
SCIENCE CHINA
Information Sciences

October 2020, Vol. 63 200301:1–200301:23

https://doi.org/10.1007/s11432-020-2927-2

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .
From CAS & CAE Members

A new optimization algorithm applied in
electromagnetics — Maxwell’s equations derived

optimization (MEDO)

Donglin SU1,2,4,5*, Lilin LI1,3,4, Shunchuan YANG2,4,5, Bing LI2,4,5,

Guangzhi CHEN2,4,5 & Hui XU1,4

1School of Electronics and Information Engineering, Beihang University, Beijing 100191, China;
2Research Institute for Frontier Science, Beihang University, Beijing 100191, China;

3Shenyuan Honors Colledge, Beihang University, Beijing 100191, China;
4MIIT Key Laboratory of E3 for Smart System and Equipment, Beihang University, Beijing 100191, China;

5EMC Technology Institute, Beihang University, Beijing 100191, China

Received 20 January 2020/Revised 28 April 2020/Accepted 25 May 2020/Published online 26 August 2020

Abstract In this paper, a novel global optimization algorithm, named as Maxwell’s equations derived

optimization (MEDO), is proposed. Using the Maxwell’s equations to analyse the behaviors of the time-

varying current, the Ampere force is obtained from Fleming’s left hand rule. MEDO introduces an ‘Ampere

force’ term, which is derived from Maxwell’s equations and is rigorous in physics, to drive the variables to

the global optimal solution in the search space. In addition, introducing ‘gravity’ to MEDO can increase the

stability of the optimizations. 11 classical benchmarks are tested, and results show that MEDO can always

converge to numerical optimal solutions. To evaluate the proposed MEDO in solving the electromagnetic

problems, four practical engineering applications are considered including the linear antenna array synthesis,

frequency selected surface optimization, numerical dispersion reduction for finite-difference method, and

parameters extraction of typical waveform. These examples are significant in electromagnetics, but tough to

be solved because of their high dimensionality and strong nonlinearity. Numerical results show that MEDO

can outperform several classic optimization methods, like wind driven optimization (WDO) and particle

swarm optimization (PSO). Therefore, the electromagnetics-inspired MEDO is robust and of great potential

in solving the electromagnetic optimization problems.
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1 Introduction

Optimization algorithms, which aim at finding the best solution for a specific problem, like the linear

antenna array synthesis and frequency selected surface optimization, are utilized broadly in engineering.

In general, optimization algorithms can be divided into three categories: optimization algorithms based

on gradient descent, optimization algorithms inspired by nature phenomena, and optimization algorithms

derived from physical rules.

The first type includes gradient descent algorithm (GD) [1–4], batch gradient descent (BGD) [5–7],

stochastic gradient descent (SGD) [8–10], mini-batch gradient descent (MBGD) [11–13], and so forth.
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The principles of these algorithms are based on the mathematical analysis. Once the initial values of the

variables are set properly, the optimizations might converge quickly. Thus, they are widely used in the

calculation of penalty functions in machine learning. These algorithms depend on the gradient of the

objective functions. It can be obtained in machine learning because the penalty function is analytical

and derivable. But in most electromagnetic applications, the objective functions are possibly complex

or even without analytical expressions, making it difficult to calculate their gradient. Therefore, these

optimization methods are limited in electromagnetics.

The second type belongs to heuristic optimizations. Most common algorithms are particle swarm

optimizations (PSO) [14,15], genetic algorithms (GA) [16] and their variants. All of them are inspired by

natural phenomena, like the foraging behavior of birds and biological genetic phenomenon. Owing to their

easy implementation, independence of gradients and strong global search capabilities, they are widely

used in various engineering fields [17, 18]. In recent years, more and more novel heuristic optimizations

have been developed to improve the performance, such as differential evolution (DE) [19,20], the pigeon-

inspired optimization [21, 22], and ant colony optimization [23, 24].

