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Abstract Chinese named entity recognition (CNER) aims to identify entity names such as person names

and organization names from Chinese raw text and thus can quickly extract the entity information that people

are concerned about from large-scale texts. Recent studies attempt to improve performance by integrating

lexicon words into char-based CNER models. These existing studies, however, usually focus on leveraging the

context-free words in lexicon without considering the contextual information of words and subwords in the

sentences. To address this issue, in addition to utilizing the lexicon words, we further propose to construct

a hierarchical tree structure representation composed of characters, subwords and context-aware predicted

words from segmentor to represent each sentence for CNER. Based on the tree-structure representation, we

propose a hierarchical long short-term memory (HiLSTM) framework, which consists of hierarchical encoding

layer, fusion layer and CRF layer, to capture linguistic knowledge at different levels. On the one hand, the

interactions within each level help to obtain the contextual information. On the other hand, the propagations

from the lower-levels to the upper-levels can provide additional semantic knowledge for CNER. Experimental

results on three widely used CNER datasets show that our proposed HiLSTM model achieves significant

improvement over several strong benchmark methods.
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1 Introduction

As a fundamental task in natural language processing (NLP), the purpose of named entity recognition

(NER) is to identify named entities from raw texts, such as person names, organization names, and

location names. Named entities are indispensable for many down-stream NLP applications, such as

information retrieval [1], relation extraction [2], and question answering [3]. For example, in the medical

field, identifying entities such as disease names, symptom names, and medicine names from the electronic

medical records allows doctors to quickly understand the health status and the treatment of patients,

which is helpful for decision-making [4]; further extracting the relations between the entities can be used

to study the similarities between different patients and to find the contraindications to medicine use [5];

NER is also an essential pre-processing step for online medical question answering [6].

Traditional machine learning methods for NER, such as hidden Markov models (HMMs) [7,8], support

vector machines (SVM) [9], and conditional random fields (CRFs) [10], usually rely on hand-crafted
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Figure 1 (Color online) The lexicon words (below) and char-subword-word tree-structure representation (upper) of an

example.

discrete features, which is expensive to design. The selection of features has a great impact on the

performance of entity recognition. With the development of deep learning, neural network based NER

methods have received widespread attention from researchers. Currently, for English NER, the models

with BiLSTM-CRF (bidirectional long short-term memory-conditional random fields) architecture have

achieved the state-of-the-art results [11–13]. Inspired by the success of using BiLSTM-CRF in English

NER, researchers propose two types of BiLSTM-CRF-based models for Chinese NER (CNER), i.e.,

character-based (char-based) models and word-based models.

Dong et al. [14] first employed char-based BiLSTM-CRF neural architecture for CNER by predicting

the label of each character in the sentence and achieved good performance, which is free from hand-crafted

features and does not require word segmentation (WS). However, their char-based method ignores the

useful semantic and boundary information in Chinese words. As the basic semantic units in Chinese

language utterances, words are informative for CNERmodel supervision. The word boundary information

is also of great help for CNER due to the strong correlation between word and named entity boundaries.

One simple and intuitive way to incorporate word information into CNER is the word-based method [15].

For the reason that there are no obvious delimiters between words in Chinese writing system, word-based

methods need to performWS first, before applying word sequence labeling to identify named entities. This

two-stage pipeline, however, can cause error propagation problems, because incorrect WS will probably

lead to CNER errors. Therefore, in order to make use of the word information without suffering from the

error propagation problem, many recent studies focus on enhancing CNER by integrating word lexicon

into the char-based models [15–18]. Zhang and Yang [15] and Liu et al. [17] successfully integrated

word lexicon knowledge into char-based BiLSTM-CRF models. The basic idea is to first extract all the

matched words according to a lexicon. For clarity, we refer to such matched words as lexicon words. For

example, as shown in Figure 1 (bottom), given the sentence “¥I�Æ�¤á (the Chinese Academy

of Sciences was established)”, lexicon words “¥I (China)”, “�Æ (science)”, “Æ� (academy)”, “�Æ� (Academy of Sciences)” and “¤á (set up)” are extracted by matching the sentence with a large

automatically-obtained lexicon. After obtaining the lexicon words, Zhang and Yang [15] and Liu et al. [17]

incorporated these words into char-based CNER models by leveraging the structure of lattice LSTM and

word-character LSTM (WC-LSTM), respectively.

Although the lexicon-enhanced char-based CNER models have achieved good performance, the lexi-

con words are context-free thus the context-aware word information for disambiguation is ignored. To

overcome this limitation, in addition to utilizing the lexicon words, we further use the word sequence pre-

dicted by the word segmentor as extra context-aware word information. We denote these predicted words

as segmentor words. Segmentor words are produced by the WS model which is trained on large-scale

manually annotated datasets. They take advantage of the context-aware information in the manually

annotated data thus are helpful for disambiguation. In view of the diverse segmentation granularities for
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Chinese WS caused by different linguistic perspectives, we adopt our previously proposed multi-grained

word segmentor [19] to generate words of all different granularities by exploiting large-scale heteroge-

neous datasets with different segmentation criteria. Taking the sentence “¥I�Æ�¤á (the Chinese

Academy of Sciences was established)” in Figure 1 as an example, the multi-grained word segmentor splits

the sentence into 4 words of different granularities: “¥I (China)”, “�Æ� (Academy of Sciences)”,

“¥I�Æ� (Chinese Academy of Sciences)”, and “¤á (set up)”. Among them, the word sequence

“¥I (China)/�Æ� (Academy of Sciences)/¤á (set up)” has the finest granularity, while the word

sequence “¥I�Æ� (Chinese Academy of Sciences)/¤á (set up)” has the coarsest granularity. We

define the words in these two word sequences as fine-grained words and coarse-grained words respectively.

