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Abstract Reconfigurable field-effect transistors have attracted enormous attention over the past decades

because of their potential in implementing logic and analog circuit functions with fewer resources of transis-

tors compared with complementary metal-oxide-semiconductor transistors. However, the miniaturization of

traditional reconfigurable transistors is still a challenge owing to their inherent planar multi-gate structure.

Herein, we fabricated a dual-gate vertical transistor based on graphene/MoTe2/graphite van der Waals het-

erostructure and demonstrated a switchable n-type, V-shape ambipolar and p-type field-effect characteristics

by varying the voltages of the top gate and drain electrodes. According to the band diagram analysis, we

reveal that the reconfiguring ability of the field-effect characteristics stems from the asymmetric injection

efficiency of the carriers through the gate-tunable barriers at the interfaces. Our results offer a potential

approach to achieve device miniaturization of reconfigurable transistors.
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1 Introduction

Traditional n and p-type field-effect transistors (FET) are building blocks for integrated digital and

analog circuits. However, the specific field effect characteristic of a traditional FET device cannot be

changed owing to using the chemical doping approach. These types of FETs are facing challenge in

meeting the increasing demands for massive data processing. To overcome these challenges, reconfig-

urable FETs (RFETs) based on materials with ambipolar field-effect characteristics [1–13] that possess

different operation modes and multiple functions, [14–24] were proposed as a promising solution to build

multifunctional circuits with fewer compounds [16, 25–28]. Previously reported RFETs are based on a

dual-gate planar structure [29–31]. The footprint of the RFETs has no advantage over that of the con-

ventional FETs, which is undesirable to the high-density integration of RFETs. Fortunately, the vertical

transistor [32–49] provides an alternative approach to realize RFETs with a compact structure, which is

promising in the high-density integration of RFETs. In this article, we demonstrate a new reconfigurable

vertical field-effect transistor (RVFET) based on graphene/MoTe2/graphite vertical van der Waals (vdW)

heterostructures. Our device exhibits reconfigurable features among n-type, p-type, and V-shape am-

bipolar field-effect characteristics by reconfiguring the gate and drain-source bias voltages. Furthermore,
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Figure 1 (Color online) Device structure and bottom gate field-effect characteristics of the RVFET. (a) Schematic of the

RVFET based on graphene/MoTe2/graphite vertical van der Waals heterostructure. (b) Field-effect of drain-source current

versus bottom gate voltage under different Vds biases. The inset shows the optical micrograph of the RVFET.

we have employed the band diagrams to illustrate that the asymmetrically gate-tunable Schottky barriers

at the interfaces determine the working mechanism of the RVFET. Our work opens an opportunity to

achieve high-density integrated reconfigurable circuit applications.

2 Results and discussion

As shown schematically in Figure 1(a), we have fabricated the RVFET device by employing vdW het-

erostructures comprised of monolayer graphene, graphite (∼3 nm), MoTe2 (∼24 nm), and h-BN (∼20 nm).

All materials were mechanically exfoliated on SiO2/Si substrate and then stacked by the polyvinyl alco-

hol (PVA) transfer method. Specifically, we use MoTe2 as the channel material, graphene as the bottom

electrode (source terminal), graphite as the top electrode (drain terminal), Ag/Au metal as the top gate,

p-Si as the bottom gate, h-BN and 300 nm SiO2 as their insulating layers. The channel length of the

RVFET is defined by the thickness of MoTe2 flake (see Figure S1). To ensure the high quality of the

prepared materials, the Raman spectra of all the materials mentioned above were characterized before

the transfer process (see Figure S2) [50,51]. The standard electron beam lithography and electron beam

evaporation processes were carried out to fabricate Ag (5 nm)/Au (40 nm) metal electrodes to form ohmic



Wang C, et al. Sci China Inf Sci October 2020 Vol. 63 202402:3

10−4

10−5

10−6

10−4

10−5

10−610−7

I d
s 
(A

)

I d
s 
(A

)

I d
s 
(µ

A
)

