . We also use an index array DI as additional input, based on which PEval picks the

appropriate subroutines to execute. Here DI is the array 1, 2, . . . , n. For each i ∈ [1, n], element i in DI

is assigned to worker Pi. Observe that the sizes of GW and DI do not exceed |G| since n 6
√

|G|.
We next present PIE program ρ: its update parameters, aggregate faggr, PEval, IncEval, and Assemble.

(1) Update parameters. The update parameters of ρ encode the ID tuples and memory access tuples

as mentioned above. An ID tuple is of the form 〈ID-step, phase, ID-worker〉, where ID-step is the step

ID of B, phase is either “computing” or “auxiliary”, and ID-worker is the worker ID. A memory access
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tuple is of the form 〈operation-section, address, data〉, where address is the address of the accessed cell in

B, data denotes the data to be read or written, and operation-section is “transfer-input”, “read-input”,

“read-extra” or “write-extra”. While “read-input”, “read-extra”, and “write-extra” are self-explanatory,

“transfer-input” is to redistribute the input across the n workers at the end of PEval.

(2) PEval. It declares status variables of update parameters, and redistributes graph G and query Q

by referencing DI . By citing the element i at Pi, the ID tuple in wi,i is initialized as 〈0, “auxiliary”, i〉.
Moreover, if input (s, ds) is at Pi, then Pi stores memory access tuple 〈“transfer-input”, s, ds〉 in wi,g(s).

(3) IncEval. It reads the ID tuple from wi,i and simulates the PRAM instructions of B based on the

tuple.

(a) If the ID tuple is 〈0, “auxiliary”, i〉, IncEval reads the fragmental input from the update parameters

and prepares for the reading in the first step of B. (i) Referencing the ID tuple, Pi reads all 〈“transfer-
input”, s, ds〉 from w1,i, . . . , wn,i, where g(s) = i, and stores (s, ds) in the local memory. These memory

access tuples are stored in w1,i, . . . , wn,i by PEval. (ii) Worker Pi prepares for the reading of inputs ds1
and extra cells s2 in the first step of B, where g(s1) = i and h(s2) = i. More specifically, if processor t

reads these inputs or extra cells in the first step of B, then Pi stores the memory access tuples in wi,f(t).

(b) If the ID tuple is 〈r, “computing”, i〉, where r > 1, IncEval implements the operations in step r

of B. Referencing the ID tuple, worker Pi simulates all the processors t one by one as follows, where

f(t) = i. Assume w.l.o.g. that in step r of B, processor t reads data D from extra cell s1, does some local

computation and writes the result D′ to extra cell s2. (i) Then the data D is stored in a memory access

tuple at wh(s1),i before this superstep. This is carried out when the ID tuple is 〈r−1, “auxiliary”, h(s1)〉.
(ii) To simulate the operations of processor t, Pi simply reads D from wh(s1),i, performs the same local

computation of t, and stores the result D′ in a memory writing tuple 〈“write-extra”, s2, D′〉 at wi,h(s2).

(iii) The data D′ stored at wi,h(s2) is written to cell (h(s2), λ(s2)) when the ID tuple is 〈r, “auxiliary”,
h(s2)〉. Similarly, if processor t reads input ds1 , then (s1, ds1) is stored in a memory access tuple at

wg(s1),i before this superstep. This is implemented when the ID tuple is 〈r − 1, “auxiliary”, g(s1)〉.
(c) If the ID tuple is 〈r,“auxiliary”, i〉, where r > 1, IncEval completes the writing in step r and

prepares for the reading in step r + 1 of B. Referencing the ID tuple, worker Pi simulates the access to

all the inputs ds1 and extra cells s2, where g(s1) = i and h(s2) = i. Assume w.l.o.g. that processor t1
writes data D into extra cell s in step r, and processor t2 reads D from s in step r + 1, where h(s) = i.

(i) Then D is stored in a memory access tuple at wf(t1),i before this superstep, when the ID tuple is 〈r,
“computing”, f(t1)〉. (ii) To simulate the writing and reading, Pi reads D from wf(t1),i, writes it to local

cell (h(s), λ(s)), and stores D in a memory reading tuple 〈“reading-extra”, s, D〉 at wi,f(t2). (iii) Worker

Pf(t2) reads D from wi,f(t2) when the ID tuple is 〈r + 1, “computing”, f(t2)〉. Similarly, if processor t2
reads input ds in step r + 1, where g(s) = i, then Pi stores the memory reading request at wi,f(t2).

At the end of each superstep, Pi updates the ID tuple at wi,i: (i) if the tuple is 〈r, “computing”, i〉,
it is updated to 〈r, “auxiliary”, i〉; and (ii) if it is 〈r, “auxiliary”, i〉, it becomes 〈r + 1, “computing”, i〉.

(4) Message passing. The master P0 groups and routes messages as follows. (a) It first takes a union

of the update parameters of all nodes wi,j (i, j ∈ [1, n]). (b) It then sends (the changed values of) the

update parameters of all wj,i to worker Pi (i, j ∈ [1, n]). The aggregate function is defined as faggr(x) = x,

since no update parameter is assigned different values from different workers.

(5) Assemble. Assemble simply collects partial results from all workers and returns them all.

One can easily verify that the PIE program ρ correctly simulates PRAM algorithm B. That is, for each
graph G and query Q ∈ Q, ρ takes G, Q, GW , and DI as input and returns the same result Q(G) as B.