These multi-grained segmentor words (denoted as “W” in Figure 1) can be useful due to their potential

complementarity: fine-grained words reduce data sparseness, whereas coarse-grained words reserve more

semantics and tend to have the same boundaries as entities. For instance, the boundaries of the organi-

zation named entity “¥I�Æ� (Chinese Academy of Sciences)” and the coarse-grained word “¥I�Æ� (Chinese Academy of Sciences)” are the same. In this study, we represent these segmentor words

as extra features for char-based CNER models, which can avoid the error propagation problem in the

word-based method.

Moreover, we also split the fine-grained segmentor words into subwords (denoted as “Sub” in Figure 1)

and encode the subwords in the char-based CNER model to alleviate the unknown word problem by as-

suming a word’s meaning can be reconstructed from its parts [20] and offer additional semantic knowledge

to CNER. For example, the meaning of “�Æ� (Academy of Sciences)” can be obtained by composing

the meaning of its subwords “� (science)” and “Æ� (academy)”.

In this paper, we propose to construct a char-subword-word representation with tree structure by

making full use of characters, subwords, and segmentor words. The upper part of Figure 1 shows an

example of the tree-structure representation, where “Sub”, “W”, and “S” represent subwords, segmentor

words, and sentence, respectively. Based on the representation, we further propose a hierarchical LSTM

(HiLSTM) framework to capture and learn from the information in the char-subword-word representation.

Extensive experiments on three widely used datasets are conducted to determine the effectiveness of the

proposed HiLSTM model. The main contributions of our paper can be summarized as follows:

• We propose to construct a char-subword-word hierarchical tree structure composed of characters,

subwords and segmentor words to represent each sentence for CNER, in order to take full advantage of

the information from different linguistic levels. To our knowledge, we are the first to use subwords and

multi-grained segmentor words in neural network char-based CNER.

• We propose an effective HiLSTM model to capture and characterize the char-subword-word repre-

sentation for CNER. On the one hand, within each level of the proposed HiLSTM model, contextual

information is gained by propagating the information of each sentence in both forward and backward di-

rections and is helpful for disambiguation. On the other hand, the propagations from the lower character

level to the upper subword and word levels can deliver the semantic knowledge of lower levels to upper

levels.

• We conduct experiments on three widely used CNER datasets and give detailed analyses to verify

the effectiveness of our proposed HiLSTM model. Experimental results show that the proposed char-

subword-word tree-structure representation can consistently improve the CNER models and our HiLSTM

model achieves the state-of-the-art results on OntoNotes, Weibo NER, and MSRA datasets.

The remaining parts of the paper are organized as follows. Section 2 summarizes the related work.

Section 3 describes the task of NER and then introduces our proposed char-subword-word tree-structure

representation and the hierarchical neural network architecture. Section 4 presents the experimental

results and gives detailed analyses to verify the effectiveness of our proposed HiLSTM model. Finally,

we conclude our work in Section 6.
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2 Related work

Typically, NER is regarded as a sequence labeling problem. Given an input sentence composed of a

sequence of n tokens, the goal of NER is to train a classification model to classify each token in the

sequence into a specific label to indicate whether the token is included in an entity. Early works in

NER mostly focus on using traditional machine learning algorithms by first manually designing discrete

features to represent context and then employing different machine learning models to recognize named

entities based on the hand-crafted features. Saito et al. [7] designed three language features (i.e., char-

acter type and word length, orthography and spacing, and word candidate generation) and introduced

a multi-language NER model based on HMMs. Solorio et al. [9] selected part-of-speech (POS) tags and

morphological information (such as capitalization) as features, and then used these features to train an

SVM classifier for NER. Mccallum et al. [10] proposed an automated feature induction method for CRFs

in NER, leading to improved performance and decreasing count of features. However, the new features

generated during feature induction are still based on hand-crafted observation tests which cost a lot.

Although the above traditional machine learning methods have made progress in NER, they heavily rely

on expensive human efforts for feature selection and are also limited in contextual representations.

Compared with traditional machine learning methods, deep learning methods have much stronger capa-

bility in automatically capturing contextual representations and solving non-linear problems. Therefore,

recent NER models have shifted to neural network architectures. Collobert et al. [21] first successfully

used deep learning methods to handle NER based on convolutional neural networks (CNN). However,

CNN is not sensitive to position information. For example, although the contexts which contain the same

words but with different word orders usually differ in semantics, they may have similar CNN representa-

tions. The loss of the useful position information limits the representation ability of CNN to some extent.

In contrast, the BiLSTM-CRF architecture is effective in capturing position information in sequence data

and characterizing long-distance contextual representations. Therefore, BiLSTM-CRF-based models have

been widely used and achieved the state-of-the-art performance in English NER [11–13].