80400−40−80

V
ds

=0.5 V V
ds

=−0.5 V

V
tg
 = −6 V

V
tg
 = −3 V

V
tg
 = 0 V

V
tg
 = 3 V

V
tg
 = 6 V

V
tg
 = −6 V

V
tg
 = −3 V

V
tg
 = 0 V

V
tg
 = 3 V

V
tg
 = 6 V

80400−40−80

V
ds

 = −0.5 V

V
tg
 = −6 V

250

200

150

100

50

0

140

120

100

80

60

40

20

0

80

60

40

20

0

V
ds

 = −0.5 V

V
tg
 = 6 V

V
ds

 = 0.5 V

V
tg
 = 6 V

0−800−800−80

V
bg

 (V) V
bg

 (V) V
bg

 (V)

V
bg

 (V)V
bg

 (V)

80 80 80

(a) (b)

(c)

Figure 2 (Color online) Reconfigurable electrical performance of RVFET. (a), (b) Field-effect transfer curves at ±0.5 V

Vds and different Vtg varies between −6 V and 6 V. (c) The typical n-type, V-shape, and p-type transfer characteristic

curves from the same RVFET device by reconfiguring the bias voltages of Vds and Vtg.

contact with graphene and graphite. The device was then annealed at 280◦C in Ar ambience for 2 h

to remove resist residue and improve the contact between the metal and 2D material. A representative

optical microscope image of RVFET is shown in the inset of Figure 1(b).

To study the reconfigurable field-effect characteristics of RVFET in detail, we first examined the

drain current (I ds) of the RVFET by sweeping the back-gate voltage (Vbg) with the top gate floated.

The V-shape transfer characteristic curves exhibited in Figure 1(b) illustrate the ambipolar field-effect

characteristics with both positive (red curve) and negative (blue curve) drain-to-source voltage (Vds).

The n-branch of the field-effect current in the region of V bg <V Imin (V Imin, the gate voltage when Ids is

minimized) is dominated by the electron injection from the graphene electrode at positive Vds (red curve)

and graphite electrodes at negative Vds (blue curve). On the other hand, the p-branch field-effect current

with V bg > VImin is determined by hole injection, and the carrier injection source is different from the

n-branch. Note that the p-branch current under the negative Vds is much larger than that under the

positive Vds, while the n-branch current under the negative Vds is smaller than that under the positive

Vds. This result suggests that the carrier injection efficiency at the graphene/MoTe2 interface is higher

than that at the graphite/MoTe2 interface. This phenomenon is because the Fermi level in the graphene

can be adjusted while the Fermi level in the graphite is fixed. Furthermore, the field-effect of Ids versus

top gate Vtg was also measured, with the results shown in Figure S3, which demonstrates field effect

characteristics similar to the V-shape one. All of the above results indicate that RVFETs can exhibit

reconfigurable electrical characteristics under the different configurations of Vds, Vtg, and Vbg.

The demonstrated field-effect characteristics of both top and bottom gates allows us to further explore

the reconfigurable field-effect characteristics of the RVFET by tuning Vds, Vbg, and Vtg voltages. As
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Figure 3 (Color online) Band diagrams of RVFET corresponding to eight carrier transport regimes (a)–(h) that are the

different combinations of the Vbg (80 or −80 V), Vtg (6 or −6 V), and Vds (0.5 or −0.5 V). Thick solid and thin dashed

lines indicate majority and minority injection of the charge carriers, respectively.

shown in the Figure 2(a), when Vds is positive and Vtg varies from 6 to −6 V, the n-branch field-effect

curves almost overlap, while the p-branch current is enhanced as the Vtg decreases, indicating that the

hole injection from the drain electrode could be modulated by changing Vtg. Meanwhile, inverse gate-

dependent behaviors are observed under the negative Vds, as shown in Figure 2(b). The field effect

characteristics by sweeping Vtg and output characteristics curves of RVFET are also given in Figures S4

and S5, respectively. Notably, by reconfiguring Vds and Vtg, we have successfully demonstrated the

n-type, V-shape ambipolar and p-type field-effect characteristics in the same device (see Figure 2(c)).

Our RVFET technology has an obvious advantage over the prior work reporting different field-effect

characteristics by varying thickness [52], as we achieved reconfigurable field-effect characteristics by only

tuning the polarity of the voltage. We also compare the RVFET with different dual-gate reconfigurable

FET devices, as shown in Table S1.