Time complexity. We next show that the total time of ρ is Tρ(G,Q, n) = Õ(|G|/n) for all queries

Q ∈ Q. Hence Tmax
ρ (m,Q, n) = Õ(m/n). From this and the fact that Tmax

A (m,Q) is Ω(m) for all Q ∈ Q
and sequential algorithms A, it follows that Q is parallelly scalable.

Observe the following. (1) The additional inputs GW and DI can be constructed in O(n) = O(|G|/n)
time with n workers as follows: (a) DI is built at one worker in O(n)-time since the size of DI is n. (b) To

build GW , each worker Pi only needs to generate nodes wi,j , wj,i, wi,i and edges between wi,j and wj,i for

all j 6= i ∈ [1, n]. This takes O(n) time. (2) Since B has polylog(|G|) steps, it is easy to see that ρ also has

polylog(|G|) supersteps. Thus, it suffices to show that the maximum computational and communication
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costs incurred by each worker are both Õ(|G|/n) in each superstep of ρ. Here we only prove the bound for

the communication cost; the proof for the computational cost is similar. In each superstep, the memory

access tuples are encoded as messages between the workers and master P0. We show that the total lengths

of messages sent and received by each worker are both Õ(|G|/n). There are two cases to consider.

(a) In PEval, the memory access tuples about inputs ds are stored at wi,1, . . . , wi,n, where (s, ds) is at

worker Pi. As graph G is evenly partitioned across the workers, there are Õ(|G|/n) inputs at worker Pi.

Thus, there are also Õ(|G|/n) memory access tuples stored at wi,1, . . . , wi,n. As each memory access tuple

has a constant size, the total length of the messages sent from Pi to P0 during PEval is Õ(|G|/n). Moreover,

only the memory access tuples about inputs ds are stored at one of w1,i, . . . , wn,i, where g(s) = i. By

g(s) = ⌊sn/l⌋, there are l/n = Õ(|G|/n) memory access tuples stored at one of w1,i, . . . , wn,i. Thus the

total length of the messages received by Pi from P0 during PEval is also Õ(|G|/n).
(b) In IncEval, if the ID tuple in wi,i is 〈r, “computing”, i〉, the memory access tuples for processor t

to write some extra cell in step r of B are stored at one of wi,1, . . . , wi,n, where f(t) = i. Note that each

processor writes at most one cell in each step of B, and f(t) = ⌊tn/k⌋. Hence, at most k/n memory access

tuples are stored at wi,1, . . . , wi,n. Thus, at the end of this superstep, the total length of the messages

sent from Pi to P0 is O(k/n) = Õ(|G|/n). One can verify that the total length of the messages received

by Pi from P0 is also Õ(|G|/n), since B is EREW and the total size of the inputs and extra cells at Pi is

li+q/n = Õ(|G|/n). Along the same lines, one can verify that when the ID tuple at wi,i is 〈r,“auxiliary”,
i〉, the total length of messages sent from Pi to P0 and from P0 to Pi are both Õ(|G|/n). 2

4 Polynomial-time parallelly scalable algorithms

In this section, we develop parallelly scalable algorithms for two PTIME graph-computation problems:

graph connectivity (GC) and minimum spanning trees (MST). Both problems admit PRAM algorithms

that use Õ(|G|) processors and run in polylog|G| time [19]. Hence, by Theorem 1, they are parallelly

scalable. We further confirm Theorem 1 by providing parallelly scalable PIE programs on GRAPE.

In this section, we adopt the BSP model [38], edge-cut partitions [31, 32], and at most
√

|G| workers.

4.1 Graph connectivity

We start with graph connectivity. Given an undirected graph G, a connected component (CC) of G is an

induced subgraph such that (a) it is connected, i.e., for any pair of its nodes, there exists a path between

them; and (b) it is maximum, i.e., adding any node makes the induced subgraph no longer connected.

Given an undirected graph G = (V,E), the graph connectivity problem is to compute all connected

components of G. We refer to the problem as GC. This problem is known to be in Õ(|G|) time [44]. Note

that the class Q of queries for GC consists of a single query of constant size.

Below we give an overview of our algorithm (Subsection 4.1.1), followed by the PIE program (Subsec-

tion 4.1.2).

4.1.1 Algorithm sketch for graph connectivity

As suggested by Theorem 1, we develop our PIE program by converting the PRAM algorithm of [19].

The algorithm is iterative. Each iteration starts with disjoint blocks C1, C2, . . . , Cni of nodes, and

merges “neighboring” blocks into larger ones, such that all nodes of each block belong to the same CC

of G. Initially, n1 = |V |, i.e., each block simply consists of a single node. Its key ideas are as follows.

Maintaining blocks as stars. Each block is maintained as a star with a root node and a number of

leaves. Each node u is associated with a pointer D(u). At a root node r, the pointer is a self-loop, i.e.,

D(r) = r, and r is treated as the id of the block. At each leaf node u, D(u) points to the root node r of

the block to which u belongs. Initially, for each node u ∈ V , D(u) = u. When the algorithm terminates,

it guarantees that for any nodes u, v ∈ V , D(u) = D(v) if and only if u and v belong to the same CC.

Hence, to decide whether nodes u and v are in the same block, it suffices to check whether D(u) = D(v).
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Figure 2 An example illustrating the PIE program for GC.

Merge proposals. Each iteration merges some of the blocks that are “neighbors”. More specifically,

for each block Cj (with root rj), we find its neighboring blocks Ci, i.e., there is an edge (v, u) ∈ E such that

D(v) = rj , D(u) = ri and i 6= j. Let Ck be the neighboring block of Ci with the minimum id. We say that

block Ci proposes to merge with Ck, and set p(rj) = rk. If Cj has no neighboring blocks, we set p(rj) = rj .