Different from most Indo-European languages such as English, Chinese has no delimiters between

words, but leveraging word information for CNER can be helpful due to the rich semantic knowledge

and boundary information provided by words [22]. Therefore, the ambiguity of Chinese word boundaries

brings challenge to CNER. One intuitive way of incorporating word information into CNER is the word-

based approach. This approach performs Chinese word segmentation (CWS) first and builds CNER

models based on the automatic CWS outputs by predicting the label of each word in the CWS outputs [15].

A limitation of word-based approach is that the segmentation error in automatic CWS outputs can be

further propagated into CNER, leading to degraded CNER performance.

To address the error propagation issue, several works manage to integrate word information to char-

based model. Zhao et al. [23], Peng et al. [24], and He et al. [25] treated word segmentation as soft features

for CNER. The basic idea is to concatenate the word segmentation label (i.e., B (begin), I (inside), E

(end), and S (single)) embedding with the character embedding, so as to augment the representation of

the model input with word boundary information, but the semantic of words are ignored in their soft

feature method. Instead of only considering explicit word boundary features, Peng and Dredze [26] and

Cao et al. [27] proposed an adversarial multi-task learning (MTL) framework to enhance CNER with

implicit task-shared features in WS and CNER tasks by training WS and CNER jointly. However, the

MTL model requires additional manually annotated WS data. Recently, many studies pay attention to

improving CNER performance using lexicon words and do not need additional manually labeled data.

Zhang and Yang [15] successfully incorporated matched lexicon word representations into the hidden

state of char-based model using a lattice LSTM structure, but face the issue of inefficiency due to the

complex model architecture. To improve efficiency, Liu et al. [17] proposed a WC-LSTM to exploit lexicon

knowledge by concatenating lexicon word representations with the character embeddings. Gui et al. [16]

and Sui et al. [18] introduced graph neural network (GNN) to capture lexicon information. Although the

above lexicon-enhanced CNER models have achieved good performance, their common limitation is that

they only use context-free lexicon words to obtain word information, ignoring the context-aware word
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information which is helpful for disambiguation.

In this study, in addition to leveraging lexicon words, we further use the segmentor words produced by

the multi-grained segmentor [19] to extract context-aware word information. Moreover, we also propose

to encode subwords in neural char-based CNER models to gain more semantic knowledge and alleviate

the unknown word problem inspired by the success of utilizing subwords in machine translation [28]. We

construct a char-subword-word tree structure composed of characters, subwords, and segmentor words

to represent each sentence for CNER and propose a hierarchical network architecture based on the

representation. To our knowledge, we are the first to design a tree-structure representation for mixed

characters, subwords and segmentor words, and the first to use a hierarchical network architecture for

CNER.

3 Our proposed HiLSTM model

In this section, we introduce the proposed HiLSTM model enhanced with char-subword-word tree-

structure representation. First, we explain the problem of NER. Then, we describe the construction

of the char-subword-word tree structure which is used to represent each sentence for CNER. After that,

we introduce the framework of our HiLSTM model and the details of each module, including a hierarchical

encoding layer, a fusion layer and a CRF layer.

3.1 Problem description

NER can be formulated as a sequence labeling problem, where entity boundary and entity category are

jointly predicted.

Formally, given a dataset D = {(sentd,yd)|1 6 d 6 N}, where sentd represents the d-th sentence

in the dataset, yd is the named entity label sequence of sentd. The named entity label is composed of

the entity boundary label and the entity category label (which are concatenated by a “-” symbol). For

the entity boundary label, we adopt the BMESO tagging scheme, among which B, M, E respectively

represent that the concerned character situates at the beginning, middle, and end position of an entity,

S represents a single-character entity, and O means the concerned character is not included in the entity.

The entity category labels such as “PER (person)”, “LOC (location)”, and “ORG (organization)” refer to

the type of each entity. Taking the sentence {“¥ (center)”, “I (nation)”, “� (science)”, “Æ (academy)”,

“� (institute)”, “¤ (achieve)”, “á (stand)”} as an example, given “¥I�Æ� (Chinese Academy of

Sciences)” is an organization named entity, the label sequence of this sentence is {B-ORG, M-ORG,

M-ORG, M-ORG, M-ORG, O, O}. The goal of NER is to train a classification model that can classify

each token in an unlabeled sentence into a named entity label.

3.2 Construction of char-subword-word tree-structure representation

To make full use of the information in multiple linguistic levels (i.e., character-level, subword-level, and

word-level) for CNER, we represent the characters, subwords and words of each sentence in a unified

manner by constructing a char-subword-word tree structure. Formally, we use sent = {ci|1 6 i 6 n} to

represent a sentence composed of n characters. We denote the subsequence of sent which begins with

character index b and ends with character index e as cb,e. To fully leverage the linguistic information in

different levels, we assign each character ci with two types of representations, namely seg(ci) and sub(ci),

referring to corresponding segmentor words and subwords for ci respectively. To obtain the segmentor

words seg(ci) for ci, we first segment the sentence sent into words of different granularities (denoted asw)

using a multi-grained segmentor [19], and then pick all the words ends with character ci from w to form

seg(ci): seg(ci) = {cb,i|b 6 i, cb,i ∈ w}. To get the corresponding subword sub(ci) for ci, we further split

the fine-grained word (the word which has the least number of characters) in seg(ci) into subwords [20],

and sub(ci) is the subword ends with ci. Finally, we construct a char-subword-word tree structure to

represent sentence, as illustrated in the upper part of Figure 1. We represent each character in the tree

as a triple (ci, sub(ci), seg(ci)). For example, the representation for the character c5 = “� (institute)” in
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Figure 2 (Color online) The framework of our proposed HiLSTM model.

