
SCIENCE CHINA
Information Sciences

October 2020, Vol. 63 202103:1–202103:19

https://doi.org/10.1007/s11432-018-9943-9

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .

Dynamic network embedding via incremental

skip-gram with negative sampling

Hao PENG1,2, Jianxin LI1,2*, Hao YAN1,2, Qiran GONG2, Senzhang WANG3,

Lin LIU2, Lihong WANG4 & Xiang REN5

1Beijing Advanced Innovation Center for Big Data and Brain Computing,
Beihang University, Beijing 100083, China;

2State Key Laboratory of Software Development Environment, Beihang University,
Beijing 100083, China;

3Collage of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China;

4National Computer Network Emergency Response Technical Team/Coordination Center of China,
Beijing 100029, China;

5Department of Computer Science, University of Southern California, Los Angeles, 90089, USA

Received 11 October 2018/Revised 14 March 2019/Accepted 10 June 2019/Published online 18 September 2020

Abstract Network representation learning, as an approach to learn low dimensional representations of

vertices, has attracted considerable research attention recently. It has been proven extremely useful in

many machine learning tasks over large graph. Most existing methods focus on learning the structural

representations of vertices in a static network, but cannot guarantee an accurate and efficient embedding in

a dynamic network scenario. The fundamental problem of continuously capturing the dynamic properties

in an efficient way for a dynamic network remains unsolved. To address this issue, we present an efficient

incremental skip-gram algorithm with negative sampling for dynamic network embedding, and provide a set

of theoretical analyses to characterize the performance guarantee. Specifically, we first partition a dynamic

network into the updated, including addition/deletion of links and vertices, and the retained networks over

time. Then we factorize the objective function of network embedding into the added, vanished and retained

parts of the network. Next we provide a new stochastic gradient-based method, guided by the partitions of

the network, to update the nodes and the parameter vectors. The proposed algorithm is proven to yield an

objective function value with a bounded difference to that of the original objective function. The first order

moment of the objective difference converges in order of O(1
n2), and the second order moment of the objective

difference can be stabilized in order of O(1). Experimental results show that our proposal can significantly

reduce the training time while preserving the comparable performance. We also demonstrate the correctness

of the theoretical analysis and the practical usefulness of the dynamic network embedding. We perform

extensive experiments on multiple real-world large network datasets over multi-label classification and link

prediction tasks to evaluate the effectiveness and efficiency of the proposed framework, and up to 22 times

speedup has been achieved.

Keywords dynamic network embedding, bound and convergence analysis, multi-label classification, link

prediction

Citation Peng H, Li J X, Yan H, et al. Dynamic network embedding via incremental skip-gram with negative

sampling. Sci China Inf Sci, 2020, 63(10): 202103, https://doi.org/10.1007/s11432-018-9943-9

1 Introduction

Recently network representation learning, also known as network embedding, has received considerable

research attention. That is due to the fact that many real-world problems in complex systems, such as

*Corresponding author (email: lijx@act.buaa.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9943-9&domain=pdf&date_stamp=2020-9-18
https://doi.org/10.1007/s11432-018-9943-9
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9943-9
https://doi.org/10.1007/s11432-018-9943-9

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:2

recommended systems, social networks and biology networks, can be modelled as machine learning tasks

over large network. The idea of network embedding is to learn a mapping that projects each vertex in a

network to a low dimensional and continuous distributed vector space, where each vertex is represented

as a dense vector. The mapping is learned with the objective of preserving the structural information of

the original network in the geometric relationships among vertices’ vector representations [1]. Network

representation learning has been proven to be a useful tool for various real-world network mining tasks

such as vertex community detection [2], recommended system [3], anomaly detection [4], multi-label

classification [5–9], link prediction [5–7], and knowledge representation [10].

Previous studies have proposed several prominent network embedding methods. DeepWalk and

node2vec capture higher-order proximities in embeddings by maximizing the conditional probability of

observing the neighbourhood of vertices of a vertex given the mapped point of the vertex. Here the neigh-

bourhood vertices are obtained from vertices traversed in a random walk. The crucial difference between

DeepWalk [6] and node2vec [5] is that node2vec employs a biased random walk procedure to provide a

trade-off between breadth-first search (BFS) and depth-first search (DFS) in a network, which might lead

to a better mapping function. LINE [7] and SDNE [11] learn graph embeddings by preserving the first-

and second-order proximities in the embedded space, where the former refers to the pairwise neighbor-

hood relationship and the latter is determined by the similarity of nodes’ neighbors. The difference is

that the SDNE uses highly non-linear functions to represent the mapping function.

Most existing network embedding methods [12–15] focus on learning the node representations in static

network where no temporal information is associated with the nodes and edges. However, the majority

of real-world networks are dynamical and continuously growing over time (i.e., nodes occur and disap-

pear, and edges are added and vanish as time goes), such as the friendship network in Facebook, the

citation network in DBLP, and the web-pages hyperlink dataset updating in Wikipedia. There are a lot

of scenarios, such as real-time social network node classification and knowledge graph link processing,

requiring dynamic update of the node representation given the fact that the working domains are fast

evolving. Unfortunately, the above methods ignore the dynamic nature and are unable to efficiently

update the vertices’ representations in accordance with networks’ evolution. However, prior studies have

demonstrated that, besides the dynamic edge and vertex modeling, the negative sampling or hierarchi-

cal softmax optimizing for representation learning is tremendous importance in capturing the evolution

patterns of the dynamic network [16, 17]. When the difference between the updated network and the

old network is relatively small, it is inefficient to obtain the new node embeddings through retraining

the entire new network. Indeed, the few very recent studies [16–19] adapted from the above methods

required either prior knowledge of new vertices’ attributes or retrained on new graphs with uncertain

convergence time. It is a challenge for many high-throughput production machine learning systems that

need generating the representations of new vertices promptly.

In this paper, we study the problem of efficiently learning the node embedding for dynamic networks by

proposing an incremental skip-gram with negative sampling model. In particular, we adopt the popular

and fundamental network representation models, such as DeepWalk and node2vec, due to their simplic-

ity, interpretability, time efficiency, and comparable performance to other complex network embedding

technologies [7, 11, 20–22]. The two models make use of skip-gram which is initially proposed in natu-

ral language processing (NLP) to train vertice representations through generating the sequences of the

vertex by random walk. To speed up the training process, unsupervised neural network based language

learning models employ two techniques called hierarchical softmax and negative sampling [23, 24]. Hi-

erarchical softmax was first proposed by Morin and Bengio [25] where a hierarchical tree is constructed

to index all the words in a corpus as leaves. Negative sampling is developed based on noise contrastive

estimation [26] and randomly samples the words not in the context to distinguish the observed data

from the artificially generated random noise. The fixed number of the negative samples replaces the

variable layers of hierarchy. Although the original DeepWalk employs hierarchical softmax [6], it can be

also implemented using the negative sampling like node2vec and LINE. Considering the interpretability,

popularity and good performance of skip-gram and negative sampling on various representation learning

models [5–7,22–24,27], we investigate the problem of learning dynamic network embeddings with a focus

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:3

V
2

V
2 V

2
V

3 V
3

V
3

V
1

V
1

V
1

V
5

V
5 V

5

V
6 V

6

V
4

V
4 V

4

t t+1
t+2

Updating noise distribution
Inherited initialization embeddings

Normal initialized embeddings

Affected

sub-graph

Affected

sub-graph

Figure 1 (Color online) An illustration of the temporal evolving of the dynamic network. The green vertices and edges

constitute the initial network in time t. The vertex V6 (marked in orange color) and the corresponding edge (V1, V6) (marked

in orange color) emerge in time t+ 1. The vertex V3 (marked in dotted line) and the corresponding edge (V1, V3) (marked

in dotted line) vanish in time t+ 2.

on designing an incremental skip-gram model with negative sampling (ISGNS).

