
SCIENCE CHINA
Information Sciences

October 2020, Vol. 63 202101:1–202101:20

https://doi.org/10.1007/s11432-019-2646-2

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .

MashReDroid: enabling end-user creation of Android

mashups based on record and replay

Jiahuan ZHENG1,2, Liwei SHEN1,2*, Xin PENG1,2,

Hongchi ZENG1,2 & Wenyun ZHAO1,2

1School of Computer Science, Fudan University, Shanghai 200433, China;
2Shanghai Key Laboratory of Data Science, Fudan University, Shanghai 200433, China

Received 3 June 2019/Accepted 9 August 2019/Published online 16 September 2020

Abstract To allow end users to combine different apps for accomplishing various goals, it is desired that

they can create mashups of mobile apps in an on-demand fashion. The end user creation of mobile mashups,

however, is complicated by the fact that many apps do not expose interfaces for mashup and the lack of

user friendly interfaces for end user programming. In this paper, we propose MashReDroid, an end user

programming approach for the creation of Android mashups that incorporates the behaviors of backend apps

into the execution of a host app. MashReDroid automatically transforms Android apps into mashup enabled

apps. It then allows end users to create mashups by recording the interactions between host apps and backend

apps and run mashups by replaying the interactions. Our evaluation shows that MashReDroid supports a

variety of real scenarios and users can easily create and use mashups with a very low overhead.

Keywords end user programming, human computer interaction, Android, mashup, app transformation

Citation Zheng J H, Shen L W, Peng X, et al. MashReDroid: enabling end-user creation of Android mashups

based on record and replay. Sci China Inf Sci, 2020, 63(10): 202101, https://doi.org/10.1007/s11432-019-2646-2

1 Introduction

Over the past decade, we have witnessed the burst of growth of smartphones (e.g., iPhone and Android

phones) and mobile apps. Nowadays, there have been millions of apps available in Apple’s app store

and Android app stores (e.g., Google Play). These apps support a wide range of needs such as online

shopping, social networking, gaming, and traveling. And people have been used to using mobile apps to

meet their needs.

In reality, users often need to combine several apps for accomplishing a goal [1]. For example, when

a user finds a restaurant on a food recommendation app like Yelp, he/she would like to search for the

location on Google Map and subsequently call a taxi by Uber [2]. Currently, some apps support the

integration with other apps based on predefined interfaces. For example, some payment apps (e.g.,

ApplePay, AndroidPay, and AliPay) and map apps (e.g., Google Maps and Baidu Map) allow other apps

to integrate them by using their SDKs (software development kits). This kind of integration, however, is

limited and does not support end users to combine different apps on demand.

To better meet user needs, it is desired that users can create mashups that combine existing content and

services to create new applications by end user programming. Existing researches on software mashups

mostly focus on web-based content and services [3–7], saying web mashups [8]. Besides, mobile mashups

are native mobile apps which integrate data coming from remote or local services [9]. In this field, some

*Corresponding author (email: shenliwei@fudan.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2646-2&domain=pdf&date_stamp=2020-9-16
https://doi.org/10.1007/s11432-019-2646-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2646-2
https://doi.org/10.1007/s11432-019-2646-2

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:2

mashup technologies support the creation of mashup apps [2, 9, 10], but only support web-based apps or

rely on predefined components, interfaces, and templates.

The challenges with end-user creation of mobile mashups lie in the following two aspects. One is the

fact that many apps do not expose interfaces for mashup. Some apps provide programming interfaces

via SDKs, but these interfaces are intended for professional developers and only cover a limited part

of functionalities of the apps. The other is how to provide a friendly interface for end users to specify

their mashups based on existing apps. Existing mashup technologies usually provide a modeling tool like

editor for users to create mashup apps. This kind of editor is not friendly for end users and cannot run

on mobile devices.

In this paper, we propose MashReDroid1), an approach for end-user creation of Android mashups

based on record and replay. We define Android mashups as a special form of mobile mashups which is

limited to the integration of Android apps by Android specific techniques. MashReDroid supports the

creation of Android mashups that incorporates the behaviors of a backend app into the execution of

a host app. The host app triggers the execution of the backend app, passes values to it, and obtains

return values from it. MashReDroid does not require Android apps to provide predefined interfaces for

mashup. Nor does it require end users to use special purpose editors to define desired mashup apps.

MashReDroid automatically transforms an Android app (in source code or packaged in an APK file) into

a mashup enabled app. It then allows end users to create and run mashups by recording and replaying

the interactions between host apps and backend apps.

Two user studies are designed to evaluate the applicability and usability of MashReDroid. The results

suggest that MashReDroid can support a variety of mashup scenarios and both the technical and nontech-

nical users can easily create and use mashups with MashReDroid. We also conducted an experimental

study to evaluate the runtime efficiency of MashReDroid. The results show that the mashups created

with MashReDroid can effciently run with a very low overhead.

The contributions of this paper are as follows: (1) we defined the concept of Android mashups based

on the interactions between host apps and backend apps; (2) we proposed and implemented a system

technique for recording and replaying the interactions between Android apps; (3) we designed a user

interaction mode that allows end users to create Android mashups on their mobile devices; (4) we proposed

and implemented a transformation technique that can automatically transform Android apps into mashup

enabled ones.

The rest of the paper is structured as follows. Section 2 introduces the technical background related

to MashReDroid which supports the creation and execution of Android mashups. Section 3 defines the

conceptual model behind MashReDroid. Section 4 presents MashReDroid covering its execution mecha-

nism, recording process and app transformation technique. Section 5 evaluates the applicability, usability,

and efficiency of MashReDroid. Section 6 discusses the characteristics and limitations of MashReDroid.

Section 7 reviews some related work. Section 8 concludes the paper and outlines future work.

2 Background

An Android app is usually written in Java and packaged in an APK file for installation. User interfaces

of an Android app are defined by its activity classes (i.e., descendant classes of Activity). The lifecycle of

an activity class is defined by a set of callback methods, for example onCreate, onWindowFocusChanged,

onResume, onPause, and onDestroy. These methods will be invoked by the Android system during

different phases of the lifecycle of an activity object. For example, the onCreate method of an activity

object is called when it is created; the onWindowFocusChanged method of an activity object is called

when it becomes visible to the user. Each activity object is associated with a PhoneWindow object, which

represents a visual window. Android delivers touch screen events to an activity object by invoking its

dispatchTouchEvent method. The activity object then passes these events to the PhoneWindow object.

1) MashReDroid demo video: https://www.youtube.com/watch?v=zOVJejoSEeY.

https://www.youtube.com/watch?v=zOVJejoSEeY

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:3

Host
activity

Backend
appMashup

Host view

Host view
event

Triggered by

Host app

Contain

Contain

Contain

Associated

with

Backend
view event

Ended by

* *

1 *

1

1

*

1

*

1

*

Return
result

1
1

0..1
Define

Value
source

User
input 1

* 1

Invoke

Backend
activity

Backend
view

Contain

Contain

1

*

1

*

1

*

Interaction
sequence

Associated
with

Get from

1 1
Execute

1
1

Include
1

*

Obtain
value

*

*

*

1

*

Involve

Involve

Figure 1 Conceptual model of mashup apps.

A PhoneWindow object is associated with a DecorView object, which contains all the children views of

the window.

Android provides an Intent class to support the interactions between different apps. It can be used

to send a broadcast message that can be received by any app. Android supports both explicit intents

and implicit intents. Explicit intents specify the component to start by class name, while implicit intents

declare a general action to perform and allow components from other apps to handle it. For an implicit

intent, the Android system finds appropriate components to start by comparing the content of the intent

to the intent filters declared by other apps on the device. An intent filter is an expression in an app’s

manifest file that specifies the type of intents that a component of the app would like to receive. The

broadcast receivers (i.e., descendant classes of BroadcastReceiver) of an app can receive intents that are

broadcasted by other apps, even when the app is not running.