We set D(rj) = p(rj) for each root rj , and treat (u,D(u)) as a directed edge from node u to D(u).

These form a pseudo-forest T with nodes in V . Each connected component C′
j in T is a pseudo-tree,

which is a tree plus one extra edge from the root rk of C′
j (owning to p(rk)). Note that each pseudo-tree

contains exactly one cycle. One can easily verify that each cycle in T is either a self-loop or contains

exactly two directed edges, because the pointer p points to the root of the minimum neighboring block.

Transforming pseudo-trees into stars. All nodes in each pseudo-tree are in the same CC of

G. However, a pseudo-tree may not have a star shape. To transform the pseudo-forest into stars, we

perform log |V | rounds of pointer jumping, by setting D(u) = D(D(u)) for each node u in each round.

Note that D(u) points to one of at most two nodes in the cycle of the pseudo-tree containing u. As a

final step, we set D(u) = min(D(u), p(D(u))), so that all nodes in the same pseudo-tree point to the

same root. This yields stars.

Example 2. Consider graph G depicted in Figure 2(a). Initially, D(i) = i and each node is a root, as

shown in Figure 2(b). In the first iteration, since node 1 is the minimum neighbor for each of nodes 3, 4,

and 8, the three nodes propose to merge with node 1, i.e., p(3) = p(4) = p(8) = 1, and p(1) = 3. Similarly,

the pointers p are determined for other nodes. These form a pseudo-forest, as shown in Figure 2(c).

After transforming each pseudo-tree into a star, we obtain three blocks, as shown in Figure 2(d).

In the second iteration, we set p(2) = 1 because node 1 is the root of the minimum block neighboring

{2, 7}, i.e., block {2, 7} proposes to merge with {1, 3, 4, 8}. Similarly, p(1) = 2 and p(5) = 2, as shown in

Figure 2(e). By transforming pseudo-trees into stars, we merge the three blocks into the one shown in

Figure 2(f). Now the algorithm terminates and outputs the single block as the CC of G. 2

4.1.2 A PIE program for graph connectivity

We are now ready to present the PIE program for GC, as shown in Figure 3. It operates on a graph

G evenly partitioned into (F1, . . . , Fn), where Fi = (Vi, Ei). In a nutshell, it adopts a sequential GC

algorithm as PEval. PEval computes the local CCs of each fragment Fi, and maintains CCs as stars.

Following the algorithm sketch given above, IncEval is recursively applied and merges blocks into bigger

ones, until no more blocks can be merged. It consists of many branches. Each worker employs a stack S,

which controls the switches among these branches. The details of the PIE program are as follows.

(1) PEval. As shown in Figure 3(a), PEval constructs graphGW as suggested in the proof of Theorem 1.

At each fragment Fi, it declares a status variable wij .x for each node wij of GW , such that messages

from Pi to Pj are stored in wij .x (line 1). It defines variables D(u), p(u), and q(u) for each node u in Vi,

all initialized as u (line 1). Here we use q(u) to record the minimum D(v) such that D(v) 6= D(u) and
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Figure 3 PIE program for graph connectivity. (a) PEval and (b) IncEval for GC.

(u, v) ∈ E. It then employs a standard sequential traversal (e.g., DFS, depth-first search) to compute the

local CCs of Fi (line 2). For each local CC C, PEval (a) finds the node uc with minimum id and treats

it as the root of C, (b) sets D(u) to uc for each node u ∈ C, (c) initializes a stack S, and (d) exchanges

the status variables of border nodes with neighboring fragments (lines 3–9). We use aggregate function

faggr(x) = x because there is no conflict when updating status variables wij .x.

(2) IncEval. As shown in Figure 3(b), IncEval consists of multiple branches, such that different in-

vocations of IncEval conduct different computations. The branches are classified into four types, i.e.,

MP, SORT, TPTS, and CA, to perform merge proposal (MP), the sorting algorithm (SORT) [29, 45],

transforming pseudo-trees into stars (TPTS), and concurrent access (CA), respectively. Each invocation

of IncEval executes one of these branches.

More specifically, each worker maintains a stack S to determine which branch to execute. Initially, S

contains a single tuple, i.e., (“MP”, 0) pushed into S by PEval. In the first invocation of IncEval, (“MP”, 0)

is popped, and BranchMP(0) is executed, in which IncEval pushes (“MP”, 1) into S, followed by (“SORT”,

0). Hence, in the second invocation of IncEval, (“SORT”, 0) is popped out of S and Branch SORT(0) is

executed. After these, the invocations of IncEval can be grouped into phases, where each phase consists of

the invocations between two Branch MP(0) executions. In each phase, the branches are executed in the

following order: first MP(0)→SORT→MP(1)→MP(2)→TPTS(0); then repeat CA(0)→SORT→CA(1)→
· · · →CA(5) for log |V | + 1 times; finally TPTS(1). Moreover, each phase is divided into two stages:

MP(0)→ · · · →MP(2) and TPTS(0)→ · · · →TPTS(1).

Denote by s and s[i] a tuple in S and the i-th element of s, respectively. For example, when s is the

tuple popped in the first invocation of IncEval, s[0] =“MP” and s[1] = 0.

To realize the ideas of Subsection 4.1.1, two issues need to be resolved: (a) in merge proposal, how to

find the node with the minimum q(u) among all the nodes in a block, when the nodes are distributed

to different workers? (b) For pointer jumping, how to obtain D(D(u)) (p(D(u))) for each node u, which

may extend across workers? We develop two procedures for these two issues (see below), referred to

as concurrent minimization and concurrent access, respectively, following the concurrent write and read

operations of EREW PRAM [20].