When applying skip-gram with negative sampling to network representation learning, the first problem

is to investigate the structure proximities and compute the noise distributions for negative sampling [5–

7, 22–24, 27, 28]. When the vertices and edges of a network evolve over time, as shown in Figure 1,

the proximities and noise distributions will update automatically to reflect the change of the network

structure. For example, in DeepWalk and node2vec, they use edges to construct the sequences of the

vertices and the noise distribution over the vocabulary, and result in the faster training process. In the

dynamic scenario, when the edges, the edge weights and the vertices change, the sequences of vertices,

the structure proximities and the noise distribution should be updated correspondingly. To address this

issue, we first partition the network into the updated part (new added/vanished links and nodes) and

the retained part. Then, we employ random walk and sliding window [5, 6] to extract the sequences

of the nodes or subgraphs, namely affected sequences of subgraphs in the network. To speed up model

training, our model inherits all the retained nodes and parameter vectors and implements a new stochastic

gradient-based method to update the changed nodes and parameter vectors, by comparing the old and

updated networks. When updating the vectors for the updated part of the subgraphs, we make use of

stochastic gradient descent and ascent methods based on the latest noise distributions to optimize the

model. In this way, we only need to update vectors in affected subgraphs. Our theoretical analyses reveal

that, under a mild assumption, the objective difference can be bounded by the scale of the old network,

and the convergence of objective difference can also be bounded. So the optimal solution of the dynamic

network embedding by ISGNS agrees with the original network SGNS when the network scale is infinitely

large. Because the update process is independent of all the shared vectors, we also present the techniques

for an efficient parallel implementation of dynamic network embedding with ISGNS. In the experiments,

we show that the proposed model can significantly reduce the training time while preserving comparable

performances with state-of-the-art models on static networks. The code of this study is publicly available

at the web1).

Our main contributions are summarized as follows.

• A dynamic network embedding framework based on an approximately optimal solution of incre-

mental skip-gram with negative sampling is proposed, which can be directly applied in existing network

embedding models such as DeepWalk and node2vec.

• The solid theoretical analyses show that our proposal guarantees the boundness of the objective

difference and the convergence when the training network scale is infinitely large. The empirical study

also verifies the boundary and moments of the network dynamic change.

• Extensive experiments on multiple large real-world network datasets show both the efficiency and

effectiveness of the proposed ISGNS on multi-label classification and link prediction tasks. ISGNS achieves

1) https://github.com/RingBDStack/dynamic network embedding.

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:4

up to 22 times speedup while preserving comparable performance with global re-training methods.

The remainder of the paper is organized as follows. We first review the related work in Section 2. Then

we introduce the proposed ISGNS model in detail in Section 3. Section 4 provides the mathematical

details of the dynamic objective difference, corresponding bound analysis and convergence analysis for

both first-order and second-order moments. We evaluate our model in Section 5, and finally conclude

this study in Section 6.

2 Related work

In this section, we briefly review related work on network embedding models, including static network

embedding and dynamic network embedding technologies.

Static network embedding. DeepWalk [6] is the first work that utilizes a truncated random walk to

transform a static network into a collection of node sequences. Then the skip-gram on hierarchical softmax

function2) is utilized to learn the vertex representations. Node2vec [5] further generalizes DeepWalk with

breadth-first search (BFS) and depth-first search (DFS) on random walks, and employs the popular skip-

gram with negative sampling to learn the vertex representations. LINE [7] and SDNE [11] model the first-

order and second-order proximities between vertices, and employ the skip-gram with negative sampling

to deal with the limitation of stochastic gradient descent on weighted edges without compromising the

efficiency. Struct2vec [29] proposes to preserve the structural identity between nodes in the representation.

To achieve this goal, it first creates a new graph based on the structural identity similarity between nodes

and then follows a similar method to DeepWalk on the created graph. A very recent method Graph-

Wave [30] makes use of wavelet diffusion patterns by treating the wavelets from the heat wavelet diffusion

process as distributions. Overall, those methods of generalized network embeddings are typically designed

to go through the entire network multiple times. It means that they cannot perform online learning of

the node representation in a dynamic scenario when the vertices, edges and edge weights change over

time.

Dynamic network embedding. DANE [31] leverages a matrix perturbation theory to update the

dynamic attributed network spectral embeddings. Zhu et al. [18] proposed a temporal latent space

learning model BCGD via non-negative matrix factorization to target the link prediction task in dynamic

social networks. But it belongs to especial embedding method for the purpose of link prediction. Jian et

al. [32] designed an online embedding representation learning method OLSN based on spectral embedding

used for node classification. However, the proposed unsupervised dynamic network embedding models are

more generalized. Trivedi et al. [16] proposed a deep recurrent architecture Know-Evolve modeling the

historical evolution of entity representations in a specific relationship space. Compared to the proposed

unsupervised dynamic network embedding method, the Know-Evolve model consumes lots of memory

and computational time. Xu et al. [33] proposed a statistical model Dynamic SBM for dynamic networks

that utilized a set of unobserved time-varying states to characterize the dynamics of the network. Zhou

et al. [34] proposed a triadic closure process based semi-supervised algorithm Dynamic Triad to learn the

structural information and evolution pattern in dynamic networks. Du et al. [35] proposed a heuristic

dynamic network embedding method DNE, which employed a decomposable objective based on the skip-

gram objective, and gave the objective function difference minimization. Zuo et al. [17] proposed a Hawkes

process based temporal network embedding method HTNE which captured the influence of the historical

neighbors on the current neighbor formation simultaneously. Inspired by the unsupervised neural network

representation learning, previous incremental word embedding models [36–39] proposed the incremental

hierarchical softmax function, the small adaptive unigram table based negative sampling for incremental

word embeddings, and Gaussian random walk based dynamic word embedding. For existing dynamic

network embedding and analysis models [16–18, 31–33, 35], these models belong to heuristic methods,

and cannot theoretically guarantee the equivalence and optimality of generalized network embedding

objective function. Even, the computational cost or memory cost linearly increases with the assumes and

2) However, an alternative to the hierarchical softmax is noise contrastive estimation (NCE) [26, 28].

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:5

learning time. For the bright dynamic network embedding model [34], it cannot handle the addition of

vertices, and the scalability of the model and the hypothetical process are the bottlenecks when applied

in real large scale networks. In addition, the above discussed dynamic network representation learning

models have not strictly followed the original object in the sampling optimization. Therefore, different

from existing studies, we study the popular neural network based dynamic network embedding from the

perspectives of the objective function and the sampling strategy.

3 Dynamic network representation learning

As we discussed above, network representation learning is sensitive to the network structure and the

objective proximities among vertices. When the edges and vertices evolve over time, we depict the

structural and proximity differences of the network snapshots in different time slots by metabolic sub-

graphs, which directly reflect the changes in edges, vertices, and noise distributions. Inspired by the

principle of network embedding approximating the adjacency matrix [22], we assume that the influence

of structural changes on the representation learning is partial in neighborhoods/sub-graphs for limited

adjacency matrix float. We firstly locate the metabolic sub-graphs by local random walk in re-training.

