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Abstract The future wireless communications require different kinds of modulation functions to be in-

tegrated in a single intelligent device under different scenarios. Here, we propose a multi-scheme digital

modulator to achieve this goal based on integrated spoof surface plasmon polaritons (SPP) in different fre-

quency bands. By constructing switchable spoof SPP units, the propagating wave in the proposed spoof

SPP waveguide can be manipulated in amplitude domain, frequency domain, and phase domain. As a proof

of concept, the integrated multi-scheme digital modulator is experimentally verified to achieve at least three

kinds of modulations, including amplitude shift keying, phase shift keying, and frequency shift keying, in

a single digital spoof plasmonic waveguide. The simulated and measured results show that the modula-

tor has excellent property of field confinement and is capable of frequency-domain modulation. Hence, the

multi-scheme modulation property makes the proposed SPP digital modulator be an effective and reliable

candidate for efficient manipulations of SPP waves and for advanced modulation technology.

Keywords spoof surface plasmon polaritons, dynamic manipulation, multi-scheme modulation, dispersion
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1 Introduction

Modulation technologies based on electromagnetic (EM) characteristics such as amplitude, phase, and fre-

quency are the basis of modern communications. Among them, the amplitude shift keying (ASK), phase

shift keying (PSK), and frequency shift keying (FSK) are regarded as the most fundamental schemes,

showing their irreplaceable advantages in different aspects such as power consumption, spectrum occu-

pancy, and efficiency [1–3]. For example, ASK has the advantages of low cost and low power consumption;

FSK is used in data transmission due to its low attenuation; while PSK has the strongest anti-interference

capability and has been widely used in space communications. Hence, to meet the requirement of differ-

ent potential applications, the future intelligent communication device should have the ability to carry

out multi-scheme modulations in a compact space. For example, from the perspective of communication

security, when one kind of modulated signal is interfered, the multi-scheme modulators can generate

another kind of modulation signal to keep the communication going.
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Figure 1 (Color online) The proposed SPP structure and resulting multi-scheme modulations. (a) The multi-scheme-

modulation SPP waveguide, whose main part is outlined in the purple dashed line. (b) The schematic diagram of a single

switchable SPP unit, in which the period p = 6 mm, radius of metal hole r = 0.2 mm, width of metallic bar w1 = 1.5 mm,

w2 = 3.5 mm, height of metallic bar h1 = 4 mm, and height of upper metallic bar h2 = 5 mm. (c) The schematic diagram

of multi-scheme modulations. In different modulation schemes, different modulation SPP signals are generated.

Over the past decades, the emergence of metamaterials or metasurfaces provides the possibility of ma-

nipulating the EM waves flexibly [4–10]. Owing to the unique and excellent physical properties such as

negative index of refraction [11], near-zero index of refraction [12–14], and extremely strong chirality [15],

the metamaterials have attracted more dramatic attention. Introducing the concept of manipulating

surface waves at low frequencies, spoof surface plasmon polaritons (SPP) have been proposed to manip-

ulate the EM waves in subwavelength scale [16–21]. Owing to their distinctive properties of strong field

confinement and enhancement, the spoof SPP metamaterials promise useful applications in miniaturized

devices [22, 23], low-cross-talk waveguides [24–26], and others [27–33]. However, limited by their fixed

structure and inherent analog nature, the traditional metamaterials (including spoof SPP metamaterials)

are difficult to achieve dynamic manipulations, and even more difficult to establish connection with digital

modulations.

In order to solve the above problems, digital technology has recently been introduced to meta-

materials [34–42]. This concept was also extended to the subwavelength scale to control the spoof

SPPs [39], which pioneers the concept of digital spoof SPPs and provides the possibility of manipulating

the spoof SPPs dynamically. However, the scheme in Ref. [39] cannot be used to realize frequency-domain

modulations, which plays a fundamental and important role in the modern information systems.

In this paper, a spoof SPP digital modulator is realized by introducing positive-intrinsic-negative (PIN)

junction diode into the plasmonic metamaterials to integrate the above three kinds of most fundamen-

tal modulation functions (ASK, PSK, and FSK) in a single device, as shown in Figure 1(a). First, a

switchable SPP unit is constructed and the dispersion engineering is demonstrated analytically in Sec-

tion 2. Then, we propose a multi-scheme-modulation SPP waveguide by arranging the SPP units and

measure the transmission spectra and field distributions in Section 3. In Section 4, the measurement

of the time-domain waveform of the multi-scheme-modulation waveguide is implemented. Finally, we
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Figure 2 (Color online) Equivalent circuit models of the proposed SPP unit with (a) short-circuit stub and (b) open-circuit

stub.

discuss conclusion in Section 5.