To launch an installed app on a mobile device or open a specific location within the app, we can use

the so-called mobile deep link, which is similar to hyperlink in the web. However, mobile deep links

need to be developed statically by developers to facilitate navigation to a target page given by its link,

thus only a small number of locations within an app are directly accessible via deep links [11]. Another

way to repeatedly navigate to arbitrary locations of an Android app is to use the record and replay

techniques [12, 13]. These techniques can record an app’s execution by capturing inputs and events and

automatically replay the execution.

3 Conceptualization

The conceptual model shows the set of concepts as well as their relationships which are referenced in the

MashReDroid approach. Figure 1 shows the conceptual model. In Figure 1, a mashup involves a host

app and a backend app. The host app runs in the front end of user devices, triggers the backend app

to perform additional functionalities and obtains data from it. The backend app runs in the back end

of user devices, gets inputs from and returns results to the host app. An app as a host app can contain

multiple mashups, each of which implements an interaction scenario with a backend app. Note that a

host app of a mashup can be involved in another mashup as a backend app.

An app (host or backend app) contains multiple activities that are involved in a mashup. Note that

there may be multiple instances of an activity class that are involved in a mashup. A user needs to follow

a sequence of activities and interactions to reach a specific activity. For example, to reach an activity for

checking and submitting orders in an online shopping app, a user needs to first log in and then search

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:4

for and choose desired products. During the process the user needs to perform a series of actions on the

activities such as typing text, selecting checkbox, clicking button.

Each activity contains multiple views and each view is associated with multiple events. A mashup is

triggered by a view event of the host app, that is, the backend app is triggered to run when the event

occurs. After being triggered, the backend app is launched and automatically executed. The mashup is

ended by a view event of the backend app, that is, the execution of the backend app is ended when the

event occurs.

After being launched with the initial activity, the backend app of a mashup needs to automatically

go through a series of activities to accomplish the desired functionality. For each activity, an interaction

sequence, which includes a series of view events of the activity, needs to be executed by sequentially

replaying the events (e.g., clicking a button). During the process, some of the view events need to obtain

values from corresponding value sources, which can be user inputs captured in mashup recording or views

of the host app. Note that a view event of the backend app can obtain values from multiple value sources

by combining them together.

When the execution of the backend app ends, it returns a result to the host app. This result can be

taken from a screen area of an activity of the backend app, which is usually the resulting activity of the

event that ends the execution. If the user does not need any results from the backend app, it can return

a success message that is defined by the user in mashup recording.

Figure 2 shows an example of Android mashup with New Egg (an online shopping app) as the host

app and SimpleNote (a notepad app) as the backend app. The mashup implements the functionality of

recording a submitted online shopping order in a notepad. The click event of the “SECURE CHECK-

OUT” button of the order submission window of New Egg (Figure 2(a)) triggers the mashup. After being

triggered, SimpleNote first makes the user sign in (Figure 2(b)), next lists all the notes (Figure 2(c)),

then creates a new note with the order information (Figure 2(d)), and finally shows the updated note

list (Figure 2(e)). The mashup records an interaction sequence that includes a series of events for each

of these activities (each corresponding to a window), for example the inputs of the username and pass-

word and the click of the “Sign In” button on the note login window. An execution of SimpleNote in

the mashup is accomplished by replaying these interaction sequences. During the execution, SimpleNote

obtains inputs from the views of New Egg and user inputs. For example, the note login window obtains

the values of the username and password from the user inputs captured during mashup recording; the

note creation window obtains the values of the note title and note content from the product name, price,

total of the order window. The mashup is ended by clicking the saving button (the arrow) at the left

top of the note creation window. After that, the execution of SimpleNote ends with the note list window

with updated note list and returns the area of the newly added note (Figure 2(e)) as the result. Finally,

the result is returned to New Egg and shown in a floating panel that is dynamically generated on the

current screen, such as the address window (Figure 2(f)). If the user likes, he/she can also set the return

result to a success message (e.g., “Order saved in notepad!”) in mashup recording.

4 The approach

The approach named MashReDroid is explained in detail starting from the overview.

4.1 Overview

An overview of MashReDroid is shown in Figure 3, which includes three parts, i.e., app transformation,

mashup recording, and mashup execution.

App transformation transforms an original Android app into a mashup enabled app, which can then be

used as a host or backend app in a mashup. The transformation augments an app with the capabilities of

mashup execution and recording by introducing additional components and weaving them with the app’s

behaviors. Note that app transformation is not conducted for a specific mashup, but a general treatment

that enables an app to be integrated with other apps in mashups.

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:5

(a) (b) (c)

(d) (e) (f)

Figure 2 (Color online) An example of mashup. (a) Order submission; (b) note login; (c) note list; (d) note creation;

(e) note list (updated); (f) address input.

Mashup recording is conducted by end users and can be regarded as a kind of end user programming

of mashup apps. To create a mashup, a user initiates a mashup recording when using an app, which

becomes the host app of the mashup. Next the user chooses another app as the backend app. Then the

user marks the views that will act as value sources and sets the trigger event in the host app. After that,

the backend app is launched and the user operates it to reach a target activity. During the process, the

user inputs values for some views and sets the value sources from the host app for some other views in

the backend app. The user operation events on each activity are recorded as an interaction sequence

together with the value sources (user inputs or host views) of related events. Finally, the user chooses

an area in the target activity of the backend app or specifies a success message as the return result. The

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:6

Mashup

recording

M M M

M M M

Original app

M
App

transformation

Mashup

enabled app

M

Host app

Backend app

Mashup
script

M M

Host app Backend app

Mashup
script

Mashup

execution

Figure 3 (Color online) Overview of MashReDroid.

trigger event, interaction sequences, value sources, return result are all recorded in a generated mashup

script. Once being created, a mashup can be automatically executed many times.

A mashup is executed within its host app. When an event that occurs during an app execution

matches the triggering event of a mashup, it triggers the backend app to be executed. The backend app

is automatically executed by replaying recorded interaction sequences and obtaining inputs according to

the mashup script. During the execution of the backend app, the host app keeps running. When the

execution of the backend app ends, the returned result is shown in a floating panel on the current window

of the host app.

MashReDroid implements cross-app communication by intent broadcast. It defines five types of mashup

intents: MashupInquiry is sent from a mashup enabled app to all the other apps on the same device to

inquire candidate backend apps; MashupInquiryResponse is the response of MashupInquiry; MashupEx-

ecution is sent from the host app to the backend app to execute a mashup; MashupRecording is sent from

the host app to the backend app to record a mashup; ResultReturning is sent from the backend app to

the host app to return the result of a mashup.

Mashup recording is designed based on the mashup execution mechanism and app transformation is

implemented as required by mashup execution and recording. Therefore, we will first introduce mashup

execution and then mashup recording and app transformation in the subsequent sections.

4.2 Mashup execution

For an app that contains mashups (i.e., acts as a host app), the user can set the permission of mashup

execution on the mashup setting dialog so that a mashup contained in the app can only be triggered to

execute if the mashup is enabled. For an app that is invoked by mashups (i.e., acts as a backend app),

it can either be executed normally if manually launched by the user or executed by replaying recorded

interaction sequences if automatically launched by a mashup. Note that an app can act as a host app in

a mashup, while act as a backend app in another mashup.

Figure 4 shows the process of mashup execution. For a mashup, its host app starts a host controller

for each of the mashups that are contained in the app and enabled to execute. The host controller

continuously collects input values and monitors the trigger event according to the mashup script. The

input values are collected from those views that are defined as value sources in the mashup script.

Once the trigger event of the mashup occurs, the host controller triggers the backend app to execute.

To this end, the host controller broadcasts a mashup intent of the type MashupExecution, which in-

cludes the name of the backend app as the target app and all the input values collected for this mashup.