The third type is a special kind of heuristic optimization, which is derived from physical laws and

provides a more theoretical basis for the convergence of the iterative formula. One typical representative

is wind driven optimization (WDO) [25,26], which describes the motion of air particle through Newton’s

second law of motion and ideal gas law. Because they do not rely on the mathematical properties of the

objective functions, this kind of optimization algorithm is widely used in engineering applications [27,28].

In electromagnetics, the optimization problems are usually high-dimensionality, strong-nonlinearity,

and multimodal. In addition, as electromagnetic techniques developed, the accuracy and stability of

the optimizations become more and more important for the practical engineering applications. These

characters propose high requirements for the performance of the optimization algorithms and pose a

challenge to the existing optimization algorithms.

It is wondered that whether we can build an optimization method from the electromagnetic field theory

which is more suitable to solve the mentioned electromagnetic problems.

In the electromagnetic field theory, the time-varying electromagnetic fields are coupled to each other,

which will produce various effects different from time-invariant fields. This paper focuses on the effect on

the current in a coaxial. The current flows back to the source through different pathes when the source

frequency of the coaxial varies. We simplify the coaxial to a parallel circuit. The current of the circuit is

analysed through the Maxwell’s equations and is transformed to be Ampere force through the Fleming’s

left-hand rule. One part of the conductor in the circuit will explore the search space under the external

force. Because the analysis of the current using Maxwell’s equations is the basis of the optimization

algorithm, we call it Maxwell’s equations derived optimization (MEDO).

The rest part of the paper is arranged as follows. Section 2 describes the inspiration and derivation of

MEDO in detail, and analyses the computation complexity of MEDO. In Section 3, some typical bench-

marks are chosen to verify the performance of the proposed optimization method including accuracy and

stability. Section 4 shows four applications of MEDO in electromagnetics. (i) High-dimensional prob-

lems: antenna array synthesis and array failure correction. (ii) Optimizations that cannot be expressed

by analytic formula: structure design for frequency selective surfaces (FSSs). (iii) Multimodal optimiza-

tions: numerical dispersion reduction for finite difference method (FDM). (iv) Optimizations with high

requirements for stability: parameters extraction for trapezoidal wave. In Section 5, the advantages and

disadvantages of MEDO are concluded, and the potential applications in electromagnetics are indicated

for the proposed MEDO method.

2 Formulations of the MEDO

When the electromagnetic fields are time-varying, many different phenomena will be found compared

with the static field. One of the typical phenomena in electromagnetic compatibility is that currents

must always return to their source, but do not have to return along the predesigned path [29]. It can be
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Figure 1 Coaxial model to demonstrate the interesting division of the current. The coaxial is excited by a time-varying

source and ended with a matched load. The load and the source are connected by a copper with small impedance.

demonstrated through a simple example.

Let us consider a long coaxial which is excited by a variable frequency source and ended with a matched

load. There is a conductor with small impedance to connect the coaxial extremity and a source as shown

in Figure 1. Then it can be found that the current follows back to the source through the conductor when

the frequency is relatively low. However, in the high frequency region, the current flows back through

the outer sheath of the coaxial.

The reason for this phenomenon is that the impedance of the circuit is varied with the frequency, which

affects the division of the current in the circuit. Faraday’s law shows that a time-varying magnetic field

passing through an open surface will induce an electric field, which can form an induced voltage around

the contour that encircles the surface. The influence of the induced electric field can be replaced by a

loop inductance, which cannot be neglected for the time-varying circuit [29]. Thus, the impedance of the

circuit is consisted of the resistance and the inductive reactance: Z = R + jωL. When the frequency

becomes higher, the impact of the inductive reactance becomes more significant. The impedance of the

outer sheath is smaller than that of the conductor under the circumstance, and most of the current

will flow back through the sheath. As for a time-invariant situation, electric and magnetic fields are

decoupled, and the impedance just refers to the resistance, expressed as Z = R. The resistance of the

copper conductor is much smaller than the outer sheath. Thus, most of the current flows back through

the copper conductor when the source is time-invariant [30].

In this paper, we focus on the phenomenon that the current loop has changed because of the time-

varying effect. We analyse the current through the Faraday’s law and the law of conservation of charge

in Maxwell’s equations, and build an optimization algorithm based on it. The single dimension situation

is discussed firstly.