2 Switchable SPP unit and dispersion engineering

To manipulate spoof SPPs in multiple schemes based on single structure, a specially designed SPP unit

is required, as shown in Figure 1, which can provide different physical responses according to different

external excitation signals. The signals propagating in the proposed SPP waveguide can also be ma-

nipulated flexibly in different schemes (ASK, PSK, and FSK) by external digital signals, as shown in

Figure 1(c).

In order to realize switchable states of the SPP unit, a PIN diode is introduced, which can be easily

controlled by external voltages to achieve two distinctly physical responses, “ON” state and “OFF” state.

It is worth mentioning that the PIN diode has been studied for configurability of microwave components in

industry manuals [43]. However, the previous work has not focused on the modulation of SPPs. Inspired

by the conventional corrugated spoof SPP unit, a novel unit supporting controllable spoof SPPs is con-

structed by the PIN diode and subwavelength-scale planner metallic structures, as shown in Figure 1(b).

It is worth mentioning that the outermost metal structure is connected to the metal ground by a metallic

via, which is different from the scheme in Ref. [39].

To explain the working principle, the proposed SPP unit is investigated using circuit topology, which

can be modeled as a slow-wave transmission line (TL) loaded with short-circuit stubs (“ON” state) or

open-circuit stubs (“OFF” state), as shown in Figure 2. The main TL is modeled using a microstrip with

propagation constant km1 and impedance Zm1, and the shunt branches are regarded as admittance Y .

For Bloch waves propagating in a periodic structure, the dispersion-curve formula is expressed as [40]

cos(kp) = cos(km1p) + j
Zm1Y

2
sin(km1p). (1)

For the “ON” state, as shown in Figure 2(a), the proposed unit is actually loaded with the short-circuit

stub, which is characterized as an effective inductance L:

L =
Zshort

jw
=

Zm2 tan(km2h)

w
. (2)

In this case, the shunt admittance Y is

Yshort =
1

jwL
=

1

jZm2 tan(km2h)
. (3)

For the “OFF” state, as shown in Figure 2(b), the proposed unit is actually loaded with the open-circuit

stub, which is characterized as an effective capacitor C:

C =
1

jwZopen
=

1

wZm2 cot(km2h2)
. (4)

In this case, the shunt admittance Y is

Yopen = jwC =
j

Zm2 cot(km2h2)
. (5)
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Figure 3 (Color online) (a) Dispersion curves of the proposed SPP unit in the “ON” and “OFF” states; (b), (c) the

Eigen-mode field distributions of the SPP units in the “ON” and “OFF” states at 3.7 GHz.

Substituting Eqs. (3) and (5) into (1), the calculated dispersion curves can be obtained, as shown in

Figure 3(a).

It is worth noting that the above circuit model can be used to illustrate the principle but the quan-

titative relationship between circuit parameters and structure parameters has not been established. In

order to determine the structure parameters, the proposed SPP unit is investigated through eigenmode

simulations. Based on the finite-element analysis of the eigenmode, the dispersion curves of the proposed

unit with “ON” and “OFF” states are displayed in Figure 3(a), where the metal and dielectric substrate

are selected as copper and Rogers RO4350B, respectively. To simulate the switchable characteristics, the

“ON” state of the PIN diode is considered as a metallic material and the “OFF” state is treated as a

dielectric with high relative permittivity. As shown in Figure 3(a), the red and green lines respectively

characterize the dispersion curves of the “ON” and “OFF” states, which matches the calculated disper-

sion curves well, confirming the circuit theoretical analysis. It is noted that these two dispersion curves

gradually separate from the light line in vacuum and asymptotically approach two different cut-off fre-

quencies, behaving like the natural SPP modes at the optical frequencies. Thus, a lower cut-off frequency

of the dispersion curve in the “ON” state can be realized creatively by introducing the metallized via

holes, which is the key to manipulate the spoof SPPs in the frequency domain.