The mashup receiver of the backend app receives the mashup intent and analyzes its content. As the

intent is of the type MashupExecution, the mashup receiver launches the initial activity of the back-

end app by invoking the startActivity method provided by Android with an intent of the category of

“android.intent.category.LAUNCHER”. After that, the backend controller controls the execution of the

backend app.

Starting from the initial activity, the backend controller controls the execution of each involved activity.

When an activity becomes visible, i.e., when its lifecycle method onWindowFocusChanged is invoked, the

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:7

Host

controller

Backend app

Backend

controller

Mashup

receiver

Mashup
receiver

Host

activities

Backend

activities

1. Collect

input values

2. Monitor

trigger event

3. Trigger execution

Host app

4. Launch

initial activity

5. Replay

events

6. Capture

result

7. Return result

8. Show

result

Figure 4 Process of mashup execution.

backend controller retrieves the interaction sequence associated with the current activity from the mashup

script. The backend controller then sequentially replays the events in the interaction sequence by invoking

the corresponding event listener methods.

This repeats the sequence of operations that the user has conducted on the same activity in mashup

recording. For an event that requires input value (e.g., the input event of EditText), the backend controller

invokes the value setting method of the corresponding view object (e.g., the setText method of EditText)

to provide the value. The value is obtained from corresponding value sources according to the mashup

script. If a value source is user input, the value is obtained from the user input recorded in the mashup

script. If a value source is host view, the value is obtained from the broadcast mashup intent from the

host app.

When the ending event of the mashup is replayed, the backend controller waits for the resulting

activity to capture the return result from the area designated in the mashup script. After that, the

backend controller broadcasts a mashup intent of the type ResultReturning, which includes the name

of the host app as the target app and return result. The mashup receiver of the host app receives the

mashup intent and analyzes its content. As the intent is of the type ResultReturning, the mashup receiver

generates a floating panel showing the return result on the current window of the host app. In our current

implementation, the return result is a screen shot captured from the designated area, which is sent to the

host app by providing its file path on the device.

4.3 Mashup recording

Similar to mashup execution, mashup recording also involves a host app and a backend app. A difference

is that in mashup execution the backend app is automatically executed at the back end by event replaying,

while in mashup recording the backend app is manually executed by the user at the front end to capture

interaction sequences. Another difference is that in mashup execution the user uses the host app normally,

while in mashup recording the user needs to mark value sources and set trigger event.

During the recording process, the user can open the mashup setting dialog at any time by long pressing

the screen of the host app or the backend app. The setting dialog shows a series of options for mashup

recording, each of which indicates a specific status of mashup recording. For example, for a host app the

setting dialog shows options for mashup creation, value source marking, trigger event setting.

A user starts to record a mashup by choosing the option of creating a new mashup in the host app. The

host app then starts a host recorder to control the recording process. To get the list of candidate backend

apps on the current device, the host recorder broadcasts a mashup intent of the type MashupInquiry.

All the mashup enabled apps on the current device, which have a mashup receiver, receive the mashup

intent and return their app names as response by broadcasting a mashup intent of the type MashupIn-

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:8

Host

recorder

Backend app

Backend

recorder

Mashup

receiver

Host

activities

Backend

activities

1. Mark
value sources

2. Set
trigger event

3. Start recording

Host app

4. Launch

initial activity

5. Capture
interaction
sequences

6. Specify

result area

Figure 5 Process of mashup recording.

quiryResponse. Based on the responses from other mashup enabled apps, the host recorder shows a list

of candidate backend apps and the user chooses one as the backend app of the current mashup.

Figure 5 shows the process of mashup recording with a chosen backend app, which includes two parts,

i.e., the host part and the backend part. In the host part, the user marks host value sources and sets

trigger event by touching the screen. During the process, the user can operate the host app as usual,

for example, navigating from one activity to another. The default recording status of the host app is

HostRecording. To mark a value source on the current screen, the user first sets the recording status to

MarkValueSource by choosing the corresponding option on the setting dialog. The user then selects a

view (e.g., an EditText) by touching it on the screen. To recognize the selected view, the host recorder

intercepts the touch event in the dispatchTouchEvent method of the current activity and fetches the view

that the event is targeted at. After that, the host recorder shows a red box surrounding the selected view

and pops up a dialog for confirmation. If the user confirms the selected view as a value source, he/she is

asked to give a readable name for it. The name and activity name of the selected view will be recorded

in the mashup script together with a unique identifier which consists of the view’s resource ID and its

position in the DecorView object, i.e., the position in the activity layout structure. The unique identifier

is used to locate a view in script execution phase according to the resource ID and the position. There is

a situation that the views are not assigned with resource IDs. In this case, we create customized resource

IDs for these views and the locating of the views mainly depends on their positions. After marking all

the value sources in the host app, the user sets the trigger event in the host app. Similarly, the user

first sets the recording status to SetTriggerEvent and then selects a view by touching it on the screen.

The host recorder recognizes the selected view, shows a red box surrounding it, and pops up a dialog

for confirmation. The dialog shows all the candidate events (e.g., the click event of a button) associated

with the selected view and the user chooses one as the trigger event.

Once the trigger event is confirmed, the host app part of mashup recording ends. The host recorder

broadcasts a mashup intent of the type MashupRecording, which includes the name of the backend app

as the target app and all the host views that are marked as value sources. Similar to mashup execution,

the mashup receiver of the backend app receives the mashup intent and launches the initial activity of

the backend app. Then the backend recorder starts the backend part of mashup recording.

In the backend part, the user demonstrates the execution process of the backend app and specifies the

value sources of related views and the return result. During the process, the user operates the backend app

in a desired way and the backend recorder captures all the involved activities and the interaction sequence

executed in each activity. The default recording status of the backend app is CaptureInteractionSequence.

In this status, the backend recorder captures the interaction sequence of the user in each activity.

To this end, the backend recorder intercepts and recognizes all the events of each involved activity

in corresponding listener methods. The captured events of an activity are recorded sequentially in the

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:9

interaction sequence of the activity. For example, to capture the text change of EditText views, the

backend recorder binds the TextWatcher listeners to them. When the text change occurs, the backend

recorder captures the event. The text content of the view and its identifier are then recorded in the

interaction sequence of the activity. For an event that requires user input in mashup execution such as

the value change of EditText, Spinner, or CheckBox, its value source is set to the user input given in

mashup recording by default.

The user can also set the value source of a captured event to a host view. To this end, the user first

sets the recording status to SetValueSource and then selects a view by touching it on the screen. After

that, the backend recorder pops up a dialog to list all the host views that have been marked as value

sources and the user chooses a host view as the value source of the value change event of the selected

backend view.

When the backend app reaches the final window, i.e., the window where a user wants to end the

execution of the backend app, the user specifies the return result of the app. To this end, the user first

sets the recording status to SetReturnResult and then selects a rectangular area on the screen. The

position and size of the selected area are recorded in the mashup script together with its activity name.

If the user does not require any return result from the backend app, he/she can specify a success message

as the return result. The last interaction event captured before the return result setting is regarded as

the ending event of the mashup. The setting of return result ends the mashup recording process.

The output of mashup recording is a mashup script stored on the current device. The mashup script

is a serialized object based on the conceptual model shown in Figure 1.

4.4 App transformation

App transformation introduces mashup components into existing apps and can be implemented for An-

droid apps with source code or packaged in APK files.

4.4.1 Mashup components

An overview of app transformation in MashReDroid is shown in Table 1. The transformation intro-

duces components for mashup execution and recording, i.e., mashup receiver, touch manager, setting

dialog, two execution controllers, and two mashup recorders, into Android apps. Each of these com-

ponents has its implementation classes and may be weaved with the behaviors (e.g., lifecycle methods

and listeners of activity classes) of Android apps. Moreover, the transformation adds a permission of

“android.permission.REORDER TASKS” to the Android manifest file of each app to allow a host app

to be brought to the foreground when a backend app finishes its execution.