Merge proposal. For each block Cj with root rj , we identify its neighboring block with the minimum

root rk such that there exists an edge (u, v) ∈ E with D(u) = rj and D(v) = rk. The strategy is simple:

(a) for each u ∈ V , IncEval identifies the minimum D(v) 6= D(u) such that (u, v) ∈ E, and records it

in q(u); and (b) for each block Cj , IncEval finds the minimum q(u) for all u ∈ Cj , i.e., pointer p(rj). If

p(rj) = ∞, then the block with root rj has no neighboring blocks, and we change p(rj) to rj .

Part (a) can be implemented locally without the need for communication, shown as Branch MP(0) in

Figure 4. It is nontrivial, however, to implement Part (b) efficiently. As each block Cj may be distributed

across different workers, communication among the workers is inevitable.

We develop procedure concurrent minimization to implement Part (b), treated as branches in IncEval.
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Figure 4 Branches in IncEval for GC.

Figure 5 An example for the concurrent minimization procedure.

It employs a sorting algorithm along the same lines as how EREW PRAM simulates concurrent write

operations [20]. Consider a set Γ of comparable items across different workers such that each worker

hosts at most m items. The sorting algorithm of [29,45] completes the job in O(m · log(mn)) time under

BSP. It can be adapted to GRAPE as a list of branches referred to as SORT, such that Branch SORT(i)

simulates the i-th round in the BSP model. The switches among the branches of SORT are also controlled

by the stack S: if SORT(i) is not the last branch of SORT, then in the execution of Branch SORT(i), we

push (“SORT”, i + 1) into S. SORT contains O(log(mn)/ logm) branches, and the computational cost

and communication cost for executing each branch are both O(m logm) [29, 45].

More specifically, concurrent minimization is implemented by branches SORT, MP(1) and MP(2) (see

Figure 4). Suppose that pairs (D(u), q(u)) are available for all u ∈ V . In Branch SORT, IncEval sorts

the pairs into a lexicographically nondecreasing order such that each worker Pi holds a subset Ii of pairs.

Then in Branch MP(1), Pi scans Ii and selects pairs (D(u), q(u)) such that q(u) is the minimum among

all those pairs with the same D(u). It sends each such pair (D(u), q(u)) to the worker whose fragment

contains the node D(u). Finally, in Branch MP(2), for each message (D(u) = r, q(u)) received, worker

Pi sets p(r) = q(u), which is min{q(v) | D(v) = r}. If p(r) = ∞, worker Pi changes p(r) to r.

Example 3. Continuing with Example 2, we show how “merge proposal” works in Figure 5. Suppose

V1 = {1, 2, 3}, V2 = {4, 5, 6}, and V3 = {7, 8}. Each worker Pi first computes q(u) and sets up pair

(D(u), q(u)) for each node u in its local Vi (Figure 5(a)). For example, by D(2) = 2 and q(2) = 1,
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the pair (2, 1) is set up by P1. Then the pairs are sorted (Figure 5(b)). One pass of these sorted

pairs in order suffices to identify all the pairs (D(u), q(u)) such that q(u) is minimum among all the

pairs with the same D(u), marked in bold. These bold pairs are the pointers (r, p(r)) for all roots r

(Figure 2(e)). 2

Transforming pseudo-trees into stars. After setting D(r) = p(r) for each root r, we obtain a pseudo-

forest with nodes in V by Branch TPTS(0) (Figure 4(a)). Recall from Subsection 4.1.1 that each cycle

in the pseudo-forest contains one or two directed edges. We transform these pseudo-trees to stars by

performing log |V | rounds of pointer jumping, followed by concurrent access invocation (see below) to

obtain p(D(u)) for each node u. Here each tuple s pushed into the stack S contains a new element

s[2], which records the number of concurrent access invocations in this phase. Next, we set D(u) as

min(D(u), p(D(u))) in Branch TPTS(1) such that all nodes in the same pseudo-tree point to the same

root.

A nontrivial issue concerns how to let all nodes u simultaneously know D(D(u)) or p(D(u)), when the

block is distributed across different workers. For example, when u ∈ Vi wants to know to which node

D(u) ∈ Vj points, i.e., D(D(u)), communication between Pi and Pj is necessary.

To support this efficiently, we present a procedure concurrent access, which is implemented as branches

in IncEval. This is carried out along the same lines as how EREW PRAM simulates concurrent read

operations [19]. As shown in Figure 4(a), IncEval first sets up pair (D(u), u) for each u ∈ Vi in Branch

CA(0), and sorts the pairs into a lexicographically nondecreasing order in Branch SORT. Subsequently,

worker Pi holds a subset Ii of pairs. Then, the following branches are executed in turn:

Branch CA(1): Each worker Pi scans Ii and finds (D(u), u) in which the second component is the mini-

mum among all pairs with the same D(u). It sends each (D(u), i) to the worker where node D(u) resides.

Branch CA(2): For each message (r, j) received, worker Pi sends (D(r), r) back to Pj if s[2] 6 log |V |,
and it sends (p(r), r) back to Pj otherwise.

Branch CA(3): Upon receiving (t, r), Pi changes tuple (D(v), v) ∈ Ii to (t, v), where D(v) = r. If r is

the first element of the last (i.e., the largest) tuple in Ii, Pi sends (t, r) to all workers Pj with j > i.

Branch CA(4): For each message (t, r) received, Pi changes tuple (D(v), v) ∈ Ii to (t, v), where

D(v) = r. Then for each tuple (t, v) ∈ Ii, Pi sends it to the worker where node u resides.