Due to the excellent property of the proposed structure to engineer the characteristics of spoof SPPs

flexibly by changing the parameters, the operating frequency has the advantage of customizability. By

changing the structure parameters, such as h1 and h2, the operating frequency can be adjustable. By

designing the parameters carefully, two switchable dispersion curves make it possible to manipulate the

SPP waves in three different schemes. In the case of point I or IV as shown in Figure 3(a), only one state

supports the transmission of spoof SPP signals but the other does not, which achieves the ASK scheme

easily. In the case of points II and III, both states support the SPP signal transmissions but correspond

to different phase responses. The designed phase difference is exactly 180◦, which can realize the PSK

scheme. When two signals of specific frequencies (such as the two frequencies in points I and IV) are

input to the proposed unit structure, each state supports the transmission of the signal at one frequency

and blocks the transmission at the other frequency, which contributes to the FSK scheme. Hence, the

dynamic manipulations of the signal frequencies can be implemented. Based on the proposed SPP unit,

it is possible to realize multi-scheme modulations, including ASK, PSK, and FSK.

From the physical view, the switchable states of the PIN diode actually control the flow of current

between the upper and lower metallic slices. In other words, the reconfigurable physical structure leads to

the adjustable physical responses. When the PIN diode is at the “ON” state, the EM energy distributes

through diodes to the upper metallic slices, as shown in Figure 3(b). The lower-frequency EM wave

finally flows to the metal ground through the metal via, and that is the reason why the low cut-off

frequency appears in the dispersion curve of the “ON” state. Owing to the inductive effect of the metal

groove structure, the higher-frequency EM energy is blocked into the metal ground and the transmission

of SPP wave is still supported. In contrast, when the PIN diode is at the “OFF” state, the EM energy
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Figure 4 (Color online) Photographs of the fabricated prototype.
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Figure 5 (Color online) The measured transmission amplitude (a) and phase spectra (b) of the proposed SPP waveguide

in the “ON” and “OFF” states.

is prevented from the upper metallic slices, as shown in Figure 3(c), hence the dispersion curve presents

a typical low-pass type. Clearly, the EM energy in both two states is distributed in the vicinity of the

metal structure, which behaves the strong field confinement characteristics of the spoof SPPs.

3 Structure realization of multi-scheme modulations

The proposed switchable SPP unit provides the possibility of manipulating the SPP signals in multiple

schemes based on a single structure. However, the discrete physical responses not only need to be

constructed, but also controlled by the external signals. Inspired by this idea, a multi-scheme-modulation

SPP waveguide is proposed by arranging the SPP units with period p along the x axis on the top surface

of dielectric substrate made by Rogers RO4350B and metallic ground on the bottom surface, as shown

in Figure 4. The PIN diode is selected as MADP-000907-14020x. Applying different DC bias voltages

between two terminals of the PIN diode, the “ON” and “OFF” states can be switched. In order to avoid

the high-frequency leakage to the bias port and metallic ground, a choke structure is designed, which

is composed of meander lines and lumped chip capacitors. Besides, two momentum compensations are

designed to reduce the mismatch between the quasi-transverse EM mode and SPP mode using a planar

gradient index structure.

To verify the performance of the proposed SPP waveguide, the transmission spectra and near-field

distributions are measured by a vector network analyzer and near-field scanning mapper, respectively, as

shown in Figures 5 and 6. In the measured S-parameter results in Figure 5(a), three frequency bands are

applied to achieve three different modulation functions. In region I or III, there is only one state, in which

the EM signal can be transmitted and the amplitude of the signals can be conveniently controlled by the

external voltage to switch the “ON” and “OFF” states. It is worth mentioning that the proposed multi-

scheme-modulation SPP waveguide allows the amplitude at lower frequencies rather than only at relative

higher frequencies. More importantly, when two signals of different frequencies (one is located in region I
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Figure 6 (Color online) The simulated near-field distributions of the proposed SPP waveguide in the “OFF” state ((a),

(c) and (e)) and “ON” state ((b), (d) and (f)).

1.0 

 

0 

1.7 GHz  1.7 GHz  

3.7 GHz  

6.0 GHz  

“OFF” state “ON” state 

“OFF” state 

“OFF” state 

“ON” state 

“ON” state 

3.7 GHz  

6.0 GHz  

(a) (b) 

(c) (d) 

(e) (f) 

−1.0

Figure 7 (Color online) The measured near-field distributions of the proposed SPP waveguide in the “OFF” state ((a),

(c) and (e)) and “ON” state ((b), (d) and (f)).

and the other is in region III) are fed into the proposed SPP waveguide at the same time, only one kind

of frequency signal can transmit in each state. Hence, the frequency of the signal can be dynamically

modulated by the external bias voltage, which has never been reported in previous research. In region II,

both states support the EM signal transmissions but their phase responses are different. The inherent

wavenumber difference between the two states can be accumulated along the propagation direction and

the phase difference may achieve 180◦ by carefully designing the length of the SPP waveguide, as shown

in Figure 5(b), which makes the phase modulation possible.