(1) Mashup receiver. Mashup receiver is a broadcast receiver (i.e., a descendent class of Broad-

castReceiver) that implements cross-app communication. In transformation, an implementation class of

mashup receiver is added into an app and a declaration of the receiver is added into the Android manifest

as shown in Figure 6(a). The declaration specifies the implementation class of the receiver. In addition,

it specifies an intent filter which is responsible for receiving intents for mashup.

(2) Touch manager. Touch manager intercepts touch events on the screen (e.g., long pressing for

opening the setting dialog, choosing a view as value source) and dispatches them to the corresponding

handling components (e.g., setting dialog, host recorder). MashReDroid implements a TouchManager

class for dispatching touch events and a gesture listener class (i.e., a descendent of interface OnGes-

tureListener) called MashupGestureListener for responding long pressing events to open the mashup

setting dialog. The behaviors of touch manager are weaved into the onCreate, dispatchTouchEvent, and

onDestroy methods of each activity class.

The code added into the onCreate method creates a gesture detector (i.e., an instance of class Gesture-

DetectorCompat) and associates it to the current activity and an instance of MashupGestureListener.

The code added into the dispatchTouchEvent method intercepts each touch event and passes it to

the touch manager (see Figure 6(b)). The touch manager further dispatches the touch event to other

components according to the type of the event and the status of the app. For example, a touch event

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:10

Table 1 Overview of app transformation in MashReDroid

Component Description of added code

Mashup

receiver

Implementation

class
A mashup receiver class

Manifest file
A declaration of the receiver with an intent filter for mashup to the AndroidManifest.xml

file

Touch

manager

Implementation

class
A touch manager class; a gesture listener class

onCreate Create a gesture detector and associate it with the current activity and a gesture listener

dispatchTouch

Event
Intercept a touch event and pass it to the touch manager

onDestroy Remove the gesture detector of the activity

Setting

dialog

Implementation

class
A setting dialog class

Execution

controllers

Implementation

class
A host controller class; a backend controller class

onCreate
Initialize host controllers; initialize backend controller; set the currentActivity reference

to the current activity

onWindowFocus

Changed

Bind listeners to related views for capturing value sources and trigger event in host

execution; replay the interaction sequence associated with the current activity in backend

execution; capture and return the result to the host app in backend execution

Listeners
Notify host controllers about value changes in event handling methods of developer de-

fined listeners

Mashup

recorders

Implementation

class
A host recorder class; a backend recorder class

onCreate
Initialize host recorder; initialize backend recorder; set the currentActivity reference to

the current activity

onWindowFocus

Changed
Bind listeners to related views for capturing user inputs in backend recording

Listeners
Notify backend recorder about value changes in event handling methods of developer

defined listeners

<receiver

android:name="xxx.xxx.xxx.mashredroid.receivers.MashupReceiver"

android:enabled="true"

android:exported="true" >

<intent-filter>

<action android:name="xxx.xxx.xxx.mashredroid.Mashup" >

</action>

</intent-filter>

</receiver>

1 public class ExampleActivity extends Activity {

2 public boolean dispatchTouchEvent(MotionEvente) {

3 + TouchManager.dispatchTouchEvent(this, e);

4 + if (TouchManager.isNormalUIOperationEnabled(this)) {

5 ... // original code

6 + } else {

7 + return true;

8 + }

9 }

10 }

(a)

(b)

Figure 6 Implementation codes of mashup. (a) Mashup receiver declaration; (b) touch event interception in dispatch-

TouchEvent.

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:11

will be dispatched to the gesture detector if the status is HostRecording (host app) or CaptureInterac-

tionSequence (backend app), which further determines whether to open the setting dialog; a touch event

will be dispatched to the host or backend recorder in mashup recording if the status is MarkValueSource,

SetTriggerEvent, SetValueSource, or SetReturnResult. After that, the code uses the touch manager to

determine whether normal UI operations are enabled (i.e., the user is manipulating the app). If they are

enabled, the original code of the dispatchTouchEvent method is executed. Otherwise, it means that the

event is a user recording operation (e.g., marking a view as value source), so the original code is bypassed.

The code added into the onDestroy method removes the gesture detector of the activity.

(3) Setting dialog. Setting dialog allows the user to set the status of mashup execution and recording

and can be opened by long pressing the screen. MashReDroid implements a MashupSettingDialog class,

which implements the functionalities of setting the permission of mashup execution, starting a mashup

recording, inquiring and choosing candidate backend apps, setting recording status (e.g., value source

marking, trigger event setting).

(4) Execution controllers. MashReDroid introduces two controllers for mashup execution, i.e., host

controller and backend controller. It implements a HostController class for controlling the execution

process in a host app and a BackendController class for controlling the execution process in a backend

app. A host controller obtains the host side execution configuration of a mashup, including the trigger

event and the views that are marked as value sources, from the mashup script when it is initialized. A

backend controller obtains the backend side execution configuration of a mashup, including the views

that need inputs from value sources, the interaction sequence of each involved activity, the ending event,

and the result returning area, from the mashup script when it is initialized. And the behaviors of these

two controllers are weaved into the onCreate and onWindowFocusChanged methods and related view

listeners.

The code added into the onCreate method initializes the host (backend) controllers and sets the current

activity. It first checks whether the host (backend) controllers of the app have been initialized if the app

is being involved in mashup execution as a host (backend) app. If not, it initializes a host controller

for each of the mashups that are contained in the app and enabled to execute if the app executes as a

host app, or initializes a backend controller if the app executes as a backend app. After that, the host

(backend) controllers set their currentActivity references to the current activity.

The code added into the onWindowFocusChanged method implements different functionalities for host

controller and backend controller. For a host controller, the code binds listeners to related views for

capturing value sources and trigger event. To this end, it traverses all the views that are marked as value

sources or associated with trigger events. For each related view, the code dynamically binds a listener to it

to capture value changes if it is a value source or monitor the occurrence of trigger events if it is associated

with trigger events. Note that if a view already has a developer defined listener, the code for notifying

host controllers will be statically added into the corresponding event handling methods. For a backend

controller, the code replays the interaction sequence associated with the current activity, and captures

and returns the result to the host app. To this end, it retrieves the interaction sequence associated with

the current activity and replays each event in the sequence by invoking the corresponding event listener

methods. If an event involves input values, the code invokes the corresponding setter method (e.g., the

setText method of EditText) of the target view to set the value based on input values captured in the

host app or user inputs recorded in the mashup script. After the ending event of the mashup is replayed

and the final window is ready, the code obtains the result by taking a snapshot of the designated area on

the screen or reading the return message specified by the user and then returns the result by sending a

broadcast intent.

(5) Mashup recorders. MashReDroid introduces two recorders for mashup recording, i.e., host

recorder and backend recorder. It implements a HostRecorder class for controlling the recording process

in a host app and a BackendRecorder class for controlling the recording process in a backend app. The

behaviors of these two recorders are weaved into the onCreate and onWindowFocusChanged methods and

related view listeners.

The code added into the onCreate method initializes the host (backend) recorders and sets the current

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:12

activity. It first checks whether the host (backend) recorder of the app has been initialized if the app is

being involved in mashup recording as a host (backend) app, and if not initializes a new one. After that,

the host (backend) recorder sets its currentActivity reference to the current activity.

The code added into the onWindowFocusChanged method binds listeners to related views for capturing

user inputs. To enable the backend recorder to capture user inputs in recording, it binds a value change

listener to each of the views that require input values (e.g., EditText). Note that if a view already has

a developer defined listener, the code for notifying backend recorder will be statically added into the

corresponding event handling methods of the listener.

4.4.2 Implementation

MashReDroid has been implemented to support the transformation of Android apps in source code or

packaged in APK files. For an app with source code, MashReDroid directly manipulates the source code

and manifest file to introduce the MashReDroid runtime library and transform the implementation code.