To simplify the coaxial model, it can be regarded as a parallel circuit, where the two branches are

the conductor and the outer sheath, respectively. As analysed above, in a time-varying circuit, the

total impedance of the circuit consists of two parts: one part is the self-resistance which depends on the

material, length, and cross sectional area of the conductor; the other part is the inductive reactance which

depends on the frequency and loop area of the circuit. As for the circuit with two branches paralleled,

the division of the current on the two branches is impacted by the impedance, which is related to the

frequency of the source, the self-resistance of the conductor on the two branches, and the loop area of

each branch.

In order to adapt to the construction of the optimization algorithm, some modifications of the previous

coaxial model in Figure 1 have been done as shown in Figure 2. In the parallel circuit, AKG is the main

branch. ACDFGK constitutes the current loop 1, with small resistance and large loop inductance. It

can be regarded as the copper conductor in the coaxial modal. AJIHGK constitutes the current loop 2,

whose resistance is large and loop inductance is small. It is analogous to the outer sheath of the coaxial.

We focus on one segment in the loop 2, which is marked as GH in Figure 2. We consider GH as an

individual to find the optimal solution of the objective function, allow the position of GH variable, and

call it ‘slide bar’. We treat the curve HI as the region to be optimized, which is of the same shape of the

objective function. To move the slide bar, the circuit is placed in a constant magnetic field. According to

the analysis above, given the value of the voltage source, the current on the slide bar can be calculated.

Assuming that the direction of magnetic field is perpendicular to and pointing into the paper, and the

voltage source is assigned to be equal to the negative gradient of the objective function, then the slider

will move toward the minimum point of the objective function driven by Ampere force and gravity. The
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Figure 2 (Color online) Schematic of MEDO. The schematic is divided into several segments. AKG is the main branch

of the circuit, whose impedance is marked as Z1. ACDFGK is the paralleled branch in current loop 1, and AJIHGK is the

paralleled branch in current loop 2. Their impedances are recorded as Z2 and Z3. GH is the individual in the optimization

algorithm whose task is to find the optimal solution. Point G is the position of the individual, which is known as variable

of the optimization question. KF is the domain of the variable, whose minimum and maximum values are denoted as lb

and ub. HI is the area to be optimized. FG and FA refer to the external force acting on GH, which will be introduced in

detail in the body.

detailed analysis is introduced below.

To simplify the analysis, all of the curves in Figure 2 are regarded as conductors, whose cross sectional

area and resistivity are supposed to be 1. Therefore, the self-resistance of the conductors is only related

to their length.

2.1 Ampere force FA

Ampere force on GH can be expressed as

FA = iGHB0L, (1)

where L is the length of slide bar, B0 is the magnetic flux density, whose positive direction is perpendicular

into the paper, iGH is the current on slide bar GH . The key to evaluate FA is to calculate the current

on the slide bar iGH . To derive iGH in detail, we firstly define some symbols of different currents in the

circuit and the forward direction of the currents:

i1. Current on the main branch, the forward direction of i1 is K → G.

i2. Current on the loop 1, the forward direction of i2 is G → F → A.

i3. Current on the loop 2, which is iGH . The forward direction of i3 is G → H .

2.1.1 Law of conservation of charge

When slide bar GH is located at a position xcur, i2 and i3 can be calculated through law of conservation

of charge:

i2 + i3 − i1 = Σi =

∮

J · da = −
d

dt

∫

ρdV = −
d

dt
Qnet = −

d

dt
CAV (t). (2)

Considering that node capacitance CA is always ignored, Eq. (2) can be simplified as

i2 + i3 = i1, (3)

where i1 can be calculated from Ohm law:

i1 =
u

Ztotal
, (4)

where u is related to the voltage source. In order to make the slide bar move towards the minimal point,

we set the voltage source as the negative gradient of the objective function at the current point, which is
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similarly calculated by the difference of the current point and its adjacent point. Ztotal refers to the total

impedance in the circuit including the main branch impedances Z1, and paralleled branch impedances

Z2, Z3. As the source is time-varying, we need to consider not only the resistance, but also the loop

inductance. In order to simplify the problem, we consider the loop inductances just in two branches.