Then, for newly added nodes or edges, we implement the random walk only on the sub-graphs to generate

sequences of vertices. Note that one vertex sequence contains at least one new node or edge. For the

vanished nodes or edges, we also implement the random walk on the sub-graphs to generate sequences

of vertices following the same rule. Then for each vertex in the above sequences, we re-calculate its

frequency and add/subtract the result to/from its frequency in the previous network. Thus, we obtain

the latest noise distributions. For a fast training in dynamic network scenario, we adopt a strategy that

inherits the vertexes and the parameter vectors through changes in the network structures. If part of the

network remains the same, we can retain the vectors as well as the structure associated to the nodes, and

distinguish the updated sub-graphs between the old network and the new network structures.

3.1 Node initialization and inheritance

Given a network W in time t, we formulate the updated network W ′ in time t+ 1 as

W ′ = W +∆Winc −∆Wdis, (1)

where ∆Winc and ∆Wdis refer to the newly added and vanished sub-graphs, respectively. We re-calculate

the noise distributions for each vertex on new network W ′ in time t + 1 with random walk [5, 6] on the

above sub-graphs.

We first preserve all the vertices and the corresponding parameter vectors in the old network. Then

we inherit the reserved vertex and parameter vectors as initialization in the new network. If a vertex is

newly added, we initialize it as a random vector with the same dimension as the existing vertexes, and

the related parameter vector is initialized as a zero vector. It can be formally defined as follows:

v′(u) =

{
v(u), u ∈ W ,

random, u /∈ W ,
(2)

and

ṽ′(u) =

{
ṽ(u), u ∈ W ,

0, u /∈ W ,
(3)

where v(u) and v′(u) are the representation vectors of node u for the old and new networks, and ṽ(u)

and ṽ′(u) are the parameter vectors of u in the old and new networks, respectively.

3.2 Model updating

In a dynamic network, we assume the updated nodes and edges only affect the representations of the

local nodes and edges, and perform an approximate stochastic gradient method to update the related

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:6

vectors. In detail, after generating the sequence of vertices, given the size of sliding window 2c, we can

build local sub-graphs, named as affected sub-graphs, for the newly added and vanished vertices and

edges. The approximate stochastic gradient method can be described as following two steps. Firstly,

for the vanished vertices and edges, we perform a stochastic gradient descent method to update the old

network representations with the updated noise distributions. Secondly, after inheriting and initializing

the vertexes and the parameter vectors, for the newly added vertexes and edges, we perform a stochastic

gradient ascent method to update the new network representations. More specific, we extend the widely

used skip-gram with negative sampling method to dynamic sampling scenarios for network embeddings.

In terms of vertex representation updating, this yields to such an optimization problem:

max
f

∑

u∈W′

log Pr(NS′(u)|f(u)), (4)

where f is the mapping function from the nodes to the feature representations, and NS′(u) refers to the

neighborhood or context nodes of node u generated through a sampling optimization strategy S′.

We aim to optimize the above objective function, which maximizes the log-probability of observing a

network partitioning. The objective in (4) can be approximatively simplified to

max
f

∑

u∈W



−logZu +
∑

ni∈NS(u)

f(ni) · f(u)





+

(
∑

u∈∆Winc

−
∑

u∈∆Wdis

)
−logZu +

∑

ni∈NS′(u)

f(ni) · f(u)


 , (5)

where Zu =
∑

u∈W′ exp(f(u) · f(v)) is expensive to compute for dynamic and large networks. So we

approximate it by negative sampling. S is the sampling optimization strategy in the old network W .

We factorize log-likelihood function for skip-gram with negative sampling model based on the network

partitioning. Here, we firstly retain the log-likelihood function and the inherited vectors from the old

network. Secondly, we re-calculate the sampling optimization strategy S′. Then we employ the sub-graph

compensation strategy to increase or decrease the holistic log-likelihood function, respectively. Note that

the difference between (4) and (5) is that the sampling optimization strategies S and S′ are different.

Our goal is to speed up the training of dynamic network representation learning. To train the node

representations for the updated parts of a network, existing methods need to re-scan and re-train the

whole proximities based on skip-gram with negative sampling and stochastic gradient methods. Given

the above factorization analysis of the objective function, we find that for the old network W , we can

apply the initialization and inheritance of vertices and parameters trick in (2) and (3) to significantly save

the training time. We just need to update the related vertex and parameter vectors following the new

sampling optimization strategy S′. Finally, we release the disappearance of nodes and the corresponding

parameters vector.

4 Theoretical analysis

Although the extension from the batch global training to the dynamic network training is simple and

intuitive, it is not clear whether the incremental skip-gram with negative sampling technology based

dynamic network embedding method can learn the represented vectors of the nodes as good as that

learned by the batch global learning counterpart. To answer this question, in this section we examine

the dynamic network representation learning from a theoretical point of view.

We will firstly show the difference between the objectives optimized by the approximative incremental

skip-gram with negative sampling (ISGNS) and batch skip-gram with negative sampling (SGNS) models

in Subsection 4.1. Secondly, we will prove that the objective difference is bounded by the scale of the

network in Subsection 4.2. Then, we will investigate the probabilistic properties of the objective difference

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:7

to demonstrate the equivalent relationship between batch SGNS and ISGNS in Subsection 4.3. Finally,

we will analyze the time and memory complexity of ISGNS in Subsection 4.4.

4.1 Objective difference

As discussed in Subsection 3.1, the network updates from W to W ′ and the size of vertex sequences

growing from n to N . We denote the sizes of the local sequences that contain the newly added and

vanished vertices as nadd and nvan. Following the studies [5, 6], the size of vertex sequences can be

updated as N = n+ nadd − nvan. The ISGNS optimizes the following objective function:

LISGNS(θ) =−

{
1

n

n∑

i=1

∑

|j|<c,j 6=0

ψ+
wi,wi+j

+ kEv∼qn(v)[ψ
−
wi,v

]

+

(
1

nadd
−

1

nvan

) N∑

i=1

∑

|j|<c,j 6=0

ψ+
wi,wi+j

+ kEv∼qN (v)[ψ
−
wi,v

]

}
, (6)

where θ = (t1, t2, . . . , tW′ , c1, c2, . . . , cW′) collectively represents model parameters, including both target

and context vertex embeddings. The function qn(v) represents the old noise distribution, and it is

defined as

qn(v) =
fn(v)

3
4

∑
v′∈W fn(v′)

3
4

,

where fn(v) represents the frequency of vertex v in the sequences of vertices. Note that the noise

distribution in the first term of the objective is qn(v) rather than qN (v). Because we employ the parameter

initialization strategy and it can be seen as a simple approximation of the gradient. In detail, ψ+
w,v =

logσ(tw · cv), ψ
−
w,v = logσ(−tw · cv), and σ(x) is the sigmoid function. Given a target-context vertex pair

(wi, wi+j) and k negative samples (v1, v2, . . . , vk) sampled from the latest noise distribution qN (v), the

gradient of −ψ+
wi,wi+j

− kEv∼qN (v)[ψ
−
wi,v

] is computed at each step.

In contrast, the original objective function of re-training the network embedding model based on SGNS

can be given as

LSGNS(θ) = −
1

N

N∑

i=1

∑

|j|<c,j 6=0

ψ+
wi,wi+j

+ kEv∼qN (v)[ψ
−
wi,v

], (7)

which can be interpreted as the re-training procedure with SGD. Because the expectation terms in the

objectives can be rewritten as Ev∼qN (v)[ψ
−
wi,v

] =
∑

v∈W′ qN (v)ψ−
wi,v

, the difference between the two

objectives can be formalized as follows:

∆LDI(θ) =LSGNS(θ)− LISGNS(θ) =
1

n

n∑

i=1

∑

|j|<c,j 6=0

k
∑

v∈W′

(qN (v)− qn(v))ψ
−
wi,v

=
2ck

n

n∑

i=1

∑

w,v∈W′

δwi,w(qN (v)− qn(v))ψ
−
w,v, (8)

where δ is the delta function.