Figure 1 is (c5, c4,5, {c1,5, c3,5}) = (“� (institute)”, “Æ� (academy)”, {“¥I�Æ� (Chinese Academy

of Sciences)”, “�Æ� (Academy of Sciences)”}).

3.3 Framework of HiLSTM

In order to capture and characterize the char-subword-word representation, we propose a hierarchical

LSTM architecture for CNER thus helps to improve model performance by providing rich information

from multiple linguistic levels. The framework of the proposed HiLSTM model is shown in Figure 2. It

consists of three components, including a hierarchical encoding layer, a fusion layer and a CRF layer.

First, the hierarchical encoding layer captures the rich contextual and semantic information in four levels,

namely character-level, subword-level, fine-grained word-level, and coarse-grained word-level. Then, a

fusion layer is used to fuse the four-level hierarchical LSTM hidden states with the char/subword/word

embeddings. Finally, a standard CRF is employed on top of the fusion layer for training and decoding.

We will describe each component in Subsections 3.4–3.6.

3.4 Hierarchical encoding layer

The hierarchical encoding layer contains four sub-layers, i.e., character-level, subword-level, fine-grained

word-level, and coarse-grained word-level sub-layers. The propagations within each sub-layer help to gain

contextual information, and the semantic knowledge of the lower sub-layers can be delivered to the upper

sub-layers through the low-to-upper propagations.

Character-level encoding layer. For a given sentence sent = {ci|1 6 i 6 n}, each character ci in

the sentence is first mapped to a dense vector representation xc
i by looking up the pre-trained character

embedding matrix embc:

xc
i = embc(ci). (1)

Then we feed xc
i into the character-level BiLSTM to capture the contextual information:

hc
i = charBiLSTM(xc

i ). (2)
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Subword-level encoding layer. We denote the j-th subword in sent which begins with the b-th

character and ends with the e-th character as subj = cb,e. The input of the subword-level encoder

contains both contextual representation and semantic representation. The contextual representation of

each subword is built by combining the character-level BiLSTM outputs of its constituent characters.

The semantic representation is obtained from a pre-trained subword embedding matrix embsub. For

each subword subj , we concatenate its contextual representation and semantic representation as the

input of the subword-level BiLSTM:

xsub
j = avgpool({hc

i |b 6 i 6 e})⊕ embsub(subj),

hsub
j = subwordBiLSTM(xsub

j ),
(3)

where avgpool means the average pooling operation.

Fine-grained word-level encoding layer. We define the word which has the minimum number of

characters in seg(ci), ci ∈ sent as fine-grained word. For the k-th fine-grained word which begins with

the b-th subword and ends with the e-th subword, finek = subb,e, the input of the fine-grained word-level

encoder is

xfine
k = avgpool({hsub

j |b 6 j 6 e})⊕ embword(finek), (4)

where embword is a pre-trained word embedding lookup table. We feed xfine
k into the fine-grained word-

level LSTM to form the final representation of each fine-grained word:

hfine
k = finewordBiLSTM(xfine

k ). (5)

Coarse-grained word-level encoding layer. We define the word which has the maximum number

of characters in seg(ci), ci ∈ sent as coarse-grained word. Similarly, for the p-th coarse-grained word

coarsep = fineb,e, where coarsep is the coarse-grained word starts with the b-th and ends with the e-th

fine-grained word. The final output hidden state of the coarse-grained word-level encoder is

xcoarse
p = avgpool({hfine

k |b 6 k 6 e})⊕ embword(coarsep),

hcoarse
p = coarsewordBiLSTM(xcoarse

p ).
(6)

3.5 Fusion layer

We design a char-subword-word fusion layer on top of hierarchical encoding layer to fuse the information

of characters, subwords, and words. We extract the output hidden states of the four sub-layers of the

hierarchical encoder and use weighed sum to form the char-subword-word hybrid representation, which

is denoted as the green circles in Figure 2:

rephier
i = αc · h

c
i + αsub · hsub(ci) + αfine · h

fine(ci) + αcoarse · h
coarse(ci), (7)

where αc, αsub, αfine, αcoarse are trainable softmax weights. hsub(ci), h
fine(ci), h

coarse(ci) are the output

hidden states of the subword, fine-grained word and coarse-grained word which end with the i-th character

respectively. If there is no subword/fine-grained word/coarse-grained word ends with ci, we use a padding

vector to represent hsub(ci)/h
fine(ci)/h

coarse(ci).