Branch CA(5): For each message (t, u) received, if s[2] 6 log |V |, worker Pi changes D(u) to D(D(u))

and pushes (“CA”, 0, s[2] + 1) into S; otherwise (s[2] = log |V |+ 1) Pi records t as p(D(u)).

Example 4. Continuing with Example 3, we set D(r) = p(r) and obtain a pseudo-forest formed by

pointers D(u), as depicted in Figure 6(a). The pseudo-forest contains only one pseudo-tree. After

1 6 log |V | = 3 rounds of pointer jumping, the pointers D(u) are shown in Figure 6(b). By setting

D(u) = min{D(u), p(D(u))}, we obtain the star-shaped structure depicted in Figure 2(f).

We next illustrate how concurrent access is conducted in Figure 7. Consider the pointers D(u) of

Figure 6(a) in which all nodes u need to access D(D(u)). Each worker Pi first sets up pair (D(u), u)

for each u in its local set Vi of nodes, as shown in Figure 7(a). The globally sorted pairs are given in

Figure 7(b). Branch CA(1) performs one pass of the sorted pairs in order, and identifies all pairs (D(u), u)

such that u is the minimum among all pairs with the sameD(u). These pairs are (1, 2) ∈ I1, (2, 1) ∈ I2 and

(5, 6) ∈ I3. Then worker P1 sends (1, 1) to the worker where node 1 resides (i.e., itself in this case), where

(1, 1) indicates that worker P1 is accessingD(1). Similarly, P2 sends (2, 2) to P1, and P3 sends (5, 3) to P2.

The rest of the actions are as follows (shown in Figure 7(c)): (a) In Branch CA(2), upon receiving (1, 1)

and (2, 2), worker P1 sends (2, 1) to P1 (itself) and (1, 2) to P2. Similarly, P2 receives (5, 3), and sends (2, 5)

to P3. (b) In Branch CA(3), P1 receives (2, 1) and updates I1 to {(2, 2), (2, 3), (2, 4)}. It then sends (2, 1)

to P2 and P3. Worker P2 receives (1, 2) and updates (2, 1), (2, 5) ∈ I2 to (1, 1) and (1, 5), respectively; it

then sends (1, 2) to P3. Worker P3 receives (2, 5) and updates (5, 6) ∈ I3 to (2, 6). (c) In Branch CA(4),

P1 sends (2, 2), (2, 3) ∈ I1 to itself and sends (2, 4) ∈ I1 to P2. Worker P2 receives (2, 1) and updates

(1, 8) ∈ I2 to (2, 8); it then sends (1, 1) ∈ I2 to P1, (1, 5) ∈ I2 to itself, and (2, 8) ∈ I2 to P3. Worker P3

receives (2, 1), (1, 2) and updates (2, 7) ∈ I3 to (1, 7); it then sends (1, 7) to itself and (2, 6) to P2. 2

(3) Assemble. When no further changes can be made, Assemble is triggered. It returns D(u) for all
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Figure 6 An example of pointer jumping.

Figure 7 An example of the concurrent access procedure.

u ∈ V , where a pair of nodes u and v are connected if and only if D(u) = D(v).

Analysis. We next show the correctness and parallel scalability of the PIE program.

For the correctness, observe the following: (a) Each node u and its root node D(u) are connected in

G. Hence, if u and v are not connected in G, then the PIE program finds that D(u) 6= D(v). (b) The

PIE program gradually merges the blocks, and terminates only if no more blocks can be merged. Hence,

if u and v are connected in G, then the program guarantees to find that D(u) = D(v).

We verify the scalability of the PIE program as follows:

Proposition 1. Under edge-cut partition (F1, . . . , Fn) of G, the runtime of the PIE program for GC is

Õ(|G|/n) as long as maxi |Fi| = Õ(|G|/n) and n 6
√

|G|. 2

Proof. PEval takes O(n) time to construct GW in parallel (see the proof of Theorem 1) and to initialize

the status variables wij .x. It takes O(|Fi|) time for the rest. Hence the computational cost of each

worker Pi is O(n + |Fi|), i.e., Õ(|G|/n). In addition, to exchange the D(u)s of all border nodes with

its neighboring workers, Pi sends at most |Fi.I| 6 |Fi| messages and receives |Fi.O| 6 |Fi| messages.

Therefore, the computation cost and the communication cost of each worker Pi are both Õ(|G|/n). Thus
the runtime of PEval is Õ(|G|/n).

We next show that the runtime of IncEval is also Õ(|G|/n). It suffices to prove the following three

claims: (1) there are at most log |V | phases; (2) each phase invokes IncEval at most O(log2 |V |) times; and

(3) the computational cost and the communication cost of each invocation are both Õ(|G|/n), regardless
of which branch is executed. From the above points, it follows that IncEval is in Õ(|G|/n) time.

(1) Consider a connected component C of G. In each phase, as long as the nodes of C are distributed

in more than one block, each of the blocks of C merges with at least another block of C. Hence, the

number of blocks is reduced by half. Thus, after at most log |V | phases, C ends up in a single block.

(2) Each phase executes each branch in MP or TPST only once, each in CA log |V |+1 times, and each

in SORT log |V |+2 times. Because there are a constant number of branches in MP, TPTS, and CA, and

at most log |V | branches in SORT, IncEval is invoked at most O(log2 |V |) times in each phase.