4.2 Boundness analysis of ∆LDI(θ)

To verify the correctness of our dynamic network embedding framework, we present the boundness

analysis of the objective difference ∆LDI(θ) in this subsection.

We first give a theorem as follows.

Theorem 1. The objective difference ∆LDI(θ) can be directly bounded by the scale of the old network

as follows:

∆LDI(θ) <
2ck

n
ǫ =

2ck

N − (ṅ− n̈)
ǫ. (9)

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:8

Sketch of Proof. The delta function can be loosely considered as a function on the real line which is zero

everywhere except at the origin, where it is infinite,

δwi,w(qN (v)− qn(v)) =

{
+∞, qN (v) 6= qn(v),

0, qN (v) = qn(v),
(10)

and it is also constrained to satisfy the identity:

∑

w,v∈W′

δwi,w(qN (v)− qn(v)) 6 1. (11)

Because ψ−
w,v = logσ(−tw · cv) is bounded in practice, we assume ψ−

w,v < ǫ. It supports the very intuitive

understanding that the less updated network nodes lead to a lower upper bound.

4.3 Convergence analysis of ∆LDI(θ)

It shows that the first order of ∆LDI(θ) has an analytical form.

Definition 1. Let Xi,w be a random variable that represents δwi,w. It is assigned value 1 when the i-th

node in the sampled data is w ∈ W ′. For any i and j, remind that E[Xi,w] = µw and V[Xi,w, Xj′,w] = ρw,v.

Definition 2. Let Yj,v be a random variable that represents qN (v).

Theorem 2. The first-order moment of ∆LDI(θ) is given as

E[∆LDI(θ)] =
2ck

n

(
1

N
−

1

n

) ∑

w,v∈W′

ρw,vψ
−
w,v, (12)

where ρw,v is the covariance of Xi,w and Xj,v.

Sketch of Proof. Here, for any i and j such that i < j, we have

E[Xi,wYj,v] = E


Xi,w

1

j

j∑

j′=1

Xj′,v


 =

1

j

j∑

j′=1

E[Xi,wXj′,w]

=
1

j

j∑

j′=1

(E[Xi,w]E[Xj′,v] + V[Xi,w, Xj′,w]) = µwµv +
1

j
ρw,v. (13)

Therefore, E[∆LDI(θ)] can be written as

E[∆LDI(θ)] =
2ck

n

∑

w,v∈W′

(
µwµv +

1

N
ρw,v − µwµv −

1

n
ρw,v

)
ψ−
wr ,v

=
2ck

n

(
1

N
−

1

n

) ∑

w,v∈W′

ρw,vψ
−
w,v.

(14)

Theorem 3. The first-order moment of ∆LDI(θ) decreases in the order of O(1
n2):

E[∆LDI(θ)] = O

(
1

n2

)
, (15)

and thus converges to zero in the limit of infinity:

lim
n→∞

E[∆LDI(θ)] = 0. (16)

Proof. We assume that N and n are in the same order of magnitude and thus Theorem 2 gives the

proof.

Theorem 4. The second-order moment of ∆LDI(θ) can be bounded as

E[∆L2
DI(θ)] <

∑

w,v∈W′

[
24c2k2

L2T 2
+O

(
1

n

)]
(ψ−

w,v)
2, (17)

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:9

and thus decreases in the order of O(1):

lim
n→∞

E[∆L2
DI(θ)] = O(1), (18)

where L refers to the random walk steps in one round, and T regers to the random walk times for each

vertex.

Proof. A similar result to first-order moment of ∆LDI(θ) can be proved for the second order moment

of objective difference as well. The upper-bound of E[∆L2
DI(θ)] is examined to prove the theorem. Let

Ψi,N,n,w,v = δwi,w(qN (v)− qn(v))ψ
−
w,v. Making use of Jensen’s inequality, we have

E[∆L2
DI(θ)] =E



4c2k2

n2




n∑

i=1

∑

w,v∈W′

Ψi,N,n,w,v




2

 = E



4c2k2

n2
|W ′|4n2




∑

w,v∈W′

n∑

i=1

1

|W ′|2n
Ψi,N,n,w,v




2



6E


4c

2k2

n2
|W ′|4n2

∑

w,v∈W′

n∑

i=1

1

|W ′|2n
Ψ2

i,N,n,w,v


 =

4c2k2|W ′|2

n

∑

w,v∈W′

N∑

i=1

E[Ψ2
i,N,n,w,v].

(19)

To prove Theorem 4, we begin by examining the upper- and lower-bounds of E[Xi,wYj,vYk,v] in the

following lemma, and then make use of the bounds to evaluate the order of the second order moment of

∆LDI(θ).

Lemma 1. For any j and k such that j 6 k, we have

E[Xi,wYj,vYk,v] 6
(jk − 2j − k + 2)µwµ

2
v + 2j + k − 2

jk
,

E[Xi,wYj,vYk,v] >
(jk − 2j − k + 2)µwµ

2
v

jk
.

(20)

See Appendix A for detailed proof. Furthermore, the term E[∆L2
DI(θ)] is upper-bounded as

E[Ψ2
i,N,n,w,v] = E[δwi,w(qN (v)− qn(v))

2(ψ−
w,v)

2] <
∑

w,v∈W

[
3

N
+

3

n
+

(
2

N2
+

2

n2

)
µwµ

2
v

]
(ψ−

w,v)
2.

(21)

Because the sequence of vertices is generated by random walk technologies, the mathematical relation-

ship between set of vertices W ′ and set of sequences N can be formalized as

N = W ′ · L · T. (22)

So, the upper-bounded of E[∆L2
DI(θ)] can be written as

E[∆L2
DI(θ)] <

∑

w,v∈W′

4c2k2|W ′|2

n

[
3

N
+

3

n
+

(
2

N2
+

2

n2

)
µwµ

2
v

]
(ψ−

w,v)
2

<
∑

w,v∈W′

[
24c2k2

L2T 2
+O

(
1

n

)]
(ψ−

w,v)
2. (23)

Therefore, we have the second-order moment of ∆LDI(θ) decreases in the order of O(1):

lim
n→∞

E[∆L2
DI(θ)] = O(1), (24)

and thus converges to constant influenced by
∑

w,v∈W′(ψ−
w,v)

2 in the limit of infinity.

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:10

Table 1 Statistics of the dynamic network datasets

Name |V | |E| Label Time step

Wikipedia 1985098 1000924086 7 16

BlogCatalog 10312 333983 39 20

Flickr 80513 5899882 195 100

Facebook 1715256 22613981 – 24

ArXiv 18722 198110 195 16

DBLP 524061 20580238 100 730

4.4 Complexity analysis

The computational cost of each operation in dynamic embedding model (6) is the same as that of

model (7). Thus, the total computational cost is O((∆Winc + ∆Wdis)k), where k is the number of

the negative samples. In practice, we can use the size of the affected sub-graphs to evaluate the main

computation complexity of network embedding learning. According to the random walk and sliding

window, the size of the affected nodes is nadd + nvan. Therefore, the computation complexity of our

dynamic network embedding framework is bounded by O((nadd + nvan)k). Similarly, the memory cost is

bounded by O(n + nadd + nvan). Note that the memory cost of non-negative matrix factorization based

temporal latent space network analysis approach [18] linearly grows over time.

5 Experiments

We apply ISGNS to various large-scale real-world dynamic networks including a language network, three

social networks and two citation networks (Subsection 5.1). We empirically evaluate the time efficiency

(Subsection 5.2), the theoretical reliability (Subsection 5.3) and the quality of network representation

(Subsection 5.4) of the proposed ISGNS.