To understand the working mechanism of the RVFET, we drew a group of band diagrams in the

graphene/MoTe2/graphite vertical vdW heterostructure. Specifically, we divided all configurations of

the bottom gate, top gate, and drain-source bias voltages into eight carrier transport regimes that are

different combinations of the Vbg (80 or −80 V), Vtg (6 or −6 V), and Vds (0.5 or −0.5 V) corresponding
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Figure 4 (Color online) Temperature-dependent charge transport of RVFET. Field-effect transfer characteristics by sweep-

ing Vbg at different temperatures ranging from 125 to 300 K with Vds = 0.2 V in (a) and Vds = −0.2 V in (b). (c) Arrhenius

plot at Vds = 0.2 V with Vbg varying from −80 to −40 V (p-branch) and 40 to 80 V (n-branch). (d) Variation of effective

barrier height extracted from the slope of the fitted lines in (c). The top gate was floated in this test.

to the band diagrams (Figures 3(a)–(h)). The direction of the carrier flow is determined by the bias

polarity of Vds. In the regimes with positive Vds (Figures 3(a)–(d)), the electrons (holes) traverse MoTe2
from graphene (graphite) electrode to the graphite (graphene) electrode, while carrier transport direction

in those regimes with negative Vds is inversed, as shown in Figures 3(e)–(h). As long as the carrier flow

direction is determined, energy band bending modes at graphene/MoTe2 and MoTe2/graphite interfaces

that are controlled by Vbg and Vtg determine the ability for the carriers to pass the barrier and further

affect the current state (on or off) of the transistor.

We specifically focused on a regime to elucidate the mechanism in detail (as shown in the Figure 3(a)),

where Vds, Vbg, and Vtg are positive. The valence and conduction band of MoTe2 bend downward, and the

raised Fermi level of graphene results in the thinned and lowered Schottky barrier at the graphene/MoTe2
interface that facilitates the electron injection as indicated by the solid line arrows. On the other hand,

according to the increased Schottky barrier, the hole injection is blocked at the MoTe2/graphite interface,

as indicated by the dashed line arrows. Therefore, the transport property of the device in regime a is dom-

inated by electrons, which agrees well with the n-branch of the red transfer curve in the Figure 2(a). If we

tune Vbg to be negative while keeping Vds and Vtg unchanged, as shown in the Figure 3(c), the Fermi level

of the graphene is lowered, and the energy band of MoTe2 bends upward at the graphene/MoTe2 inter-

face, resulting in an increased Schottky barrier and then blocking the electron injection. Considering that

hole injection is blocked at the MoTe2/graphite interface owing to the same reason as mentioned above,

we could obtain a low current level corresponding to the p-branch of the red curve in the Figure 2(a).
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Therefore, the n-type field-effect characteristics as shown in the left panel of the Figure 2(c) could be

explained by Figure 3(a) and (c). Similarly, the n and p-branch of the V-shape ambipolar field-effect

characteristic shown in the middle panel of the Figure 2(c) could be explained using the band diagram

in Figure 3(e) and (g), respectively. Meanwhile, the p-type field-effect characteristic shown in the right

panel of the Figure 2(c) corresponds to the carrier injection indicated in Figure 3(f) and (h), in which

the hole injection dominates the on-state current.

Based on the analysis above, we believe that the tunable Schottky barriers are responsible for the

reconfigurable behaviors of RVFETs. This conclusion is further justified using the experimental results

of temperature-dependent charge transport (see Figure 4). Note that graphene has a smaller electronic

density of states than graphite, and the field-effect in the graphene is more profound within the same

range of the gate voltage compared to the graphite. Therefore, the variation of the Schottky barrier

height at the interface of graphene/MoTe2 is larger than that of MoTe2/graphite. In other words, it

is the asymmetric tunability of the carrier injection at graphene/MoTe2 and MoTe2/graphite interfaces

that leads to the reconfigurable field-effect characteristics of the RVFET.

3 Conclusion

We have successfully fabricated the RVFET based on the graphene/MoTe2/graphite vdW heterojunction

with a vertical dual-gate structure. By varying the drain-to-source bias and the top gate voltage, we

demonstrated that the RVFET could exhibit three distinct types of field-effect characteristics, i.e., n-type,

V-shape ambipolar, and p-type field-effect characteristics. Moreover, we used the band diagrams to reveal

that gate-tunable asymmetric Schottky barriers in the graphene/MoTe2/graphite vdW heterojunction

could account for the reconfigurable field-effect characteristics of the RVFET. Our work offers new insight

in designing a reconfigurable FET to address the challenge of device miniaturization.
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