(3) In each invocation of IncEval, each worker Pi takes O(n) time to set each wij .x to ⊥ i.e., O(|G|/n)
time by n 6

√

|G|. Moreover, one can check that the computational cost and communication cost for

executing each of Branches MP(0), MP(2), TPTS(0), TPTS(1), CA(0), CA(2), CA(4), and CA(5) are

Õ(|G|/n). As shown previously, the computational cost and communication cost of each SORT(i) are

also Õ(|G|/n). What remains is the analysis of Branches MP(1), CA(1), and CA(3). For Branch MP(1),

as the pairs in Ii are in order, Pi only needs O(|Ii|) time to select the pairs (D(u), p(u)) such that p(u)

is the minimum among all pairs with the same D(u); it then sends at most |Ii| messages. One can verify

that Pi also receives at most |Vi| messages. Thus its computational cost and communication cost are both

O(maxi |Vi|), i.e., Õ(|G|/n) when maxi |Fi| = Õ(|G|/n). This analysis also applies to Branch CA(1). For

Branch CA(3), it is easy to see that its computational cost is Õ(|Ii|), each worker sends n − i messages

and receives i messages; hence the communication cost is at most O(n), i.e., O(|G|/n) by n 6
√

|G|. 2
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4.2 Minimum spanning tree

Next, we develop another parallelly scalable PIE program, for finding minimum spanning trees.

Consider a connected undirected graph G = (V,E,W ), where W : E → R assigns weights to edges.

An MST T of G is a subgraph of G that connects all the nodes of V , without any cycles and with the

minimum total edge weight W (T ) =
∑

e∈T W (e). To simplify the discussion, we assume that all edges

have different weights, which guarantees the uniqueness of MST [46].

The MST problem is to compute, given a connected undirected graph G = (V,E,W ) as above, the

minimum spanning tree of G. It is known that the MST problem can be solved in O(|G| log |G|) time.

Like GC, the query class Q of queries for MST consists of a single query of constant size.

Below we first present the key ideas behind the PIE program and then give the algorithm.

4.2.1 Algorithm sketch for minimum spanning tree

The PIE program will use the following lemma verified in [19].

Lemma 1 (Lemma 5.4 in [19]). Let G = (V,E,W ) be a connected undirected graph, and V =
⋃

Vi be

an arbitrary partition of V . For each i, let ei be the minimum-weight edge connecting a vertex in Vi to

a vertex in V − Vi. Then all such edges ei belong to an MST of the graph G. 2

We develop the PIE program by converting a PRAM algorithm for MST [19], following Theorem 1.

The algorithm of [19] begins with the forest F0 = (V, ∅), and runs in iterations to merge trees in the

forest. Each iteration finds the minimum-weight edge incident on each tree, adds these new edges to the

current forest Fs, and obtains a new forest Fs+1. This process proceeds until only a single tree remains.

This algorithm can be implemented along the same lines as the GC algorithm. The only major

difference is the definition of pointer p. More specifically, each node u maintains a pointer D(u) to the

root of the tree to which it belongs, and each edge e carries a Boolean variable B(e) recording whether e is

in the current forest or not. Initially, for each node u ∈ V , D(u) = u, and for each edge e, B(e) = 0. Then

each iteration adds new edges to the forest and merges some trees into a larger one. More specifically,

for each tree Tj with root rj , the algorithm selects the minimum-weight edge e = (u, v) ∈ E such that

D(u) = rj and D(v) = rk 6= rj . If so, we say that tree Tj proposes to merge with Tk and set p(rj) = rk
and B(e) = 1. By setting D(rj) = p(rj) for each root rj and treating (u,D(u)) as a directed edge for

each node u ∈ V , we obtain a pseudo forest covering all the nodes in V . Similarly to its GC counterpart,

one can verify that each cycle in each pseudo tree contains exactly two directed edges.

We transform the pseudo-forest into stars as in the GC algorithm, such that in each pseudo tree, the

pointers D(u) of all nodes u link to the same node, which is actually the root of the larger tree. This

process continues until there is only a single tree. The algorithm returns {e | B(e) = 1} as the MST.

Example 5. Given the weighted graph G depicted in Figure 8(a), the first iteration of the algorithm

is illustrated Figures 8(b)–(d). Initially, each node is viewed as a tree and D(i) = i. As edge (1, 4) has

minimum weight among those adjacent to node 1, we set p(1) = 4. Similarly, we set pointers p for all

the other nodes, as shown in Figure 8(b). By transforming pseudo-trees into stars, we obtain two trees

shown in Figure 8(c), and their corresponding pointers D are depicted in Figure 8(d). 2

4.2.2 The PIE algorithm for minimum spanning tree

We present our PIE program for MST in Figure 9. PEval initializes a tree with each node u ∈ V . IncEval

iteratively merges trees into bigger ones until a single tree remains as the MST. It consists of multiple

branches. Each worker maintains a stack S to control which switches to execute.

(1) PEval. As shown in Figure 9(a), PEval constructs graph GW (see the proof of Theorem 1), and

declares a status variable wij .x for each node wij to store messages from Pi to Pj . It defines (a) a variable

D(u) for each node u ∈ Vi, initialized as D(u) = u; (b) a variable B(e) for each edge e ∈ Ei, initialized

as 0, to record whether e is in the current forest; and (c) a stack S as mentioned above.

It defines aggregate function faggr(x) = x as there is no conflict when updating status variables.
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Figure 8 An example illustrating the PIE program for MST.

Figure 9 PIE program for MST. (a) PEval and (b) IncEval for MST.