The near-field distributions also demonstrate the ability of the proposed SPP waveguide to manipulate

the EM signal in multiple schemes. Figures 6 and 7 show the simulated and measured results, respectively.

As displayed in Figures 6 and 7, at 1.7 GHz, most EM energy can go through the proposed SPP waveguide

in the “OFF” state while little EM energy is received by the output port in the “ON” state. However, at

6 GHz, the EM behavior is actually opposite. That is to say, the switchable states controlled by the

external bias voltage have remarkable manipulation ability of EM signals. At 3.7 GHz, the EM signals

can be transmitted well in both “ON” and “OFF” states. More importantly, the outputs of such two

states have opposite responses. Hence the EM behaviors obtained from the near-field distributions are

consistent with the S-parameter results and dispersion characteristics, further confirming the aforemen-

tioned theoretical analysis from a more visual perspective. It is noted that the proposed multi-scheme

SPP waveguide also keeps the excellent ability of field confinement, in which the EM energy in all states

is confined around the metal structure obviously.
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Figure 8 (Color online) (a) The schematic diagram of measurement system for time-domain spectra; (b) the photograph

of the measurement setup; (c), (d) the measured time-domain spectra of transmitted signals in the amplitude-modulation

scheme modulated by 5 MHz square wave.

4 Experimental verification of the multi-scheme modulation

By means of the measured transmission spectra and near-field distributions, the ability of manipulating

the EM signal in multiple schemes of the proposed SPP waveguide is analyzed in details. However, the

ultimate purpose of manipulating EM signals is to generate the modulated signals. Hence, we show

experimental demonstration and performance verification of spoof SPP signals modulated directly by

a square wave. For this reason, the measurement of the time-domain waveform of the multi-scheme-

modulation waveguide is implemented. The experimental system is described in Figure 8(a) and the

photograph of the measurement setup is shown in Figure 8(b). To verify the modulation ability of the

proposed SPP waveguide more intuitively, the experiments of time-domain spectroscopies in multi-scheme

(ASK, PSK, and FSK) are demonstrated in turns.

In the ASK scheme, we observe that the transmitted signals at 1.7 GHz are modulated by the 5 MHz

square waves, as shown in Figure 8(c), which display a significant transmission ratio (more than 10 times)

between the “ON” and “OFF” states in the time domain. As shown in Figure 8(d), the EM signal at 6 GHz

can also be modulated by the 5 MHz square wave. The amplitude variation of the EM signal carries

the transmitted information and the amplitude modulation is fully controlled by the external voltage

bias. Remarkably, the amplitude modulation in both higher and lower frequency bands has been proved,

expanding the available frequency range.

Based on the same fabricated sample, the experiment of phase modulation is also carried out. As

shown in Figure 9, the signal waveform at 3.7 GHz modulated by the 5 MHz square wave is displayed. It

is noted that the phases of the time-domain signals are reversed when switching the “ON” and “OFF”

states for most parts of the time. Hence, the information to be transmitted is reflected in the phase

behavior of the high-frequency signal. The solid line in the figure shows the theoretical curve in both

states, which fits the measured data perfectly.

Furthermore, the experiment of frequency modulation is implemented by using the same sample. The

signal modulated by the 5 MHz square wave is displayed in Figure 10. Clearly, one signal at 1.7 GHz
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different inputs. The incident signal at 3.7 GHz modulated by 5 MHz square wave.
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The incident signals at 1.7 GHz and 6 GHz modulated by 5 MHz square wave.

or 6 GHz can be transmitted through this plasmonic waveguide at the same time. The frequency of the

EM signals changes with the external voltage switching, and in this case the frequency variation of signal

carries the information. In conclusion, all amplitude modulation, phase modulation and frequency modu-

lation have been realized using a single sample with different operating frequencies, and the experimental

results of multi-scheme modulations agree well with the theoretical curves.

5 Conclusion

An integrated multi-scheme digital modulator based on spoof SPPs has been investigated. By introducing

PIN diodes into spoof SPP waveguide, the switchable SPP unit was constructed and the dispersion

engineering was demonstrated analytically. The signal propagating in the proposed SPP waveguide can

be manipulated flexibly in different schemes (ASK, PSK, and FSK) and the time-domain waveforms were

displayed in details. The proposed multi-scheme modulation SPP waveguide not only makes up the lack

of frequency-domain modulation but also broadens the frequency range of amplitude modulation. More

importantly, the integrated multi-scheme modulations of SPP signals has been implemented on a single

sample, which provides a novel solution to realize more flexible and secure communication systems.
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