For an app packaged in an APK file, MashReDroid uses dex2jar2) to analyze and rewrite the Dalvik

byte code in the APK file to introduce the MashReDroid runtime library and weave mashup related

behaviors into the app. MashReDroid runtime library includes the implementation classes of all the

mashup components. It is first implemented in Java and then converted into Java byte code using java

and Dalvik byte code using dx. All the revised classes, the MashReDroid runtime library, and all the

other classes in the original app are packaged into a mashup enabled app (also an APK file) together with

resources and the revised manifest file. Similar techniques have been used in Zheng et al.’s work [14],

which provides more details about the manipulation of APK files.

5 Evaluation

To evaluate the applicability, usability, and efficiency of MashReDroid, we conduct two user studies and

an experimental study to answer the following research questions.

• RQ1 (applicability). Do the requirements for the mashups of Android apps commonly exist? To

what extent can these requirements be supported by MashReDroid?

• RQ2 (usability). Can the users easily create and use Android mashups with MashReDroid? How

much time and effort do they need to create a mashup?

• RQ3 (efficiency). How efficient are the mashups created with MashReDroid at runtime? How much

overhead does MashReDroid bring to an app in terms of memory and time?

We used a set of Android phones in our experiments and user studies, including a Redmi Note 4, a

Redmi Pro, and a 360 N4S.

5.1 RQ1: applicability

To answer RQ1, we collect a set of Android apps and mashup requirements of these apps and test the

feasibility of mashup recording and execution for each of these requirements. We recruit five students

(one Ph.D. student and four master students) from our university as the users. These users frequently

use Android phones and apps in their lives.

We collect 13 closed source apps from the Android Market and 6 open source apps from GitHub. A

complete list of the collected apps can be found in the MashReDroid research page3). The closed source

apps are selected from those that are commonly used by the users. As many mobile apps provide location

based services, those apps that do not operate their services locally are excluded. The selected closed

source apps cover a range of life services such as online shopping, calling taxi, booking tickets. The open

source apps are selected from those that provide complete functionalities and have no serious problems

2) dex2jar: https://github.com/pxb1988/dex2jar.
3) MashReDroid research page: https://mashredroid.github.io/MashReDroid/src/index.html.

https://github.com/pxb1988/dex2jar
https://mashredroid.github.io/MashReDroid/src/index.html

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:13

Table 2 Results of applicability evaluation

Ord Host app Backend app Scenario Supported

1 YiHaoDian New

Egg

When searching for a product in YiHaoDian, show relevant search

results in New Egg for comparison.

√

2 New

Egg

SimpleNote When submitting an order in New Egg, record the order information

in SimpleNote.

√

3 YiHaoDian SimpleNote When submitting an order in YiHaoDian, record the order information

in SimpleNote.

√

4 New

Egg

YiHaoDian When adding the shipping address in New Egg, synchronize the addi-

tion in YiHaoDian.

×

5 Baidu

Travel

Uber When finding a local attraction in Baidu Travel, call a taxi to that

place in Uber.

√

6 YiHaoDian MiNote When logging in YiHaoDian, record the username and password in

MiNote.

√

7 Yidao Uber When looking for a taxi in Yidao, show the results in Uber for com-

parison.

√

8 Baidu

Travel

Weather

Live

When finding an attraction in Baidu Travel, obtain the weather of that

place from Weather Live.

√

9 Yidao Baidu

Travel

When looking for a taxi in Yidao, obtain the attractions around the

destination from Baidu Travel.

√

10 Baidu

Nuomi

Uber When checking a film shown in a cinema, call a taxi to the cinema in

Uber.

×

11 HeadNews WizNote When reading an article in HeadNews, save the content in WizNote. ×

such as crash. The selected open source apps mostly provide practical functionalities such as taking notes

and weather forecast.

The users are asked to propose as many mashup scenarios as they could based on the 19 collected apps.

After that we use MashReDroid to transform these apps into mashup enabled apps and test the mashup

recording and execution for each of these scenarios to determine whether it is supported by MashReDroid.

The mashup scenarios collected from the users and the results of applicability evaluation are shown in

Table 2. The last column shows whether the scenario is supported by MashReDroid. From the table, it

can be seen that the mashup scenarios can be categorized into the following four types.

(1) Information comparison. Users compare similar products or services from different apps (Scenar-

ios 1, 7);

(2) Information recording. Users record the information produced in one app with another app (Sce-

narios 2, 3, 4, 6, 11);

(3) Additional information. Users combine additional information from an app into the context of

another app (Scenarios 8, 9);

(4) Service composition. Users compose a service provided by an app into the context of another app

(Scenarios 5, 10).

Among all the 11 scenarios, 8 are supported by MashReDroid. The failure of Scenario 4 is owing to the

fact that the options in the drop-down boxes for the address in the two apps do not match. To solve this

problem, we need to support more accurate mapping between heterogeneous data formats and semantics.

The failures of Scenarios 10 and 11 are caused by the use of WebView (a view that displays web pages)

in the apps. Currently, MashReDroid cannot capture the UI elements and events in a WebView page.

From the above analysis, it can be seen that the requirements for the mashups of Android apps

commonly exist in mobile users’ everyday lives and most of the requirements can be categorized into

several common types. Most of the mashup requirements identified in our study can be supported by

MashReDroid. The failure cases caused by WebView can be resolved in the future by extending the

record and replay mechanism of MashReDroid.

5.2 RQ2: usability

To answer RQ2, we conduct a user study to evaluate the usability of MashReDroid. To compare the

usability of MashReDroid for technical and nontechnical users, we recruit two groups of students from our

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:14

Table 3 Results of usability evaluation

Group Participant
Task 1 Task 2 Task 3 Task 4 Feedback

T. (s) # T. (s) # T. (s) # T. (s) (S1) (S2) (S3)

Group A

P1 1 42 1 58 2 123 2 104 4 4 5

P2 3 145 1 173 1 44 1 75 4 3 5

P3 2 103 2 132 2 91 1 65 5 4 5

P4 2 109 2 161 1 41 1 76 5 4 5

P5 2 162 1 146 1 61 1 140 2 3 5

P6 2 87 1 117 1 58 1 71 5 4 4

P7 1 29 4 211 2 93 1 48 4 5 3

P8 4 143 1 81 1 30 1 59 4 4 3

Average 2.1 102 1.6 135 1.4 68 1.1 80 4.1 3.9 4.4

Group B

P9 1 58 1 115 1 86 2 168 5 5 4

P10 1 65 1 105 1 61 1 74 5 5 4

P11 1 61 2 167 1 67 1 64 3 4 5

P12 3 146 1 111 1 95 2 102 5 5 5

P13 1 55 1 77 1 57 1 84 4 2 5

P14 1 55 1 92 1 77 1 118 4 5 4

P15 1 51 2 223 2 116 1 124 4 5 5

P16 1 58 2 214 1 51 1 82 5 5 5

Average 1.3 68.6 1.4 138 1.1 76.2 1.3 102 4.4 4.5 4.6

university to participate in the study as users, each with 8 members. Group A is the nontechnical group

with 2 master students and 6 undergraduate students, and all of them have no programming experience.

Among them 7 students major in pharmacy and 1 student majors in economics. Group B is the technical

group with 3 Ph.D. students and 5 master students. All of them major in computer science and have

programming experience.

The participants are trained to use mashup enabled apps to record mashups. Two of the authors give

a tutorial of 10 min with an example and answer the questions raised by the participants. After that,

the participants are asked to try mashup recording with the same example.

After the training session, the participants are asked to finish four mashup creation tasks by themselves.

The four tasks Task 1, Task 2, Task 3, and Task 4 correspond to Scenarios 1, 3, 8, and 5 in Table 2,

respectively. Each of them represents one of the four types of scenarios identified in Subsection 5.1. For

each task, the participants are given an Android phone with the host app and backend app installed on

it. They run the host app and create a mashup based on the given scenario. They can retry the process

numerous times until the task is done. During and after each mashup creation, they run the created

mashup to check whether it work as desired.