5.1 Datasets

The datasets used in this paper are Wikipedia, BlogCatalog, Flickr, Facebook, ArXiv, and DBLP net-

works. A summarization of the statistics of the six datasets is shown in Table 1.

• Wikipedia. This is a word co-occurrence network in the webpages of Wikipedia. We set an edge

between two words if they co-occurr within the 5-words sliding window in the English Wikipedia pages.

The labels represent the part-of-speech (POS) tags inferred using the Stanford POS-Tagger. In total the

network has 1985098 nodes, 1000924086 edges, and 7 different labels from the year 2001 to 2016.

• BlogCatalog [40]. This is a social blog directory which manages the bloggers and their blogs. It

contains 10312 bloggers as nodes and 333983 relationships as edges in 20 days. The labels represent the

topic interests provided by the bloggers. The network has 39 labels and a blogger may have multiple

labels.

• Flickr [41]. This dataset is constructed with the images and the links among them collected from

Flickr in 100 days. The links between images represent they share common meta-data. In this data,

edges are formed between two images that are taken from the same location. This data has 80513 nodes

and 5899882 edges.

• Facebook [42]. This is a social network dataset. Nodes represent users, and edges are friendship

relation between them. The network has 4039 nodes and 20580238 edges.

• ArXiv [43]. This is a collaboration network generated from the e-print arXiv and covers scientific

collaborations between authors. Nodes represent scholars, and an edge represents two scholars have

collaboration in a paper. The network has 18722 nodes and 198110 edges.

• DBLP [44]. This is also a co-author network. Nodes represent authors, and edges represent the

co-author relation among them. The network has 524061 nodes and 970742 edges.

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:11

Table 2 The evolving procedure of the dynamic DBLP network

Window sliding rate (%) 0.10 0.50 1.0 1.50 2.00

Edge (+) 2018 4547 7266 9937 13498

Edge (−) 1527 3381 6464 9884 12860

Window sliding rate (%) 2.50 3.00 3.50 4.00 –

Edge (+) 17054 22842 26340 29217 –

Edge (−) 16515 19353 22852 25860 –

Percentage of different paper rate (%)

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

N
u
m

b
er

×105

0

1

2

3

4

5

Total nodes

Neighbor nodes (neighbor size = 1)

Neighbor nodes (neighbor size = 2)

Figure 2 (Color online) Number of the neighbor nodes with different settings.

5.2 Training time and speedup

We use the DBLP dataset to evaluate the training time and speedup performance of ISGNS. In order to

simulate the addition and deletion of nodes and edges, we build the dynamic co-author network. We use

200000 papers published earlier as the initial network, which contains 484095 nodes and 970742 edges.

Then we choose different sliding windows to move the the initial network along papers’ publishing time.

More specific, we choose 0.10%, 0.50%, 1.0%, 1.50%, 2.00%, 2.50%, 3.00%, 3.50% and 4.00% of time-series

of window sliding rate, respectively, to add and delete related vertexes and edges to update the initial

network as dynamic network. Note that we consider both the addition and deletion of vertices and edges

as shown in Table 2. We apply ISGNS to DeepWalk and node2vec models on the initial DBLP network

with 200000 papers, and run our algorithms (2)–(5) to update the noise distributions, the node vectors

and the corresponding parameter vectors. For comparisons, we also re-train the network embedding and

run SGNS for the updated new network. In the experiments, we run with 10 CPU threads, and the

dimension of the generate network embedding is set to 128.

We first check the updating network structure including the added and vanished vertices and edges by

comparing the generated sequences of vertices before and after the random walk. We retain the vectors

related to the old vertices and update the sequences of vertices for more convenient gradient iterations in

(5). For the sequence n, if there are sliding windows of vertices containing the newly vanished nodes, we

update the vectors of the vertices in the sliding windows with stochastic gradient descent method. For

the sequence N , if there are sliding windows of vertices containing the newly added nodes, we update

the vectors of the vertices in the sliding windows with stochastic gradient ascent method. We count the

rates of the nodes in the affected neighbor sub-graphs, as shown in Figure 2. The blue line refers to the

total number of nodes in the dynamic scenario. Note that the total number of nodes is changing. The

orange and yellow lines are the number of the affected nodes when the sliding window arises from 3 to 5.

We apply ISGNS to DeepWalk and node2vec, and check the training time and the achieved speedup.

The results are shown in Figures 3(a) and (b). It is shown that the time consumption of ISGNS linearly

increases with the increase of the size of the updated nodes and edges in the dynamic network. Although

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:12

Percentage of different paper rate (%)

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

T
im

e
(s

)
T

im
e

(s
)

0

1000

2000

3000

4000

5000

6000

7000

DeepWalk (Global)

Dynamic DeepWalk (neighbor size = 1)

Dynamic DeepWalk (neighbor size = 2)

Percentage of different paper rate (%)

0

1000

2000

3000

4000

5000

6000

7000

Node2vec (Global)

Dynamic Node2vec (neighbor size = 1)

Dynamic Node2vec (neighbor size = 2)

(a)

(b)

Figure 3 (Color online) Training time of different methods under different settings. (a) DeepWalk; (b) node2vec.

the sliding rate from 0.10% to 4.00% is relatively small compared to the original network, the proportion

of affected neighbor nodes is relatively large rising from about 14.83% to 44.60% due to the dense

connectivity among the nodes. We employ stochastic gradient method to update the vectors among

sliding windows of the sequence of vertices following (5). The time consumptions of the batch global

network embedding models depend on the overall scale of the networks. It costs about 6500 and 6800 s

when the size of the nodes is 484000, while our models take much less time than batch global re-training.

One can also see that the time consumptions in DeepWalk and node2vec both linearly increase with the

change rate increasing for dynamic networks.

The speedup results are shown in Figures 4(a) and (b). One can see that for the smaller change in

the dynamic network, the speedup is more significant. DeepWalk with ISGNS achieves up to 22 times

speedup, while node2vec with ISGNS has up to 14 times speedup.

5.3 Validation of theoretical analysis

Now we give an empirical experiment to validate our theoretical analysis in Section 4. Because it is

difficult to assess the node vector value generated by stochastic gradient optimization models between

(6) and (7) directly, we focus on verifying the boundness analysis and give the limit of first-order and

second-order moments of objective difference. As we proved the limits of infinity in (16) and (24), the

first-order and second-order moments of objective difference are affected by the old sequence of vertices

n. We measure the first and second order of moments on Facebook dataset with various network sizes

W varying over {102, 2× 102, 22 × 102, 23 × 102, . . . , 214 × 102}. We also choose 1%, 5%, 10%, 15% of the

network nodes change rates for the above dynamic Facebook network. Because the second-order moment

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:13

S
p
ee

d
u
p

0

5

10

15

20

25

Dynamic DeepWalk (neighbor size = 1)
Dynamic DeepWalk (neighbor size = 2)

S
p
ee

d
u
p

2

4

6

8

10

12

14

16

Dynamic Node2vec (neighbor size = 1)
Dynamic Node2vec (neighbor size = 2)

(a)

(b)

Percentage of different paper rate (%)

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Percentage of different paper rate (%)

0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 4 (Color online) Speedup performances in dynamic DeepWalk (a) and dynamic node2vec (b) with different settings.

can be affected by the times and length of random walk for each node. For all the experiments, we set

the length and times of random walk as 80 and 100, respectively.

Figure 5(a) shows the first-order moment of ∆LDI(θ) computed on the different sizes of the training

data and different network change rates. Because Eq. (16) suggests that the first-order moment decreases

in the order of O(1
n2). The expectation of E[∆LDI(θ)] converges to zero when the network size tends to

be infinitely great. In Figure 5(a), the four lines are close to each other, which demonstrates the smaller

the change rate of the network, the smaller the expectation of objective difference. Note that the x-axis

is log scale, and the first-order moments of magnitudes decrease from 10−8 to 10−16.