(2) IncEval. As shown in Figure 9(b), IncEval consists of branches MP, SORT, TPTS, and CA. Here

SORT, TPTS, and CA are the same as their GC counterparts. Each invocation of IncEval executes one

branch, and the invocation is grouped into phases as in the PIE program for GC. Each phase is divided

into two stages, for merge proposal and transforming pseudo-trees into stars, respectively, as follows:

Merge proposal. For each tree Tj, IncEval identifies the minimum-weight edge e = (u, v) such that

u is in Tj but v is not. It does the following: (a) For each node u, it finds the minimum-weight edge

(u, v) such that D(v) 6= D(u); it stores edge (u, v), pointer D(v), and weight W (u, v) in three variables

e(u), p(u), and w(u), respectively. (b) For each tree Tj with root rj , IncEval identifies node u with the

minimum w(u) among all the nodes in Tj; then it updates p(rj) to p(u) and B(e(u)) to 1.

As shown in Figure 10, these are implemented like their counterparts in the GC algorithm. In Branch

MP(0), IncEval sets up a tuple (D(u), w(u), p(u), e(u)) for each u ∈ V . Then in Branch SORT, IncEval

sorts the tuples into a lexicographically nondecreasing order, such that worker Pi holds a subset Ii of these

tuples. In Branch MP(1), each worker Pi scans Ii and selects tuples (D(u), w(u), p(u), e(u)) such that

p(u) is the minimum among all tuples with the same D(u); it then sends these (D(u), w(u), p(u), e(u)) to

the worker where the node D(u) resides and the worker where the node u resides. In Branch MP(2), for

each received message (D(u), w(u), p(u), e(u)), worker Pi sets p(D(u)) = p(u) and updates B(e(u)) to 1.

Transforming pseudo trees into stars. This stage is exactly the same as its counterpart in the PIE

program for GC. By setting D(r) = p(r) for each root r, we obtain a pseudo-forest formed by the pointers,

connecting nodes of V . As remarked earlier, each cycle in the pseudo-forest contains exactly two directed

edges. After performing log |V | rounds of pointer jumping and setting D(u) = min(D(u), p(D(u))), all

nodes in the same pseudo tree point to the same node, i.e., the root. This yields a star shape.
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Figure 10 Branches in IncEval for MST.

(3) Assemble. When no further changes can be made, Assemble returns B(e) for each edge e ∈ E,

such that the set {e | B(e) = 1} of edges forms the MST of graph G.

Analysis. For the correctness of the PIE program, observe the following. (a) For each tree Tj, IncEval

selects the minimum-weight edge e = (u, v), where u ∈ Tj and v /∈ Tj , and updates B(e) to 1; Lemma 1

guarantees that such edges belongs to MST. (b) The set {e : B(e) = 1} is monotonically increasing, until

it forms a tree. Thus, the PIE program will terminate and correctly return the final MST.

The parallel scalability of the PIE program is verified as follows.

Proposition 2. Under an edge-cut partition (F1, . . . , Fn) of G, the runtime of the PIE program for

MST is Õ(|G|/n) as long as maxi |Fi| = Õ(|G|/n) and n 6
√

|G|. 2

Proof. First, it is easy to see that the computational cost and communication cost of PEval are Õ(|G|/n)
and 0, respectively. Second, in each phase, if there is more than one tree, each tree merges with at least

another one. Hence the number of trees is reduced by half. Thus the number of phases is at most log |V |.
Finally, similar to the proof of Proposition 1, one can verify that in each phase, (a) IncEval is invoked at

most O(log |V |2) times, and (b) the computational cost and communication cost of each invocation are

both Õ(|G|/n). From these points, it follows that the runtime of the PIE program is Õ(|G|/n). 2

5 Open research issues

We have shown that it is possible to parallelize existing sequential graph algorithms and guarantee the

convergence of the parallelized computations under a generic condition. We have also shown that parallel

scalability is within the reach of PTIME problems. However, the study of parallel graph computations

has raised as many questions as it has answered. Below we suggest three directions for future study.

(1) Classification. Can we effectively determine whether algorithms are parallelly scalable? In the

presence of such a characterization, we can classify our algorithms and allocate resources to the ones

that can make effective use of the resources. Theorem 1 is a simple condition that helps us identify some

parallelly scalable algorithms, but it does not tell us what algorithms may not capitalize on additional

resources.

(2) Hierarchy. One step further, can we classify which computational problems are parallelly scalable?

We want to identify complete problems for the class of parallelly scalable algorithms, i.e., the “hardest

ones” in the class. We also want to define reductions to reduce our problems to ones that we know

how to solve on shared-nothing systems. These depart from the classical complexity theory, since some

intractable problems are parallelly scalable but some tractable ones are not. A hierarchy for parallel

scalability is nontrivial to develop, since it has to incorporate both parallel computational cost and

communication cost.

(3) Incrementalization. Is it possible to incrementalize existing batch algorithms, analogous to how we

parallelize sequential algorithms? The need for incremental algorithms is evident not only for GRAPE
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but also for coping with the velocity of big data, by reducing computations on big data to computations

to small changes. However, although many batch algorithms are in place, few incremental algorithms

have been developed, and fewer have performance guarantees. This suggests that we need to develop a

systematic method to deduce incremental algorithms from batch ones, and ideally, ensure that the cost

of the incremental algorithms depends only on the size of changes instead of the size of the entire big

dataset.

Concerning GRAPE, the following issues remain open and require further study.

(1) Programming with GRAPE. GRAPE aims to parallelize existing sequential algorithms and simplify

parallel programming. This said, programming with GRAPE still requires domain knowledge of algorithm

design, to declare update parameters and design an aggregate function. An immediate topic for future

work is to develop an interactive user interface to help users deduce update parameters and aggregate

functions from single-machine algorithms, and make GRAPE even easier to use.