Moreover, to address the issue that character, subword and word embeddings are diluted with the

stacking of hierarchical layers, we fuse these embeddings with the above hierarchical representation so

that the semantic information in embeddings is strengthened. We also integrate lexicon words in the

fusion layer since they can provide additional word information. We use the blue circles in Figure 2 to

denote the embedding representation.

repemb
i = embc(ci)⊕ embsub(sub(ci))⊕ replex

i ⊕ repseg
i ,

replex
i = avgpool({embword(l)|l ∈ lex(ci)}),

repseg
i = avgpool({embword(s)|s ∈ seg(ci)}),

(8)

where lex(ci) are the matched lexicon words which end with ci. We feed the concatenation of rephier
i and

repemb
i to a BiLSTM to obtain the final representation:

hfus
i = fuseBiLSTM(rephier

i ⊕ repemb
i ). (9)
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Table 1 Data statistics

Dataset Train (#Sent) Dev (#Sent) Test (#Sent)

OntoNotes 15724 4301 4346

MSRA 41728 4636 4365

Weibo NER 1350 270 270

3.6 CRF layer

In order to fully consider the dependencies of adjacent labels and make sequence labeling decisions jointly,

we employ a CRF layer for training and decoding. For a predicted label sequence y = y1y2 · · · yn of sent,

we define its prediction score as

score(sent,y) =

n∑

i=1

(Tyi−1,yi
+ Si,yi

), (10)

where Tyi−1,yi
is the transition score jumping from label yi−1 to yi. Si,yi

denotes the score of the i-th

character labeled as yi:

Si = Wsh
fus
i + bs. (11)

Given a sentence, the probability of its label sequence y is

p(y|sent) =
escore(sent,y)∑

y′∈Ysent
escore(sent,y

′)
. (12)

Here, Ysent represents all the possible label sequences.

During training, we use the log-likelihood loss to maximize the probability of the gold label sequence

y∗:

L = − log(p(y∗|sent)). (13)

At test time, we adopt the dynamic programming Viterbi algorithm to find the highest-scoring label

sequence ŷ:

ŷ = argmaxy′∈Ysent
score(sent,y′). (14)

4 Experiments

In this section, we conduct experiments to show the effectiveness of our proposed HiLSTM CNER model.

4.1 Experimental settings

Data. We evaluate our model on OntoNotes [29], MSRA [30], and Weibo NER [24]. We adopt the same

data split as Zhang and Yang [15] on OntoNotes and Weibo NER. As for the MSRA, which does not

have development data, we randomly sample 10% of the training data as the development data. Table 1

shows the statistics of the data. OntoNotes and MSRA are newswire data, Weibo NER is social media

data collected from Sina Weibo.

Embeddings. We utilize the same character embeddings and word embeddings as Zhang and

Yang [15], which are pretrained with word2vec model on Chinese Gigaword. The subword embeddings

are pretrained by Heinzerling and Strube [20] with word2vec. We use the word embedding dictionary as

word lexicon in our model, containing 704368 words. All the embeddings are fine-tuned during training.

Model settings. We set the embedding size to 50 and the hidden size of LSTM to 200. The dropout

is set to 0.1 for Weibo and 0.5 for the other two datasets. We use stochastic gradient descent (SGD) as the

optimizer with a learning rate of 0.015 initially and decays at a rate of 0.05. Early stopping is triggered

when the peak performance on the development data does not increase in 30 consecutive iterations.

Evaluation metrics. We use the standard precision (
#Entitycorrect
#Entitypred

), recall (
#Entitycorrect
#Entitygold

) and F1 ( 2PR
P+R

)

score to measure the NER performance. #Entitycorrect represents the number of entities that are
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Table 2 Development results on OntoNotes. For the “with Lex words only” results of Lattice LSTM and WC-LSTM,

we re-run the codes released by Zhang and Yang [15] and Liu et al. [17]. We also modify their models by encoding

char-subword-word and give corresponding results in “with char-subword-word hybrid”a)

Models P (%) R (%) F1 (%)

Char-based LSTM 67.12 58.42 62.47

Lattice LSTM

with Lex words only 74.64 68.83 71.62

with char-subword-word hybrid 76.20 72.26 74.17

WC-LSTM

with Lex words only 73.08 68.62 70.31

with char-subword-word hybrid 79.73 69.31 74.15

HiLSTM

with Lex words only 74.12 67.41 70.60

with char-subword-word hybrid 76.84 73.06 74.90

a) We use bold font to mark the best F1 score in each major row.

predicted correctly by the model. #Entitypred and #Entitygold are the number of predicted entities

and the number of gold entities respectively. We adopt Dan Bikel’s randomized parsing evaluation

comparator for significance test [31].

4.2 Benchmark methods

In order to verify the effectiveness of our proposed HiLSTM model, we adopt the following benchmark

methods for comparison.

Char-based LSTM uses an LSTM-CRF model on the character sequence to predict the label of each

character in the sentence.

Lattice LSTM [15] is proposed to encode lexicon words using a lattice structure. It extends the

original char-based LSTM by adding extra LSTM memory cells. For each memory cell, it takes the

embedding of a matched lexicon word and the hidden state of the word start character as inputs. Shortcut

paths are introduced to link the memory cell between the start and the end characters of a lexicon word.

We can also integrate segmentor words and subwords into the Lattice LSTM by adding extra memory

cells for segmentor words and subwords.

WC-LSTM [17] integrates lexicon words into CNER model by assigning each character with a cor-

responding lexicon word representation. Specifically, for character ci, an average pooling operation is

performed on the matched lexicon words end with ci to obtain the lexicon word representation of ci.