Consequently, the total impedance can be derived from

Ztotal = Z1 +
Z2Z3

Z2 + Z3
= R1 +

Z2Z3

Z2 + Z3
, (5)

where

Z2 = R2 + ZL2, (6)

Z3 = R3 + ZL3. (7)

In calculation of ZL2 and ZL3, some specialties are used. Generally, the induced voltage on the inductor

is proportional to the rate of change of current in the inductor, as follows:

u = L
di

dt
. (8)

According to Ohm’s law, the loop inductive reactance ZL2 and ZL3 can be obtained as

ZL2 =
L2

i2

di2
dt

, (9)

ZL3 =
L3

i3

di3
dt

. (10)

2.1.2 Faraday’s law

On the other hand, according to the Faraday’s law, the integral of the E-field along the path ACDFGHJ

can be expressed as
∮

E · ds = −
d

dt

∫

B · da = −
d

dt
Φ = −B0

d

dt
SCDHJ , (11)

where d
dtSCDHJ refers to the area enclosed by path ACDFGHJ . Furthermore, the integral on the left

side of the equation can be calculated by the sum of voltage across each element in the loop:

∮

E · ds =
n
∑

i=1

Vi = i2Z2 − i3Z3. (12)

After combining (11) and (12), the relation of i2 and i3 can be obtained as

i2Z2 − i3Z3 = −B0
dSCDHJ

dt
. (13)

The current on the slide bar can be solved through (2) and (13):

i3 =
u

Ztotal
Z2 +B0

dS
dt

Z2 + Z3
. (14)

Ampere force FA can be calculated by (1) and (14).

However, R3, L3, and
dSCDHJ

dt in (7) and (13) are difficult to be determined, which will be explained

in detail below.

(1) R3. R3 refers to the paralleled branch resistor in current loop 2, which is consist of line segment AJ ,

JI, GH , and curve HI. The value of R3 is proportional to the total length of AJ , JI, GH , and HI. The

difficulty of the expression of R3 is the length of curve HI, which is approximately substituted by straight

lines, as shown in Figure 3(a). In order to reduce the difference between the maximum and minimum



Su D L, et al. Sci China Inf Sci October 2020 Vol. 63 200301:6

+− 

C D

F

GK

A

J I H

B0

i1 i2

i3

 (lb)  (x)

 (ub)

 

+− 

C D

F

GK

A

J I H

B0

i1 i2

i3

 (lb)  (x)

 (ub)

 

+− 

C D

F

GK

A

J I H

B0

i1 i2

i3

 (lb)  (x)

 (ub)

(a) (c)(b)

const

Figure 3 (Color online) Schematic diagram of calculating. (a) R3; (b) L3; and (c) dSCDHJ

dt
.

values of the objective function in each iteration, the values of the objective function are normalized by

the max value obtained by the individuals. Then R3 can be calculated by

R3 = const1 + (1− f (xj,cur)) +

√

(xj,cur − lb)
2
+ (f (xj,cur)− f(lb))

2
, (15)

where xj,cur refers to the current position of the jth individual. const1 is a constant, which represents the

resistance of AJI, and is independent of the objective function. According to the configurations, const1

should be assigned to a very small number, whose default value is 0.1 in our simulations.

(2) L3. L3 refers to loop inductance owing to loop 2. Generally, the value of the loop inductance is

proportional to the area of the loop. To simply the calculation, the proportionality factor is noted to be

1. Thus, L3 can be approximated by the area of loop 2, which is instituted by the sum of multiple small

trapezoids, as shown in Figure 3(b).

L3 = const2 +

popsize
∑

j=1

{

(1− f (xj,cur) + 1− f (xj+1,cur))× (xj+1,cur − xj,cur)÷ 2

}

, (16)

where popsize refers to the number of individuals in MEDO, which is set by users. const2 is another

constant, which represents the area of rectangle AJIK. Because we mainly consider the effect of the

objective function on the area of loop 2, here we can set const2 to a very small value, such as 0.1.