After the participants finish the tasks, they are asked to complete a questionnaire to provide feed-

back on the usability of MashReDroid by rating the following three statements on a scale of 1 (strongly

disagree) to 5 (strongly agree): (S1) the mashups created with MashReDroid are helpful in their lives;

(S2) mashup recording is easy to learn and use; (S3) the mashup recording and execution process is

smooth. The questionnaire also includes open questions about the advantages and possible improve-

ment of MashReDroid. Moreover, we conduct a group interview to learn more about their feedback on

MashReDroid.

The results of the user study are presented in Table 3, which shows the participant, the times tried

(#) and the time used (T.) in each task, and the rating of each statement. It can be seen that most

of the participants try once and finish a mashup recording in 1 to 4 min. Some participants retry the

recording of a mashup several times. This is usually caused by incorrectly selecting or missing value

passing between host views and backend views owing to participants being unfamiliar with the apps or

devices (some of the participants are iPhone users). Group A (nontechnical users) significantly tries more

times and uses more time on Task 1, while achieves comparable performance with Group B (technical

users) on the other tasks. It may indicate that nontechnical users have a steeper learning curve than

technical users, but can get familiar with the recording process soon.

From the feedback of the participants on the statements, it can be seen that most of the participants

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:15

Table 4 Results of efficiency evaluation

Mashup
Memory (MB) Response time (ms)

Mem.(O) Mem.(M) RTh(O) RTh(M) RTm

M1 219.4 224.4 521.1 640.1 2144.8

M2 223.6 208.0 1000.4 1196.7 842.4

M3 212.3 207.9 – – 1639.8

M4 201.9 204.8 – – 1409.0

have a good impression of the usability of MashReDroid in mashup creation and usage. Group B (tech-

nical users) have a little higher rating than Group A (nontechnical users). We learn more about the

advantages and possible improvement of MashReDroid from the open questions and group interview.

Most of the participants agree that MashReDroid provides a new way for them to combine the services

and functionalities of different apps. They say they are happy that they can create something that belongs

to their own on their mobile phones. Some of them mention that they have ever encountered situations

similar to the given tasks and think that creating mashups with MashReDroid is a good idea to meet

their requirements. Almost all of them think that it is not hard to learn mashup recording with MashRe-

Droid, even though some of them rarely use Android phones before. A participant without programming

experience say that he can easily understand the basic concepts and operations of MashReDroid because

its interaction mode (e.g., marking value sources on the screen) is intuitive and the prompts (e.g., red

boxes for highlighting chosen views and floating panels for prompting the next step) provided along the

recording process on the screen are quite helpful. Some participants mention an inconvenience in using

the mashup created for Scenario 5 (Baidu Travel+Uber): sometimes they need to manually choose a

precise address in Uber before calling a taxi because the address obtained from Baidu Travel cannot be

exactly matched. This inconvenience is caused by the mismatch of information representation in different

apps. Some participants also suggest some improvement of MashReDroid, e.g., supporting the value

passing of multimedia information, providing mashup templates for similar situations, reducing response

time in mashup recording, supporting undo in mashup recording, suggesting the views to be matched.

From the above analysis, it can be seen that most of the users can easily learn MashReDroid and use

it to create and use Android mashups. Even those without programming experience can well understand

the basic concepts and operations of MashReDroid and create mashups in a short time.

5.3 RQ3: efficiency

To answer RQ3, we test the runtime efficiency of MashReDroid by measuring its runtime overhead in

terms of memory and time. We use the mashups created for the four tasks in Subsection 5.2 as the

subjects and a 360 N4S (Qualcomm snapdragon 625 CPU, Mali-T880 GPU, 4 GB RAM) with Android

6.0.1 as the mobile device.

The memory overhead of a mashup is measured by the increased memory consumption of the host app,

while the time overhead is measured by the increased response time of the trigger event in the host app.

To measure the memory overhead, we use an open source performance testing tool called Emmagee4),

which can monitor the CPU, memory, network traffic, and battery consumptions of Android apps. To

measure the time overhead, we instrument code into the host app (both the original version and the

mashup enabled version) to compute the following two kinds of response time of the trigger event: RTh,

the response time for the host app, i.e., the time between the occurrence of the trigger event and the

appearance of the next activity object; RTm, the response time for the mashup, i.e., the time between the

occurrence of the trigger event and the receiving of return result of the mashup. For each mashup, we run

the two versions of the host apps (i.e., the original version and the mashup enabled version containing the

mashup) 10 times and compute the average memory consumption and response time of the two versions

for comparison.

The results of the efficiency evaluation are presented in Table 4, which shows the mashup, the memory

consumption of the original version (Men.(O)) and the mashup version (Men.(M)), the RTh in the original

4) Emmagee: https://github.com/NetEase/Emmagee.

https://github.com/NetEase/Emmagee

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:16

version and the mashup version, and the RTm in the mashup version. The four mashups M1, M2, M3, M4

corresponding to the mashups created for the four tasks Task 1, Task 2, Task 3, Task 4 in Subsection 5.2,

respectively. There is no RTh for M3 and M4, as the next activity responding the trigger event is still the

current activity of the host app. It can be seen that the increased memory consumption is negligible and

the increased response time is small (within 23%). And the RTm is small (842.4–2144.8 ms), which is

sometimes less than the RTh in the mashup version, which means that the return result can be received

before the next activity is visible.

From the above analysis, it can be seen that the overhead of MashReDroid in mashup execution is

very low, and the response time of the mashup execution is small.

5.4 Threats to validity

The major threat is that our user studies and experiments only involve a limited number of apps and

users. Our approach and evaluation might not generalize to more complex mashup scenarios and a

broader variety of users.

In the applicability evaluation, the mashup requirements are collected from five students and based on

the 19 available apps. We think the collected apps and the identified four types of mashup scenarios are

representative and more interesting scenarios can be identified if a broader variety of apps are considered.

The record and replay mechanism of MashReDroid currently does not support some UI elements (e.g.,

WebView elements) or events (e.g., sensor events). Therefore, it is not clear whether the results of

applicability evaluation may differ if more apps and scenarios are considered.

In the usability evaluation, the tasks only involve four mashup scenarios. The participants may need

more time and effort to create mashups for more complex scenarios. Another threat lies in that the par-

ticipants are all undergraduate or master students. Although we intentionally include some participants

without programming experience, it is not clear if less educated users can easily use mashup recording

to create mashups. The training session in our study is short (10 min). We believe more users can use

mashup recording well if they spend more time learning it.

In the efficiency evaluation, we only test four mashups with one Android device. The resource con-

sumption of MashReDroid’s execution mechanism may differ in different apps or on different devices.

Moreover, the resource consumption measured by the tool may be inaccurate.

6 Discussion

A fundamental challenge of end user programming is how to make end users understand and grasp the

involved programming concepts. Although the conceptual model behind MashReDroid involves a number

of concepts (see Figure 1), the programming concepts that end users need to understand are only trigger

event and value passing between host views and backend views. The other concepts are hidden from the

user and naturally embedded in the process of mashup recording, which follows the normal usage process

of mobile apps by the user. The concepts of trigger event and value passing are directly related to user

visible elements on the screen (e.g., a submit button or an address label), thus can be easily understood by

end users. However, this limits the capability of MashReDroid in expressing more complex mashups. For

example, the internal variables of a host app cannot be used as value sources. But this avoids breaking

the confidentiality of the host app by only passing user visible content of an app to another one.