The concatenation of character embedding and its corresponding lexicon word representation is then fed

into the BiLSTM-CRF. We can obtain the representation of segmentor words and subwords for each

character in a similar way and concatenate their representations with character embeddings and lexicon

word representation to encode the hybrid information.

4.3 Development results

To learn the influence of adding extra segmentor words and subwords information to lexicon-enhanced

models and the performance of different model architectures, we compare the development results on

OntoNotes. In Table 2, “with Lex words only” means the model is only integrated with lexicon words,

“with char-subword-word hybrid” is the model enhanced with all the three sources, i.e., lexicon words,

segmentor words and subwords.

As shown in Table 2, incorporating lexicon words into Lattice LSTM, WC-LSTM, and HiLSTM brings

significant improvement over the Char-based model. Further encoding the char-subword-word hybrid

into the three models, instead of only integrating lexicon words, outperforms the results of “with Lex

words only” by large margin. This demonstrates that segmentor words and subwords contain different

morphology knowledge from lexicon words thus can provide additional information for CNER model.



Gong C, et al. Sci China Inf Sci October 2020 Vol. 63 202102:10

Table 3 Final results on OntoNotes, MSRA, and Weibo NER test dataa)

Model OntoNotes (%) MSRA (%) Weibo NER (%)

P R F1 P R F1 F1 (NE) F1 (NM) F1 (All)

Maximum entropy [32] – – – 92.20 90.18 91.18 – – –

Global linear [33] – – – 91.86 88.75 90.28 – – –

Radical-level LSTM [14] – – – 91.28 90.62 90.95 – – –

Unified model [22] – – – – – – 54.50 62.17 58.23

MTL [26] – – – – – – 55.28 62.97 58.99

Adversarial MTL [27] – – – 91.73 89.58 90.64 54.34 57.35 58.70

GNN† [16] 76.13 73.68 74.89 94.19 92.73 93.46 55.34 64.98 60.21

Collaborative GNN⋆ [18] 75.06 74.52 74.79 94.01 92.93 93.47 56.45 68.43 63.09

Collaborative GNN† [18] 74.42 72.60 73.50 92.52 90.29 91.39 50.57 64.50 56.33

Lattice LSTM† [15] 76.35 71.56 73.88 93.57 92.79 93.18 53.04 62.25 58.79

WC-LSTM† [17] 76.09 72.85 74.43 94.58 92.91 93.74 53.19 67.41 59.84

Char-based LSTM 68.79 60.35 64.30 90.74 86.96 88.81 46.11 55.29 52.77

Our HiLSTM 77.77 76.32 77.04 94.83 93.61 94.22 60.94 68.89 63.79

a) We use bold font to mark the best result in each major row.

We also observe that the HiLSTM model enhanced with char-subword-word hybrid representation

achieves the best F1-score of 74.90%, which is consistently higher than the Lattice LSTM and WC-LSTM

by 0.73% and 0.75% in F1-score (p < 0.001). This shows the superiority of encoding the char-subword-

word hybrid information in a hierarchical way. The probable reason is that the characters, subwords and

words can be seen as a hierarchical structure naturally and the lower levels usually provide rich semantic

knowledge for the upper levels. For example, sometimes we can even obtain the meaning of a word by

simply composing its subwords meanings. Our proposed HiLSTM model makes full use of the implicit

knowledge contained in the hierarchical structure through the propagations from the lower character level

to the upper subword and word levels, whereas the Lattice LSTM and WC-LSTM are non-hierarchical

models and unable to capture the relations between character-level, subword-level and word-level.

From Table 2 we can conclude that (1) incorporating segmentor words and subwords into lexicon-

enhanced models helps to further improve the CNER performance consistently, (2) encoding char-

subword-word hybrid in a hierarchical way is superior to other two non-hierarchical methods, i.e., Lattice

LSTM and WC-LSTM.

4.4 Final results

Table 3 shows the final results on OntoNotes, MSRA, and Weibo NER test. † denotes the models using

the lexicon over automatically segmented Chinese GigaWord (contains 704.4 k words) [15], which is the

same with the lexicon used in our HiLSTM. ⋆ means the corresponding model uses the lexicon obtained

from 7 corpora of different sizes and domains, including Weibo, People’s Daily News, Baidu Encyclopedia,

etc (contains 1.3 million words) [34].

OntoNotes. As shown in Table 3, our proposed HiLSTM model encoded with char-subword-word

hybrid representation gives the performance of 77.04 % in F1-score, outperforming the Char-based LSTM

model by a large margin. Compared with the previous best result achieved by Gui et al. [16], who utilize

lexicon information with GNN, our model gains a 2.15 % improvement in F1-score, reaching state-of-

the-art performance.

MSRA. Previous studies leverage hand-crafted features [32, 33], radical features [14], and lexicon

words [15–18] for CNER or learn word segmentation and CNER jointly based on an adversarial multi-

task learning (MTL) framework [27] and achieve good performance. Compared with previous studies and

the Char-based LSTM, our HiLSTM model gives the best results of 94.22 % in F1-score.