(3) dSCDHJ/dt. dSCDHJ/dt refers to the rate of change of the area enclosed by path ACDFGHJ

over time, which is approximately represented by a trapezoid, as shown in Figure 3(c). dt = 1 is assumed

in this paper to simplify the analysis.

dS

dt
= ∆S =

(1− f (xj,cur) + 1− f (xj,new))× (xj,new − xj,cur)

2
. (17)

2.2 Gravity FG

In order to enhance the robustness of the algorithm, gravity is factitiously appended here to the model.

The definition of gravity is reaffirmed first of all, which is defined as the force pulling the slide bar

from its current location towards the center of the coordinate system [25]. The vector g is written as

g = |g|(−xcur), and the gravity can be expressed as

FG = m|g|(−xcur), (18)

where m refers to the weight of the slide bar. (−xcur) refers to the distance from the current position to

the center, which means that the further the sliding bar is from the center, the greater the gravity.

2.3 Law of motion according to momentum theorem

Above all, under the push of Ampere force and gravity, the slide bar will move following momentum

theorem:

mv = (FA + FG)t, (19)
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where m is the quality of the slide bar, which can be calculated by m = ρLSbar, where ρ is the density

of the slide bar, L is the length, and Sbar is the sectional area, respectively. v is the speed of the slide

bar, which can be computed by the position difference between two near-by iterations: vnew = dx
dt =

xnew − xcur. FA + FG is the total force applied to the slide bar, which can be obtained by (1) and (18).

t is the time duration from the starting to current, represented by the number of iterations.

Above all, the slide bar’s motion law can be simplified and rewritten, and the final iterative formula

of MEDO is obtained as

vnew =

(

B0

ρSbar
i3 − (xlast + vcur) |g|

)

· iter, (20)

xnew = xcur + vnew ·∆t. (21)

Eq. (20) can be further simplified to be

vnew = −|g| · iter · vcur +

(

B0

ρS
i3 − xlast

)

· iter. (22)

2.4 Explanations of MEDO and coefficients in MEDO

In each iteration, the force to drive the slide bar is divided into two parts. One is the Ampere force FA.

The direction of Ampere force points to the direction in which the gradient of the objective function

decreases. The other one is the gravity FG. The direction of gravity points to the coordinate origin,

which can help the slide bar to skip the local minimal point. In addition to the gradient, the function

values of other individuals and the function values of the last iteration are also used in the calculation of

FA. Then, the proposed MEDO can find the minimal position of the objective functions.

There are 5 coefficients that need to be determined to start an optimization, namely: |g|, B0, ρSbar,

R1, L2. From (20)–(22), it can be inferred that MEDO is an optimization algorithm that must converge

within a limited number of iterations. Otherwise, as the number of iterations goes to infinity, xnew

will also go to infinity and the algorithm will diverge. In consequence, we define the ‘effective number

of iterations’, which is denoted by M . The premise that MEDO can accurately converge is to choose

appropriate value of the 5 coefficients so that in the range of iter < M , the speed v tends to 0, and the

position of the slide bar tends to remain unchanged. Then, the MEDO can find the optimal value of the

objective function.

In order to ensure the convergence of the algorithm, we give a rough approximate range of each

coefficient according to the physical meaning of the model and numerical experiments.

(1) |g|. Its physical meaning is gravity acceleration. According to (22), the range of |g| should meet

| − |g| · iteration| < 1. Because it is necessary to achieve convergence within the effective number of

iterations M , we have iteration < M . So the range of |g| is |g| < 1
M
. To ensure the convergence of

MEDO, the value range of M is generally greater than 200. Thus, the value range of |g| can be further

refined to |g| 6 0.005.

(2) B0. In order to ensure that Ampere force points to the direction in which the gradient of the

objective function decreases, B0 should be perpendicular into the paper surface, resulting in B0 > 0.