We acknowledge that there still exist several limitations of MashReDroid. First, there is a lack of

branch and loop constructs in the value passing between the host app and the backend app. For example,

MashReDroid does not support the mashups that need to execute different paths of the backend app based

on values from the host app. Second, there may exist the mismatch of format and UI element of the

same content in different apps. For example, the address shown as text in the host app may need to be

passed to multiple spinners showing the province and city in the backend app. Third, the replaying of

the mashup script may fail especially when the interface structure of the backend app differs from that

recorded in the script. It also influences the reusability of user created mashups among different user

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:17

devices. For example, when a view is removed from an activity of the backed app or its resource ID or

position is changed, MashReDroid fails to locate the view in the execution process. The inconsistency

is usually caused by the evolution of the app or the fragmentation issues when applying in difference

devices. Fourth, the instrumentation of packaged APKs may fail in particular for those with the integrity

checking ability. MashReDroid is currently unable to cross this protection mechanism, which may affect

the use of this approach on some popular apps.

Introducing constructs for branch, loop, and more complex value passing can make MashReDroid

support more complex mashup scenarios, but may affect the usability of MashReDroid.

7 Related work

Mashups are traditionally regarded as a way for end users to repurpose and combine existing web contents

and services [3, 7, 15]. Therefore, most of the existing researches on mashup focus on the composition of

web-based content, services, or APIs. Yahoo! Pipes5) provides a Web-based environment with a graph-

ical user interface for building data mashups that aggregate web feeds, web pages, and other services6).

Marmite [3] is a Firefox plugin for end-user programming on web services. It provides a list of operators

for users to extract, process and redirect data and a linked dataflow metaphor for users to understand the

current state of the data. Hartmann et al. [16] developed a tool for creating web mashups based on a sam-

pling approach that leverages pre-existing web sites as example sets and supports fluid composition and

modification of examples. Lin et al. [17] developed a spreadsheet-like environment for creating mashups.

It uses direct-manipulation and programming-by-demonstration techniques to automatically populate

tables with information collected from various web sites. DashMash [5] is a platform for end users to

mashup lightweight services into enterprise systems based on a publish-subscribe model and event-driven

execution. MashupEditor [6] is an environment for non-professional users to create web mashups. By

parsing web pages through a proxy, it allows users to select elements and connect them via copy-paste

metaphor. Liu et al. [7] proposed iMashup, a composition framework to support mashup development

and deployment for Web-delivered services. The framework contains a unified mashup component model

with semantic tags facilitating developers to connect components by assigning data flows. Built upon

iMashup, Ma et al. [18] introduced an approach to aid Web mashup development by suggesting helpful

recommendations in an iterative way. The approach is implemented in a browser plugin called iMashu-

pAdvisor which incorporates data-driven recommendation algorithms. The mentioned mashup methods

as well as tools support developers to create applications composed of web content and web-delivered

services. MashReDroid, relatively, focuses on the mashup for Android apps which is another promis-

ing domain for information integration. Moreover, tools for web mashup mainly rely on a standalone

environment or editor for programming mashups, which cannot be easily used on mobile devices.

There are also some researches on the creation of mashup apps. iOS Workflow7) provides a personal

automation tool on iOS platform. It allows users to create workflows of apps by dragging and dropping

any combination of app actions which are predefined by developers based on a standard specification.

SatinII app development environment [10] allows end users to visually compose social apps that are then

compiled into web-based apps that can run on mobile devices. Cappiello et al. [9] developed a model-

driven end user development framework for the design and automatic generation of mobile mashups.

GALLAG Strip [19] is a visual programming tool for end users to create mashups of sensors and devices.

It is based on a linear, if-then rule based model and supports logic for temporal relationships among

different kinds of home automation sensors and devices. Ma et al. [2] proposed a data-driven and content-

based mobile apps composition approach by leveraging an In-App Search mechanism, which can discover

relevant services for the data and content in apps. Wang et al. [20] proposed a client-based MicroServices

automatic collaboration framework to collaborate different apps by decomposing them into interfaces and

then composing the interfaces. Zhou and Lee [21] introduced a system to provide location-aware semantic

5) Yahoo! Pipes. http://pipes.yahoo.com, 2007.
6) Yahoo! Pipes was shut down on 30 September 2015.
7) iOS Workflow. https://workflow.is, 2014.

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:18

mashups of GoogleMap and DBPedia. Context-aware mobile mashups are further proposed to integrate

data and service in context-aware mobile applications [22, 23]. This kind of application can access to

heterogeneous resources taking the user’s current situation into consideration. These techniques aim to

build mobile apps by the composition of predefined components and interfaces from the apps or from the

other web-based services. Differently, MashReDroid allows end users to compose any functionality of an

app by recording its execution process.

Deep links and record/replay of mobile apps have been widely studied for various purposes. Azim

et al. [11] proposed a deep linking mechanism, which can transparently track data- and UI-event-

dependencies of app pages and encode the information in links to the pages. Ma et al. [24,25] proposed an

approach for automatically generating deep links of Android apps by building a navigation graph based

on static and dynamic analysis. The approach generates the deep link enabled APKs without additional

coding and deployment efforts. However, these deep linking mechanisms generally do not consider the

interactions required in mobile mashup, for example cross-app communication and value passing, user

specified execution path and user inputs, which is taken by MashReDroid into account. In addition, these

mechanisms focus on exposing APIs inside one app to be accessed by other apps. Relatively, MashRe-

Droid considers the incorporation of the backend apps and the host app, thus transforming the both apps

in the solution. RERAN [12] is a record-and-replay tool by capturing and replaying low-level GUI-events

directly, including touchscreen gestures (e.g., tap, swipe, and pinch) and data from sensor input devices.

VALERA [13] is a stream-oriented record-and-replay tool that can record and replay sensor and network

inputs, event schedules, and inter-app communication via intents. Different from these approaches and

tools, MashReDroid implements a lightweight record-and-replay technique for Android mashup, which

considers additional mechanisms for cross-app communication and value passing.

Programming by demonstration (PBD) [26, 27] is a technique to automate activities for end uses

without programming knowledge such as web-based tasks [28] and photo manipulation [29]. Recently

PBD has been applied in the automation for tasks in Android apps. Li et al. [30] proposed SUGILITE

which allows end users to create generalized automation for tasks in mobile apps. It requires the end users

to simply demonstrate the process of performing the task according to their conventions in regular UI.

They also apply PBD techniques to complement the programming for IoT devices [31] and task-oriented

chatbots [32]. Besides, Shen et al. [33] built Eco-Skills for AI Assistant by user’s demonstration in one

native mobile app. Bellal et al. [34] utilized PBD to build an approach that allows users to add and

modify the interaction modalities of their already installed mobile applications. These studies mainly

focuses on the recording of the demonstration for a single app, without involving the demonstration for

multiple apps among which there exists data coupling. Compared with them, MashReDroid also follows

the idea of the demonstration but emphasizes the cross-app communication and value passing.

Existing researches on program transformation or refactoring of mobile apps are targeted at differ-

ent goals such as performance optimization and remote collaboration. Zhang et al. [35] developed an

Android refactoring tool that can augment an Android app with on-demand computation offloading at

runtime to improve the performance and save energy. Lin et al. [36, 37] developed refactoring tools that

can transform incorrect or misused Android asynchronous programming constructs into correct ones for

better performance. Zheng et al. [14] proposed a technique that can transform an Android app into a

collaboration augmented one supporting interactive remote collaboration. The app transformation in our

study is targeted at a different specific goal, i.e., enabling mashup recording and execution.

8 Conclusion

We present MashReDroid, an end user programming approach for the creation of Android mashups

that combines a host app and a backend app. The host app triggers the execution of the backend

app, passes values to it, and obtains return values from it. MashReDroid supports the creation and

execution of mashups by recording and replaying the interactions between host apps and backend apps.

The applicability, usability, and efficiency of MashReDroid have been evaluated using two user studies

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:19

and an experimental study. In the future, we plan to investigate the approach further to deal with the

limitations of MashReDroid. In addition, we will support more UI element and event types and further

improve the user interface of mashup recording.

Acknowledgements This work was supported by National Key R&D Program of China (Grant No. 2018YFB1004800).