Weibo NER. Peng and Dredze [26] consider CNER and word segmentation as MTL to make full use

of task-shared information. He and Sun [22] propose a unified model to improve the CNER performance

with large-scale semi-supervised and cross-domain data. Our HiLSTM model outperforms all the previous
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Table 4 Ablation study. “Lex words” and “Seg words” represent lexicon words and segmentor wordsa)

Model OntoNotes F1 (%) MSRA F1 (%) Weibo F1 (%)

Complete HiLSTM 74.90 94.87 69.71

w/o Seg words 72.91 94.81 67.28

w/o Subwords 73.55 94.38 66.67

w/o Lex words 73.78 94.31 67.72

w/o Seg words & Subwords 70.60 94.39 65.86

w/o Seg words & Lex words 71.17 92.09 67.81

w/o Subwords & Lex words 70.46 93.93 65.47

Char-based LSTM 62.47 90.59 59.43

a) We use bold font to mark the best result.

works on named entities, nominal entities and both. Please note that our HiLSTM model even outper-

forms the “Collaborative GNN⋆” model proposed by Sui et al. [18], which uses additional domain-specific

Weibo lexicon1). Compared with their model, our HiLSTM does not rely on domain-specific lexicon and

achieves better results.

Overall, our proposed HiLSTM model encoded with char-subword-word outperforms both the char-

based LSTM and lexicon-enhanced methods, achieving the best performance on all the three datasets.

5 Analysis

In order to better understand the improvements introduced by the HiLSTM, we conduct detailed analyses

from different perspectives.

5.1 Ablation study

We conduct ablation study to analyze the contribution of lexicon words, segmentor words, and subwords

in our proposed HiLSTMmodel. Table 4 shows the results on OntoNotes, MSRA, and Weibo development

datasets. We observe that the performance of the HiLSTM model is degraded when removing any of the

three sources. This demonstrates that the information in lexicon words, segmentor words, and subwords

are all beneficial for CNER. We also find that integrating any one of the sources can improve the HiLSTM

model by a large margin, and fully exploiting all the three sources leads to the best result. Overall, we can

conclude that lexicon words, segmentor words and subwords can provide complementary contributions

to the model.

5.2 Entity coverage

Figure 3 shows the entity coverage ratio in segmentor words, subwords, lexicon words, and the hybrid of

above three sources. From Figure 3, we can draw the following findings. First, it can be seen that the

entity coverage ratio in segmentor words is higher than that in lexicon and subwords, because the entities

such as location and organization names often have the same boundaries with coarse-grained words as

discussed in Section 1, whereas they rarely exist in lexicon or subwords. Therefore, the segmentor words

can provide CNER model with abundant boundary information. Second, as dipicted by the red bars

(denoted as “Hybrid”) in Figure 3, the hybrid of segmentor words, subwords and lexicon words covers

the most number of entities. This explains why the three sources can make complementary contributions

to the HiLSTMmodel. Third, when turning to the final results in Table 3, we find the improvements of the

final HiLSTM model over the char-based LSTM model (by 13.26, 5.41, and 11.02 F1-score on OntoNotes,

MSRA, and Weibo NER, respectively) are correlated to the entity coverage, higher entity coverage usually

contributes to greater progress in performance. On OntoNotes, the complete HiLSTM model encoding

1) We also replace their lexicon (obtained from 7 corpora of different domains) with the same lexicon as ours (obtained

from Chinese GigaWord) and re-run the Collaborative GNN model using their released code according to their model

settings. We observe that the performance of the “Collaborative GNN †” is degraded without domain-specific lexicon,

which is shown in Table 3.
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Figure 3 (Color online) The entity coverage ratio in seg-

mentor words, subwords, lexicon words and the hybrid of

the three sources on OntoNotes, MSRA, and Weibo NER

dataset.

Figure 4 (Color online) The recall of in-vocabulary

(IV) and out-of-vocabulary (OOV) entities on OntoNotes,

MSRA, and Weibo NER dataset.

the hybrid of segmentor words, subwords and lexicon words brings the maximum improvement compared

with other two datasets, since the entity coverage in this dataset is the highest and thus can offer rich

boundary information to CNER model. The improvement on MSRA is limited due to the relatively low

entity coverage.

5.3 In/out-of-vocabulary (IV/OOV) analysis

Figure 4 investigates how the HiLSTM model improves performance from the perspective of in-vocabulary

(IV) and out-of-vocabulary (OOV) named entities. We divide the entities in the test set of each dataset

into two categories: entities exist in the training data (IV) and entities out of the training data (OOV). As

shown in Figure 4, the recall of both IV and OOV entities increases significantly after integrating the char-

subword-word hibrid representation with the HiLSTM structure. The absolute improvement is especially

large for OOV entities (17.2%, 9.9%, and 18.4% on OntoNotes, MSRA, and Weibo NER, respectively).

After conducting detailed statistical analysis, we find that the coverage ratio of OOV entities in the

hybrid of segmentor words, subwords and lexicon words is more than three quarters (88.65%, 81.80%, and

76.07% on OntoNotes, MSRA, and Weibo NER datasets). This means the segmentor words, subwords

and lexicon words covers a lot of entities that are missing in the training data and thus can provide

additional entity information and alleviate OOV problems by integrating the hybrid representation into

the HiLSTM model.