According to (14) , if the value of B0 is small, the positive and negative of i3 is more likely to be

consistent with the voltage u. It is a necessary condition that the Ampere force points to the direction

of the negative gradient. Therefore, B0 should take a positive number with a smaller absolute value,

generally less than 5.

(3) ρSbar. It represents the per-unit-length weight of the slide bar. According to the second part in the

iterative formula, ρSbar should take a large number to prevent the slide bar from exceeding the domain

of the function as the iteration increases. Our numerical experiments show that ρSbar > 200 is suitable

for most applications.

(4) R1. It is the resistant of main branch, which is related to the calculation of i3. In order to keep

the positive and negative of i3 as consistent as possible with voltage u, R1 ≫ 0 is required. Generally,

we require R1 > 500.
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(5) L2. It is the loop inductance of current loop 1, which is related to the calculation of i3. According

to Figure 2, loop 1 has a large loop inductance. Thus, L2 is generally a large value. According to amounts

of numerical experiments, the range of L2 has reached to be 105 and larger.

The pseudocode of MEDO is illustrated in Algorithm 1.

Algorithm 1 Time-varying effect optimization

Require: minfobjective(x);

1: Preset: objective function, population size, maximum iterations;

2: Preset: |g|, B0, ρSbar, R1, L2;

3: Initialization: x0, v0;

4: while iter < maximum number of iterations do

5: Calculate fobjective(x);

6: u = −∇f(x);

7: Calculate Ztotal, Z2, Z3,
dS
dt

;

8: i3 =
u

Ztotal
Z2+B0

dS
dt

Z2+Z3
;

9: vnew = −g · iter · vcur + (B0
ρS

i3 − xlast) · iter;

10: xnew = xcur + vnew;

11: if |xnew − xcur| < threshold then

12: Exit.

13: end if

14: end while

2.5 Computation complexity analysis

2.5.1 Time complexity analysis

For each iteration, the computations required for MEDO mainly contain the calculations of the objective

functions and their gradient. Use M to represent the maximum number of iterations, P to represent the

population size, and D to represent the dimension of the objective function. Then, the objective function

need to be calculated for (PM + 2DPM) times in the whole iteration. Besides, the time complexity

of evaluating the objective function is related to the particular objective function under consideration,

whose time complexity can be denoted as O(f). Thus, the time complexity of MEDO can be expressed

as O(DPM)×O(f).

Similarly, if the gradient in GD is calculated by the difference method, then the time complexity of

GD is O(DM) × O(f), and the time complexity of PSO is O(PM) × O(f). It can be found that the

time complexity of MEDO is larger than GD and PSO, which is because that the gradient information

is approximately calculated by using the difference method for each individual in MEDO.

2.5.2 Space complexity analysis

Space complexity measures the amount of working storage that MEDO needs. As time complexity,

we express this conception in big-Oh terms without considering the low-order terms and the first-term

coefficients. The main variables in MEDO are the values of the objective functions, the positions of the

individuals and the velocities of the individuals, with the memory need of P units, D×P units and D×P

units, respectively. As a result, the space complexity of MEDO can be expressed as O(DP ).

Similarly, the space complexity of GD is O(D), and the space complexity of PSO is O(DP ).

2.6 Multidimensional situations

Multidimensional cases can be extended directly from the iterative formula by replacing the position x

to the multidimensional vector x. In detail, a multidimensional problem can be treated as a series of

parallel searches that every model is working to find the optimal variable in one dimension. After each

iteration, the variables obtained by each model are jointly calculated to obtain the value of the current

objective function.
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Table 1 Description of 11 benchmark functions

Function Range Dimension Fmin

F1 =
∑n

i=1(xi − 2)2 [−10, 10] 40 0

F2 =
∑n

i=1 |xi|+
∏n

i=1 |xi| [−10, 10] 40 0

F3 =
∑n

i=1

(

∑i
j=1 (xj)

)2
[−100, 100] 40 0

F4 =
∑n

i=1 |xi + 0.5|2 [−100, 100] 40 0

F5 = random[0, 1) +
∑n

i=1 ix
4
i [−1.28, 1.28] 40 0

F6 =
∑n

i=1

[

x2
i − 10 cos (2πxi) + 10

]