Figure 5(b) shows the second-order moment of ∆LDI(θ) computed on different sizes of datasets and

different network change rates. Different from the first-order moments, We can see that the second order

moments slowly increase with the same exponentially growing network scales. However, the limits of

infinity of E[∆L2
DI(θ)] is O(1). Similar to the trend in first-order moments, a smaller change rate of

network leads to a smaller second order moments of the objective difference. Although the second order

moments do not converge to zero, the real values are small and change in a relatively small range from

1.52× 10−2 to 1.87× 10−2.

5.4 Quality of network embeddings

This experiment aims to investigate the quality of the network embeddings learned by our dynamic

network embeddings through comparison with the batch global re-training based counterparts and other

dynamic network embedding approach [31]. We employ the multi-label classification and link predication

tasks [5, 6, 31] to evaluate the quality of the learned network embeddings.

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:14

Network node scale

Network node scale

100 200 400 800 1600 3200 6400 12800 25600 51200 102400 409600

F
ir

st
 o

rd
er

 m
o
m

en
t

×10−8

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
1% change rate
5% change rate
10% change rate
15% change rate

100 200 400 800 1600 3200 6400 12800 25600 51200 102400 409600

S
ec

o
n
d
 o

rd
er

 m
o
m

en
t

0.015

0.0155

0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019 1% change rate
5% change rate
10% change rate
15% change rate

(a)

(b)

Figure 5 (Color online) First-order moment (a) and second-order moment (b) with different change rates.

5.4.1 Multi-label classification

We firstly evaluate the quality of the learned dynamic network embeddings through the multi-label

classification task on the Wikipedia (Wp), BlogCatalog (BC) and Flickr (Fl) datasets. In order to

construct a dynamic network, we take full advantage of the time attributes of nodes and edges on the

three networks. We adopt two kinds of training modes, including dynamic training (Dy) over time

and batch global training (Gl), to extract the dynamic network features. For the dynamic training, we

adopt the time sequence batch network structures. BlogCatalog, Flickr and Wikipedia are the time-series

accumulative social relationship networks, as shown in Table 1. We use an online learning method to

train the three dynamic network datasets over time. However, in addition to the dynamic time factor,

we also inherit the original random walk strategies and the dimension of the vector configurations. We

inherit the parameter pairs {(0.25, 0.25), (0.25, 0.25), (4, 0.5)} for BlogCatalog, Flickr and Wikipedia from

node2vec [5].

We train the node feature representations, including dynamic network embeddings considering time

factor in (6) and one-round global network embeddings without consideration of time factor in (7), as the

input to a one-vs-rest logistic regression classifier with L2 regularization implemented by LibLinear [45].

Specifically, we randomly sample a portion of the labeled nodes and use them as training data. The rest

of the nodes are used as the test data. We also randomly and equally split the train and test data over

10 parts, perform a 10-fold cross validation, and report the average Micro-F1 (Mi-F1) and Macro-F1

(Ma-F1). From the results given in Tables 3 and 4, one can see that the dynamic network embedding

results are comparable to and sometimes better than the global training results. Both the Micro-F1

and Macro-F1 are reported when the labeled node percentage increases from 10% to 90%. Overall, the

dynamic network embedding performs better than one round of global training. This may be because

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:15

Table 3 Multi-label classification results by DeepWalk (%)a)

Item DS Metric 10% 20% 30% 40% 50% 60% 70% 80% 90%

Dy BC Mi-F1 36.02 36.21 39.61 40.28 41.11 41.29 41.51 41.47 42.05

Gl BC Mi-F1 36.00 36.20 39.60 40.30 41.00 41.30 41.50 41.50 42.00

Dy BC Ma-F1 21.31 23.81 25.31 26.29 27.33 27.60 27.90 28.18 28.92

Gl BC Ma-F1 21.30 23.80 25.30 26.30 27.30 27.60 27.90 28.20 28.90

Dy Fl Mi-F1 32.30 34.59 36.11 36.88 37.21 37.77 38.05 38.43 38.88

Gl Fl Mi-F1 32.44 34.61 35.94 36.79 37.21 37.79 38.13 38.41 38.76

Dy Fl Ma-F1 13,91 17.14 19.74 21.16 22.07 22.75 23.55 24.11 24.78

Gl Fl Ma-F1 14.06 17.17 19.69 21.11 22.05 22.78 23.62 24.10 24.72

Dy Wp Mi-F1 78.87 79.91 80.42 80.72 80.93 81.15 81.27 81.33 81.42

Gl Wp Mi-F1 78.86 79.93 80.41 80.69 80.93 81.16 81.25 81.35 81.43

Dy Wp Ma-F1 78.72 79.74 80.33 80.56 80.81 80.93 81.11 81.21 81.21

Gl Wp Ma-F1 78.71 79.76 80.32 80.50 80.81 80.94 81.10 81.23 81.31

a) We show the best results with boldface.

Table 4 Multi-label classification results by node2vec (%)a)

Item DS Metric 10% 20% 30% 40% 50% 60% 70% 80% 90%

Dy BC Mi-F1 36.71 37.19 39.99 40.30 41.29 42.06 41.44 42.57 42.87

Gl BC Mi-F1 36.70 37.17 39.98 40.30 41.27 42.06 41.46 42.58 42.86

Dy BC Ma-F1 21.40 23.97 25.37 26.39 27.51 27.69 27.96 28.21 28.97

Gl BC Ma-F1 21.40 23.96 25.37 26.38 27.50 27.70 27.97 28.21 28.96

Dy Fl Mi-F1 33.59 35.15 37.11 37.93 38.26 38.91 38.99 39.14 39.44

Gl Fl Mi-F1 33.57 35.16 36.96 37.84 38.27 38.90 38.95 39.17 39.42

Dy Fl Ma-F1 14.11 18.21 20.41 22.25 23.27 23.26 24.72 25.81 25.91

Gl Fl Ma-F1 14.12 18.18 20.43 22.24 23.30 23.28 24.68 25.79 25.94

Dy Wp Mi-F1 79.05 80.05 80.75 80.89 81.39 81.33 81.55 81.62 81.69

Gl Wp Mi-F1 79.04 80.05 80.74 80.87 81.38 81.31 81.55 81.63 81.69

Dy Wp Ma-F1 78.97 79.82 80.60 80.71 81.28 80.26 81.11 81.47 81.57

Gl Wp Ma-F1 78.96 79.83 80.59 80.70 81.27 80.25 81.10 81.48 81.56

a) We show the best results with boldface.

Table 5 Multi-label classification results comparison of different embedding methods

Dataset Algorithms Micro-F1 Macro-F1

BC Dynamic DeepWalk 42.05% 28.92%

BC Dynamic node2vec 42.87% 28.97%

BC DANE [31] 43.27% 29.12%

BC Dynamic SBM [33] 39.41% 22.63%

BC DNE [35] 40.75% 26.13%

Fl Dynamic DeepWalk 38.88% 24.78%

Fl Dynamic node2vec 39.44% 25.91%

Fl DANE [31] 32.81% 20.75%

Fl Dynamic SBM [33] 36.52% 23.87%

Fl DNE [35] 37.87% 24.28%

some important dynamic structure patterns are sufficiently trained and captured. Moreover, the node2vec

based embedding models performs better than DeepWalk in experiments.