5.4 Case study

Table 5 shows a case study comparing the results of the HiLSTM model without segmentor words, the

model without subwords and the complete HiLSTM model.

In the first case, there is an entity “¥I?Ñ�Õ1 (the export-import bank of China)” with nested

“¥I (China)” and “?Ñ�Õ1 (the export-import bank)”. The word “¥I (China)” is included in

all the three sources, i.e., lexicon words, segmentor words and subwords, whereas the organization entity

“¥I?Ñ�Õ1 (the export-import bank of China)” is only covered in the context-aware segmentor

words. Without segmentor words, the model ignores the sentence context and incorrectly predicts “¥I (China)” as an entity. In contrast, after integrating segmentor words, the complete HiLSTM is able to

obtain context information and successfully detects the organization name thanks to the coarse-grained

segmentor word “¥I?Ñ�Õ1 (the export-import bank of China)”.

In the second case, without subwords, the model recognizes “le (Hong Kong and Macao)” as a

location entity, affected by the word “le (Hong Kong and Macao)” exists in both lexicon words and
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Table 5 Case studya)

Id Cases

1

Sentence . . . é¥I?Ñ�Õ1k���
) (have a relatively deep understanding of the

Export-Import Bank of China). . .

Lex words . . . ¥I (China), ?Ñ (in and out), ?Ñ� (imports and exports), Ñ� (exit), Õ1 (bank), 
) (understand). . .

Seg words
. . . é (to), ¥I (China), ¥I?Ñ�Õ1 (the export-import bank of China), ?Ñ� (imports and exports), Õ1 (bank), k (have), �� (relatively deep),� (relatively), � (deep), � (de), 
) (understand). . .

Subwords . . . é (to), ¥I (China), ? (in), Ñ (out), � (entrance), Õ1 (bank), k (have),� (relatively), � (deep), � (de), 
) (understand). . .

Gold result
. . . é (to) ¥I?Ñ�Õ1 (the export-import bank of China) [ORG] k
���
) (have a relatively deep understanding). . .

w/o Seg words

predicted result

. . . é (to) ¥I (China) [GPE] ?Ñ�Õ1 (the export-import bank) k
���
) (have a relatively deep understanding). . .
with Seg words

predicted result

. . . é (to) ¥¥¥III???ÑÑÑ���ÕÕÕ111 (the export-import bank of China) [ORG] k
���
) (have a relatively deep understanding). . .

2

Sentence . . . ¿©|^5�le�`³ (make full use of the advantages of adjoining Hong Kong

and Macao). . .

Lex words . . . ¿© (full), |^ (use), 5� (adjoin), le (Hong Kong and Macao), `³ (advantage). . .

Seg words . . . ¿© (full), |^ (use), 5� (adjoin), le (Hong Kong and Macao), � (de), `³ (advantage). . .

Subwords . . . ¿© (full), |^ (use), 5 (connect), � (neighbour), l (Hong Kong), e (Macao),� (de), `³ (advantage). . .

Gold result
. . . ¿©|^5� (make full use of the adjoining) l (Hong Kong) [GPE] e (Macao)

[GPE] �`³ (advantage). . .

w/o Subwords

predicted result

. . . ¿©|^5� (make full use of the adjoining) le (Hong Kong and Macao) [LOC]�`³ (advantage). . .
with Subwords

predicted result

. . . ¿©|^5� (make full use of the adjoining) lll (Hong Kong) [GPE]eee (Macao) [GPE] �`³ (advantage). . .

a) We use underline and bold fonts to denote the wrong and correct predicted labels.

segmentor words. However, “le (Hong Kong and Macao)” is a compound word composed of two

geographical political entities “l (Hong Kong)” and “e (Macao)” and these two entities are not covered

in lexicon words and segmentor words. With the help of subwords “l (Hong Kong)” and “e (Macao)”,

the complete HiLSTM model is able to recognize the components of the compound word “le (Hong

Kong and Macao)” and finally predicts the correct labels.

6 Conclusion

We propose an effective hierarchical LSTM architecture to integrate char-subword-word hibrid represen-

tation into CNER model and further improve the performance of CNER. Specifically, we first construct a

char-subword-word tree structure to represent each sentence for NER by making use of lexicon words, seg-

mentor words and subwords. Then, we propose a HiLSTM model to capture the linguistic information of

different levels in the char-subword-word tree-structure representation. Finally, we conduct experiments

on three widely-used datasets to verify the effectiveness of our proposed HiLSTM model and give detailed

analysis. Experiments on three datasets show that the lexicon words, segmentor words and subwords can

provide complementary contributions to the CNER model. Our proposed HiLSTM model encoded with

char-subword-word representation achieves the performance of 77.04%, 63.79%, and 94.22% in F1-score

on OntoNotes, Weibo NER, and MSRA datasets respectively, reaching new state-of-the-art results on

the three datasets.

In this paper, we focus on using our HiLSTM model enhanced with char-subword-word tree-structure

representations to improve performance for the task of CNER. In fact, the proposed hierarchical char-

subword-word encoder can also be adapted to other Chinese NLP tasks, such as sentiment analysis,

intent classification, and question answering. In the future, we will try to apply the char-subword-word
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tree-structure representation and the hierarchical LSTM architecture on other NLP tasks.
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