[−5.12, 5.12] 40 0

F7 = −20 exp(−0.2
√

1
n

∑n
i=1 x

2
i )− exp

(

1
n

∑n
i=1 cos (2πxi)

)

+ 20 + e [−32, 32] 40 0

F8 = 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos

(

xi√
i

)

+ 1 [−600, 600] 40 0

F9 = [1 + (x1 + x2 + 1)2
(

19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2

)

] [−2, 2] 2 3

×[30 + (2x1 − 3x2)
2 ×

(

18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)

]

F10 = 0.5 +
sin2(x2

1−x2
2)−0.5

(1+0.001(x2
1+x2

2))
2 [−100, 100] 2 0

F11 = −0.5 +
sin2

√

x2
1+x2

2

(1+0.001(x2
1+x2

2))
2 [−100, 100] 2 −1

Table 2 Values of the coefficients of MEDO when calculating different benchmark functions

Function B0 ρS |g| R1 L2

F1 2 5E + 2 2E − 3 1E + 6 3E + 9

F2 0 5E + 2 2E − 3 1E + 2 3E + 9

F3 0 5E + 2 2E − 3 1E + 2 3E + 9

F4 5E − 1 5E + 2 2E − 3 3E + 2 3E + 9

F5 0 1E + 3 8E − 4 3E + 6 8E + 9

F6 1.16E − 9 5.63E + 2 2E − 3 1E + 3 3E + 9

F7 0 5E + 2 2E − 3 5E + 2 3E + 9

F8 0 5E + 2 2E − 3 5E + 2 3E + 9

F9 1.4 9E + 3 3E − 5 5E + 2 3E + 9

F10 2.8E − 8 2.32E + 2 5E − 3 5.1E + 2 3E + 5

F11 1E − 1 2E + 2 5E − 3 5E + 2 3E + 5

3 Benchmarks

3.1 Test functions and test environment

In order to evaluate the convergence and accuracy of the MEDO, 11 benchmark functions have been

tested. Functions F1–F5 are unimodal functions which can test the ability of the algorithm to converge

to the minimum in general. Functions F6–F11 are multimodal functions which can test the ability of the

algorithm to jump out of the local optimum.

Function expressions and variable range are shown in Table 1. The 5 coefficients in this part are chosen

according to Subsection 2.4 and shown in Table 2.

Every function has been run for 100 times, 500 iterations every time starting from different populations

randomly generated. The population size is set as 40. Statistical results including average value and

variance are shown in Tables 3 and 4. To fairly compare the performance between MEDO and other

optimizations, several typical algorithms have been tested in the same environment, such as adaptive wind

driven optimization (AWDO), PSO, DE and GD. All the tests are completed on the Inter Core(TM) i5-

8250U CPU@1.6 GHz, MATLAB R2017a.

3.2 Results and discussion

Tables 3 and 4 show the average and variance of convergence results calculating by different optimization

algorithms. In general, the value of the average can represent the convergence accuracy of the algorithm.
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Table 3 Comparison of the average of optimization results between MEDO, AWDO, PSO, DE, and GD

Function MEDO AWDO PSO DE GD

F1 2.06E − 10 8.10E − 09 1.159299 0.356657 0

F2 0 0 14156.03 4.753654 1E + 38

F3 0 0 5.95349 36.35761 8.16E − 9

F4 2.39E − 16 5.88E − 10 6.799546 36.06591 1.94E − 27

F5 6.08E − 05 6.80E − 05 65.75983 0.281079 22.54327

F6 0 0 181.557 320.1764 350.34270

F7 8.88E − 16 8.88E − 16 20.25262 2.878327 19.50377

F8 0 0 753.0833 1.349412 1.05304

F9 3.0001 3.0001 3.008 3 144.95598

F10 0 0 1.78E − 08 0 0.50283

F11 −0.9999997 −0.99922 −0.99998 −0.9966 −0.53942

Table 4 Comparison of the variance of optimization results between MEDO, AWDO, PSO, DE, and GD