We further compare with the state-of-the-art dynamic network embedding methods including

DANE [31], Dynamic SBM [33] and DNE [35] on the multi-label classification task. Because the vertices

of our networks do not have attribute information, we adopt the DANE with only network information

for fairness. As shown in Table 5, the neural network based network embeddings is better than spectral

embedding based DANE and statistical model based Dynamic SBM models. The experiments demon-

strate the generality of ISGNS model. The experimental results also show that the convergent ISGNS

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:16

Table 6 Area under curve (AUC) scores for link prediction

Dataset Algorithm Average Hadamard Weighted-L1 Weighted-L2

Fb Dynamic DeepWalk 0.7268 0.9548 0.9474 0.9536

Fb Global DeepWalk 0.7261 0.9544 0.9461 0.9535

Fb Dynamic node2vec 0.7266 0.9555 0.9504 0.9526

Fb Global node2vec 0.7264 0.9554 0.9503 0.9524

Ax Dynamic DeepWalk 0.7058 0.9275 0.8186 0.8278

Ax Global Deepwalk 0.7056 0.9274 0.8183 0.8276

Ax Dynamic node2vec 0.7204 0.9305 0.8371 0.8474

Ax Global node2vec 0.7203 0.9305 0.8371 0.8474

has better learning ability for dynamic network embedding than the heuristic models.

5.4.2 Link prediction

In the link prediction task, we are given a network with a certain fraction of missing edges, and we

need to predict the missing edges. To facilitate the comparison between the dynamic embedding method

and the baselines, we use the same datasets and experiment setting as in [5]. We generate the labeled

dataset of edges as follows. We randomly remove 50% of edges from the network as the positive samples.

We randomly sample an equal number of node pairs from the network which actually have no edges

connecting them as the negative examples. We conduct the experiment on Facebook (Fb) and ArXiv

(Ax) datasets, and use the area under curve (AUC) scores for link prediction with four different binary

operators, including Average, Hadamard, Weighted-L1, and Weight-L2, for learning edge features [5].

From the results in Table 6, one can see that similar to the multi-label classification task, the per-

formances of dynamic network embedding in link prediction are comparable with and sometimes better

than the global training results on the two datasets. The four binary operators which generate edge

features are reported from dynamic embeddings to global embeddings. On the whole, the dynamic em-

beddings results are better than one round of global training for networks of sequential growth. This

again demonstrates the generality of our dynamic skip-gram with negative sampling framework.

6 Conclusion

This paper proposed a dynamic network embedding framework based on the incremental skip-gram with

negative sampling from both practical and theoretical perspectives. Theoretical analysis showed that the

objective difference can be bounded by a function of the number of changed nodes and links, and the first-

order moment of objective difference can be convergent in order of O(1
n2), and the second-order moment

of objective difference can be stabilized in order of O(1). The results of the systematic evaluations on

multi-label classification task and link prediction tasks over multi real-world dynamic network datasets

show that our dynamic network embedding framework is significantly faster than global training, and

achieve comparable network embedding performance. The success of this study proves the scalability and

robustness of the incremental skip-gram with negative sampling algorithm. A potential future work is to

extend our approach to other advanced network representation learning models [7,11,17,21,22,34,46,47].

Acknowledgements This work was supported by National Key R&D Program of China (Grant No. 2016YFB1000103)

and National Natural Science Foundation of China (Grant Nos. 61872022, 61772151, 61421003, SKLSDE-2018ZX-16).

References

1 Hamilton W L, Ying R, Leskovec J. Representation learning on graphs: methods and applications. In: Proceedings of

IEEE Data Engineering Bulletin, 2017

2 Cavallari S, Zheng V W, Cai H Y, et al. Learning community embedding with community detection and node

embedding on graphs. In: Proceedings of ACM International Conference on Information and Knowledge Management,

2017. 377–386

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:17

3 Shi C, Hu B B, Zhao W X, et al. Heterogeneous information network embedding for recommendation. IEEE Trans

Knowl Data Eng, 2019, 31: 357–370

4 Hu R J, Aggarwal C C, Ma S, et al. An embedding approach to anomaly detection. In: Proceedings of 2016 IEEE

32nd International Conference on Data Engineering (ICDE), Helsinki, 2016. 385–396

5 Grover A, Leskovec J. node2vec: scalable feature learning for networks. In: Proceedings of ACM SIGKDD Conference

on Knowledge Discovery and Data Mining, 2016. 855–864

6 Perozzi B, Al-Rfou R, Skiena S. Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014. 701–710

7 Tang J, Qu M, Wang M Z, et al. Line: large-scale information network embedding. In: Proceedings of International

World Wide Web Conference, 2015. 1067–1077

8 Tang J, Qu M, Mei Q Z. Pte: predictive text embedding through large-scale heterogeneous text networks. In: Pro-

ceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2015. 1165–1174

9 He Y, Li J X, Song Y Q, et al. Time-evolving text classification with deep neural networks. In: Proceedings of the

27th International Joint Conference on Artificial Intelligence, 2018. 2241–2247

10 Ren X, He W Q, Qu M, et al. Label noise reduction in entity typing by heterogeneous partial-label embedding.

In: Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2016. 1825–1834

11 Wang D X, Cui P, Zhu W W. Structural deep network embedding. In: Proceedings of ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, 2016. 1225–1234

12 Cui P, Wang X, Pei J, et al. A survey on network embedding. IEEE Trans Knowl Data Eng, 2019, 31: 833–852

13 Li C Z, Wang S Z, Yang D J, et al. PPNE: property preserving network embedding. In: Proceedings of International

Conference on Database Systems for Advanced Applications. Berlin: Springer, 2017. 163–179

14 Yang D J, Wang S Z, Li C Z, et al. From properties to links: deep network embedding on incomplete graphs.

In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York: ACM, 2017.

367–376

15 Zhang H M, Qiu L W, Yi L L, et al. Scalable multiplex network embedding. In: Proceedings of the 27th International

Joint Conference on Artificial Intelligence, 2018. 3082–3088

16 Trivedi R, Dai H J, Wang Y C, et al. Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: Pro-

ceedings of International Conference on Machine Learning, 2017. 3462–3471

17 Zuo Y, Liu G N, Lin H, et al. Embedding temporal network via neighborhood formation. In: Proceedings of ACM

SIGKDD Conference on Knowledge Discovery and Data Mining, 2018. 2857–2866

18 Zhu L H, Guo D, Yin J M, et al. Scalable temporal latent space inference for link prediction in dynamic social networks.

IEEE Trans Knowl Data Eng, 2016, 28: 2765–2777

19 Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of Annual

Conference on Neural Information Processing Systems, 2017

20 Chen J F, Zhang Q, Huang X J. Incorporate group information to enhance network embedding. In: Proceedings of

ACM International Conference on Information and Knowledge Management, 2016. 1901–1904

21 Cao S S, Lu W, Xu Q K. Grarep: learning graph representations with global structural information. In: Proceedings

of ACM International Conference on Information and Knowledge Management, 2015. 891–900

22 Yang C, Sun M S, Liu Z Y, et al. Fast network embedding enhancement via high order proximity approximation.

In: Proceedings of International Joint Conference on Artificial Intelligence, 2017

23 Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality.