(2) Graph partitioning for GRAPE. As remarked earlier, although GRAPE works regardless of graph

partitions, the choice of partitioning strategies may have an impact on not only the performance of

GRAPE, but also the design of the PIE programs. For an algorithm of our interest, what partitioning

strategy fits it the best and improves its parallel execution? It has been shown that the traditional

criteria for evaluating graph partitions, e.g., load balancing and replication, may not work best for a

given application [34]. Moreover, is it possible to develop graph algorithms with partition transparency,

such that the algorithms work under different partitions without changes? In addition, how should we

incrementally partition graphs in response to updates while retaining the partition quality? While we

have proposed an application-driven partitioning strategy [34] and an incrementalization method [47]

to address these issues, the problems deserve a full treatment [34], especially to cope with multiple

applications that run on the same graph.

(3) Dynamic scaling and streaming updates. In the real world, e-commerce systems often experience

load surges, as triggered by, e.g., holidays and unexpected events. This gives rise to a natural question:

how many processors should we use to configure GRAPE? Obviously, it is too costly to maintain sufficient

resources just to meet peak requirements. Then, how should we adaptively scale GRAPE out and in, i.e.,

add and remove processors when load jumps up and down, respectively, to improve resource utilization

and reduce costs? We have done preliminary work on the issue [48]. However, much more needs to be done,

e.g., to adjust graph partitions in response to load surges without interrupting ongoing computations.

(4) Uniform optimization schemes. As remarked in Section 2, GRAPE is able to inherit existing

optimization techniques developed for single-machine graph algorithms. However, graph computations

are often costly. To this end, a variety of optimization strategies have been developed for speeding up

graph computations, e.g., indexing, compression, and graph summarization. Prior studies have typically

targeted an individual application. However, multiple applications often run on the same graph in

practice. It is too costly and even infeasible to build, e.g., a separate indexing structure for each of

these applications. Is it possible to develop a generic and uniform optimization scheme that is capable

of speeding up different applications at the same time, without the need to make changes and without

loss of information? This remains an important open question for all graph systems, and is not limited

to GRAPE.

Acknowledgements This work was supported in part by Shenzhen Institute of Computing Sciences, Beijing Advanced

Innovation Center for Big Data and Brain Computing (Beihang University), Royal Society Wolfson Research Merit Award

(Grant No. WRM/R1/180014), European Research Council (Grant No. 652976), and Engineering and Physical Sciences

Research Council (Grant No. EP/M025268/1).

References

1 Malewicz G, Austern M H, Bik A J C, et al. Pregel: a system for large-scale graph processing. In: Proceedings of

International Conference on Management of Data, 2010

2 Low Y, Gonzalez J, Kyrola A, et al. Distributed GraphLab: a framework for machine learning in the cloud. Proc

VLDB Endow, 2012, 5: 716–727

https://doi.org/10.14778/2212351.2212354


Fan W F, et al. Sci China Inf Sci October 2020 Vol. 63 203101:20

3 Tian Y Y, Balmin A, Corsten S A, et al. From “think like a vertex” to “think like a graph”. Proc VLDB Endow,

2013, 7: 193–204

4 Wang G Z, Xie W L, Demers A J, et al. Asynchronous large-scale graph processing made easy. In: Proceedings of

Conference on Innovative Data Systems Research, 2013

5 Xie C N, Chen R, Guan H B, et al. SYNC or ASYNC: time to fuse for distributed graph-parallel computation.

In: Proceedings of ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 2015

6 Kruskal C P, Rudolph L, Snir M. A complexity theory of efficient parallel algorithms. Theory Comput Sci, 1990, 71:

95–132

7 Fan W F, Wang X, Wu Y H, et al. Association rules with graph patterns. Proc VLDB Endow, 2015, 8: 1502–1513

8 Fan W F, Hu C M, Liu X L, et al. Discovering graph functional dependencies. In: Proceedings of International

Conference on Management of Data, 2018. 427–439

9 Fan W F, Lu P, Tian C, et al. Deducing certain fixes to graphs. Proc VLDB Endow, 2019, 12: 752–765

10 Fan W F, Wang X, Wu Y H, et al. Distributed graph simulation: impossibility and possibility. Proc VLDB Endow,

2013, 7: 1083–1094

11 Papadimitriou C H. Computational Complexity. Boston: Addison-Wesley, 1994

12 Fan W F, Yu W Y, Xu J B, et al. Parallelizing sequential graph computations. In: Proceedings of International

Conference on Management of Data, 2017. 495–510

13 Fan W F, Lu P, Luo X J, et al. Adaptive asynchronous parallelization of graph algorithms. In: Proceedings of

International Conference on Management of Data, 2018. 1141–1156

14 Yan D, Bu Y Y, Tian Y Y, et al. Big graph analytics platforms. FNT Databases, 2015, 7: 1–195

15 Raychev V, Musuvathi M, Mytkowicz T. Parallelizing user-defined aggregations using symbolic execution. In: Pro-

ceedings of Symposium on Operating Systems Principles, 2015

16 Pingali K, Nguyen D, Kulkarni M, et al. The tao of parallelism in algorithms. In: Proceedings of Programming

Language Design and Implementation, 2011

17 Zhou Y, Liu L, Lee K, et al. Fast iterative graph computation with resource aware graph parallel abstractions.

In: Proceedings of High Performance Distributed Computing, 2015

18 Radoi C, Fink S J, Rabbah R M, et al. Translating imperative code to MapReduce. In: Proceedings of Conference on

Object-Oriented Programming Systems, Languages, and Applications, 2014
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