References

1 Xu Q, Erman J, Gerber A, et al. Identifying diverse usage behaviors of smartphone apps. In: Proceedings of the 11th

ACM SIGCOMM Internet Measurement Conference, Berlin, 2011. 329–344

2 Ma Y, Liu X Z, Yu M H, et al. Mashdroid: an approach to mobile-oriented dynamic services discovery and composition

by in-app search. In: Proceedings of the 2015 IEEE International Conference on Web Services, New York, 2015. 725–

730

3 Wong J, Hong J I. Making mashups with marmite: towards end-user programming for the web. In: Proceedings of

the 2007 Conference on Human Factors in Computing Systems, San Jose, 2007. 1435–1444

4 Stolee K T, Elbaum S G. Refactoring pipe-like mashups for end-user programmers. In: Proceedings of the 33rd

International Conference on Software Engineering, Waikiki, 2011. 81–90

5 Cappiello C, Matera M, Picozzi M, et al. Dashmash: a mashup environment for end user development. In: Proceedings

of the 11th International Conference on Web Engineering, Paphos, 2011. 152–166

6 Ghiani G, Paternó F, Spano L D, et al. An environment for end-user development of web mashups. Int J Human–

Comput Studies, 2016, 87: 38–64

7 Liu X Z, Huang G, Zhao Q, et al. iMashup: a mashup-based framework for service composition. Sci China Inf Sci,

2014, 57: 012101

8 Daniel F, Matera M, Weiss M. Next in mashup development: user-created apps on the web. IT Prof, 2011, 13: 22–29

9 Cappiello C, Matera M, Picozzi M. End-user development of mobile mashups. In: Proceedings of the 2nd International

Conference on Design, User Experience, and Usability, Las Vegas, 2013. 641–650

10 Rana J, Morshed S, Synnes K. End-user creation of social apps by utilizing web-based social components and visual app

composition. In: Proceedings of the 22nd International Conference on World Wide Web, New York, 2013. 1205–1214

11 Azim T, Riva O, Nath S. ulink: enabling user-defined deep linking to app content. In: Proceedings of the 14th Annual

International Conference on Mobile Systems, Applications, and Services, Singapore, 2016. 305–318

12 Gomez L, Neamtiu I, Azim T, et al. Reran: timing- and touch-sensitive record and replay for android. In: Proceedings

of the 2013 International Conference on Software Engineering, Piscataway, 2013. 72–81

13 Hu Y J, Azim T, Neamtiu I. Versatile yet lightweight record-and-replay for Android. In: Proceedings of the 2015

ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and Applications,

Pittsburgh, 2015. 349–366

14 Zheng J H, Peng X, Yang J C, et al. Colladroid: automatic augmentation of android application with lightweight

interactive collaboration. In: Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work

and Social Computing, New York, 2017. 2462–2474

15 Erenkrantz J R, Gorlick M, Suryanarayana G, et al. From representations to computations: the evolution of web

architectures. In: Proceedings of the the 6th Joint Meeting of the European Software Engineering Conference and the

ACM SIGSOFT Symposium on the Foundations of Software Engineering, New York, 2007. 255–264

16 Hartmann B, Wu L, Collins K, et al. Programming by a sample: rapidly creating web applications with d.mix.

In: Proceedings of the 20th Annual ACM Symposium on User Interface Software and Technology, New York, 2007.

241–250

17 Lin J, Wong J, Nichols J, et al. End-user programming of mashups with vegemite. In: Proceedings of the 14th

International Conference on Intelligent User Interfaces, New York, 2009. 97–106

18 Ma Y, Lu X, Liu X Z, et al. Data-driven synthesis of multiple recommendation patterns to create situational Web

mashups. Sci China Inf Sci, 2013, 56: 082109

19 Lee J, Garduño L, Walker E, et al. A tangible programming tool for creation of context-aware applications.

In: Proceedings of the 13th ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich,

2013. 391–400

20 Wang R, Chen S Z, Feng Z Y, et al. A client microservices automatic collaboration framework based on fine-grained

app. In: Proceedings of 2018 IEEE International Conference on Services Computing (SCC), 2018. 25–32

21 Zhou D H, Lee Y J. Design and implementation of location-aware semantic mobile mashups. In: Proceedings of the

International Conference on Intelligent Science and Technology, 2018. 72–76

22 Cassani V, Gianelli S, Matera M, et al. On the role of context in the design of mobile mashups. In: Proceedings of

International Rapid Mashup Challenge, 2016. 108–128

23 Daniel F, Matera M, Quintarelli E, et al. Context-aware access to heterogeneous resources through on-the-fly mashups.

In: Proceedings of International Conference on Advanced Information Systems Engineering, 2018. 119–134

24 Ma Y, Liu X Z, Du R G, et al. Droidlink: automated generation of deep links for android apps. 2016. ArXiv:

1605.06928

25 Ma Y, Hu Z N, Liu Y X, et al. Aladdin: automating release of deep-link apis on android. In: Proceedings of the World

Wide Web Conference, 2018. 1469–1478

26 Cypher A, Halbert D C. Watch What I do: Programming by Demonstration. Cambridge: MIT Press, 1993

https://doi.org/10.1016/j.ijhcs.2015.10.008
https://doi.org/10.1007/s11432-013-4782-0
https://doi.org/10.1109/MITP.2011.85
https://doi.org/10.1007/s11432-013-4908-4
https://arxiv.org/abs/1605.06928

Zheng J H, et al. Sci China Inf Sci October 2020 Vol. 63 202101:20

27 Lieberman H. Your Wish is my Command: Programming by Example. San Francisco: Morgan Kaufmann, 2001

28 Leshed G, Haber E M, Matthews T, et al. Coscripter: automating & sharing how-to knowledge in the enterprise.

In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2008. 1719–1728

29 Grabler F, Agrawala M, Li W, et al. Generating photo manipulation tutorials by demonstration. ACM Trans Graph,

2009, 28: 66

30 Li T J J, Azaria A, Myers B A. Sugilite: creating multimodal smartphone automation by demonstration. In: Proceed-

ings of the 2017 CHI Conference on Human Factors in Computing Systems, 2017. 6038–6049

31 Li T J J, Li Y C, Chen F L, et al. Programming iot devices by demonstration using mobile apps. In: Proceedings of

International Symposium on End User Development, 2017. 3–17

32 Li T J J, Riva O. Kite: building conversational bots from mobile apps. In: Proceedings of the 16th Annual International

Conference on Mobile Systems, Applications, and Services, 2018. 96–109

33 Shen Y L, Nama S, Jin H X. Teach once and use everywhere–building ai assistant eco-skills via user instruction and

demonstration. In: Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and

Services, 2019. 606–607

34 Bellal Z, Benslimane S M, Elouali N. Using programming by demonstration for multimodality in mobile-human inter-

actions. In: Proceedings of the 29th Conference on l’Interaction Homme-Machine, 2017. 243–251

35 Zhang Y, Huang G, Liu X Z, et al. Refactoring android java code for on-demand computation offloading. In: Pro-

ceedings of the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, Tucson, 2012. 233–248

36 Lin Y, Radoi C, Dig D. Retrofitting concurrency for android applications through refactoring. In: Proceedings of the

22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, Hong Kong, 2014. 341–352

37 Lin Y, Okur S, Dig D. Study and refactoring of android asynchronous programming (t). In: Proceedings of the 2015

30th IEEE/ACM International Conference on Automated Software Engineering (ASE), Washington, 2015. 224–235

https://doi.org/10.1145/1531326.1531372

	Introduction
	Background
	Conceptualization
	The approach
	Overview
	Mashup execution
	Mashup recording
	App transformation
	Mashup components
	Implementation

	Evaluation
	RQ1: applicability
	RQ2: usability
	RQ3: efficiency
	Threats to validity

	Discussion
	Related work
	Conclusion