In: Proceedings of Annual Conference on Neural Information Processing Systems, 2013. 1–9

24 Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. 2013. arXiv:

1301.3781

25 Morin F, Bengio Y. Hierarchical probabilistic neural network language model. In: Proceedings of International Con-

ference on Artificial Intelligence and Statistics, 2005. 5: 246–252

26 Gutmann M U, Hyvärinen A. Noise-contrastive estimation of unnormalized statistical models, with applications to

natural image statistics. J Mach Learn Res, 2012, 13: 307–361

27 Levy O, Goldberg Y. Neural word embedding as implicit matrix factorization. In: Proceedings of Advances in Neural

Information Processing Systems 27 (NIPS 2014), 2014

28 Mnih A, Teh Y W. A fast and simple algorithm for training neural probabilistic language models. In: Proceedings of

the 29th International Coference on Machine Learning, 2012. 419–426

29 Ribeiro L F R, Saverese P H P, Figueiredo D R. struc2vec: learning node representations from structural identity.

In: Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2017. 385–394

30 Donnat C, Zitnik M, Hallac D, et al. Learning structural node embeddings via diffusion wavelets. In: Proceedings of

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2018. 1320–1329

31 Li J D, Dani H, Hu X, et al. Attributed network embedding for learning in a dynamic environment. In: Proceedings

of ACM International Conference on Information and Knowledge Management, 2017. 387–396

32 Jian L, Li J D, Liu H. Toward online node classification on streaming networks. In: Proceedings of International

Conference on Data Mining and Knowledge Discovery, 2018. 231–257

33 Xu K S, Hero A O. Dynamic stochastic blockmodels: statistical models for time-evolving networks. In: Proceedings of

International Conference on Social Computing, Behavioral-Cultural Modeling & Prediction and Behavior Representa-

tion in Modeling and Simulation, 2013. 201–210

34 Zhou L, Yang Y, Ren X, et al. Dynamic network embedding by modelling triadic closure process. In: Proceedings of

https://doi.org/10.1109/TKDE.2018.2833443
https://doi.org/10.1109/TKDE.2018.2849727
https://doi.org/10.1109/TKDE.2016.2591009

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:18

AAAI Conference on Artificial Intelligence, 2018

35 Du L, Wang Y, Song G J, et al. Dynamic network embedding: an extended approach for skip-gram based network

embedding. In: Proceedings of International Joint Conference on Artificial Intelligence, 2018. 2086–2092

36 Peng H, Li J X, Song Y Q, et al. Incrementally learning the hierarchical softmax function for neural language models.

In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017

37 Kaji N, Kobayashi H. Incremental skip-gram model with negative sampling. In: Proceedings of Conference on Empirical

Methods in Natural Language Processing, 2017

38 Rudolph M, Blei D. Dynamic embeddings for language evolution. In: Proceedings of International World Wide Web

Conferences Steering Committee, 2018. 1003–1011

39 Peng H, Bao M J, Li J X, et al. Incremental term representation learning for social network analysis. Future Generation

Comput Syst, 2018, 86: 1503–1512

40 Barbier G, Liu H. Data mining in social media. In: Social network data analytics. Boston: Springer, 2011. 327–352

41 Tang L, Liu H. Relational learning via latent social dimensions. In: Proceedings of ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, 2009. 817–826

42 Leskovec J, Mcauley J J. Learning to discover social circles in ego networks. In: Proceedings of Annual Conference on

Neural Information Processing Systems, 2012

43 Leskovec J, Kleinberg J, Faloutsos C. Graph evolution: densification and shrinking diameters. ACM Trans Knowl

Discov Data, 2007, 1: 2

44 Yang J, Leskovec J. Defining and evaluating network communities based on ground-truth. In: Proceedings of ACM

SIGKDD Workshop on Mining Data Semantics, 2012. 181–213

45 Fan R E, Chang K W, Hsieh C J, et al. Liblinear: a library for large linear classification. J Mach Learn Res, 2008, 9:

1871–1874

46 Dong Y X, Chawla N V, Swami A. metapath2vec: scalable representation learning for heterogeneous networks. In: Pro-

ceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2017. 135–144

47 Goyal P, Ferrara E. Graph embedding techniques, applications, and performance: a survey. Knowledge-Based Syst,

2018, 151: 78–94

Appendix A

To prove the Lemma 1, we begin by examining the upper- and lower-bounds of E[Xi,wYj,vYk,v].

Lemma 1. For any j and k such that j 6 k, we have

E[Xi,wYj,vYk,v] 6
(jk − 2j − k + 2)µwµ2

v + 2j + k − 2

jk
,

E[Xi,wYj,vYk,v] >
(jk − 2j − k + 2)µwµ2

v

jk
.

(A1)

Proof. We have

E[Xi,wYj,vYk,v] = E



Xi,w





1

j

j
∑

l=1

Xl,v





(

1

k

k
∑

m=1

Xm,v

)





=

j
∑

l=1

k
∑

m=1

E[Xi,wXl,vXm,v]

jk
.

(A2)

To prove the lemma, we rewrite the expression by splitting the set of (l, m) into two subsets. Let S
(j,k)
i (j 6 k) be a set

of (l, m) such that Xi,w, Xl,v, and Xm,v are independent from each other (i.e., i, l and m are all different), and let S̄
(j,k)
i

be its complementary set,

S
(j,k)
i ={(l, m) ∈ {1, 2, 3, . . . , j} × {1, 2, 3, . . . , k}|i 6= l ∧ l 6= m ∧m 6= i},

S̄
(j,k)
i ={1, 2, 3, . . . , j} × {1, 2, 3, . . . , k}/S

(j,k)
i .

(A3)

Then E[Xi,wYj,vYk,v] is upper-bounded as

E[Xi,wYj,vYk,v] =
∑

(l,m)∈S
(j,k)
i

E[Xi,w]E[Xl,v]E[Xm,v]

jk
+

∑

(l,m)∈S̄
(j,k)
i

E[Xi,wXl,vXm,v]

jk

6
∑

(l,m)∈S
(j,k)
i

µwµ2
v

jk
+

∑

(l,m)∈S̄
(j,k)
i

1

jk

=
|S

(j,k)
i |µwµ2

v + |S̄
(j,k)
i |

jk
,

(A4)

where the inequality holds because Xi,w, Yl,v, and Ym,v are binary random variables and thus E[Xi,wYl,vYm,v] 6 1. Here,

we have S̄
(j,k)
i = 2j + k− 2, because S̄

(j,k)
i includes j elements such that l = m and also includes k− 1 and j − 1 elements

https://doi.org/10.1016/j.future.2017.05.020
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1016/j.knosys.2018.03.022

Peng H, et al. Sci China Inf Sci October 2020 Vol. 63 202103:19

such that i = l 6= m and i = m 6= l, respectively. And we consequently have |S
(j,k)
i | = jk − |S̄

(j,k)
i | = jk − 2j − k + 2.

Therefore, the upper-bound can be rewritten as

E[Xi,wYj,vYk,v] 6
(jk − 2j − k + 2)µwµ2

v + 2j + k − 2

jk
. (A5)

Similarly, by making use of 0 6 E[Xi,wYl,vYm,v], the lower-bound can be derived:

E[Xi,wYj,vYk,v] =
∑

(l,m)∈S
(j,k)
i

E[Xi,w]E[Xl,v]E[Xm,v]

jk
+

∑

(l,m)∈S̄
(j,k)
i

E[Xi,wXl,vXm,v]

jk

>
∑

(l,m)∈S
(j,k)
i

µwµ2
v

jk
+

∑

(l,m)∈S̄
(j,k)
i

0

jk

=
|S

(j,k)
i |µwµ2

v

jk
=

(jk − 2j − k + 2)µwµ2
v

jk
.

(A6)

	Introduction
	Related work
	Dynamic network representation learning
	Node initialization and inheritance
	Model updating

	Theoretical analysis
	Objective difference
	Boundness analysis of LDI()
	Convergence analysis of LDI()
	Complexity analysis

	Experiments
	Datasets
	Training time and speedup
	Validation of theoretical analysis
	Quality of network embeddings
	Multi-label classification
	Link prediction

	Conclusion
	