Function MEDO AWDO PSO DE GD

F1 2.56E − 19 1.73E − 15 0.094204 0.051561 0

F2 0 0 1.99E + 11 2.700029 1E + 78

F3 0 0 54.079 421.2083 1.50E − 18

F4 1.16E − 32 2.74E − 18 42.17984 361.9966 3.61E − 55

F5 4.20E − 09 4.84E − 09 1891.318 0.008171 2079.07924

F6 0 0 1477.551 356.0968 2886.41731

F7 0 0 0.117238 0.172126 0.01412

F8 0 0 1954.504 0.039167 5.29E − 5

F9 1.81E − 8 1.34E − 06 0.000105 8.05E − 31 80171.13443

F10 0 0 3.42E − 16 0 0.00179

F11 6.59E − 14 7.02E − 06 3.53E − 10 2.17E − 05 0.00708

Average values that are closer to the minimum represent higher accuracy. Meanwhile, the value of the

variance can represent the stability. The smaller variance means the higher stability. In Tables 3 and 4,

the best results are shown in bold fonts.

Some results obtained by PSO, DE, and GD have relatively large errors. The reason might be that

the dimension of F1–F8 is set to be 40. The high dimension increases the difficulty of finding the optimal

value for PSO, DE, and GD, and leads to the error accumulation. Particularly, the result obtained by

GD for F2 might be out of normal expectations. It is because that the gradient of F2 increases linearly

with the dimension grows. When the dimension of the function is 40, its gradient is extremely large,

causing the variable to cross the boundary quickly. Therefore, even if the learning rate has been set as

10−23, the result still cannot converge. Besides, when solving the multi-modal functions, GD might fall

into the local optimal solution as shown in Tables 3 and 4.

Furthermore, in order to verify the applicability of optimization algorithms to higher dimensional

problems, some additional tests have been done. In benchmark cases, dimensions of functions F1–F8 are

variable. Thus, a scan from 10-dimension to 100-dimension is set to analyse the variation of the accuracy

of different optimization algorithms with dimension increases. Figure 4 shows the results of MEDO and

three other optimizations when dealing with above situations for functions F1–F8. In Figures 4(b), (f),

and (g), the optimal results of MEDO and AWDO are always 0 with the increase of dimensions. As a

result, no locally enlarged images are specifically drawn in these subgraphs. Especially, GD is not tested

for function F2 because it cannot convergence normally.

From the results of the benchmark tests, it is confirmed that MEDO can converge to the minimum

point of the objective functions with a satisfying value. Compared with AWDO, PSO, DE, and GD,

the optimization results of MEDO are more accurate and stable in most instances. In addition, with

the dimensions of the optimization increase, the convergence accuracy of other optimization algorithms

decreases to some extent, whereas the result of MEDO still keeps accurate. In consequence, MEDO is a
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Figure 4 (Color online) Change of the accuracy of different optimizations with the increase of the dimensions when

calculating. (a) F1; (b) F2; (c) F3; (d) F4; (e) F5; (f) F6; (g) F7; (h) F8.

competitive optimization which can be qualified for the multimodal and high-dimensional questions.

4 Applications in electromagnetics

In this part, four representatives of electromagnetic engineering are selected to demonstrate the advan-

tages of MEDO when it is applied to electromagnetics. These applications are either high-dimensional,

or difficult to express directly in analytical form, or extremely multimodal, or with high requirements for

stability.
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x
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Figure 5 (Color online) Geometry of the 16-elements linear antenna array positioned along the x-axis.

4.1 Linear antenna array synthesis

Antenna array synthesis is one of the most significant optimization problems, including side lobe level

(SLL) suppression [31–35], null control [31, 34, 36], and array failure correction [37–39]. It is challenging

because of the high-dimensionality and strong-nonlinearity.

4.1.1 Side lobe level suppression and null control

In this subsection, MEDO is used to choose the optimal amplitude of the excitation and the element

locations to achieve the SLL suppression and null control of a linear array.

The linear array is placed along the x-axis symmetrically, consisting of 16 identical isotropic dipole

antennas, as shown in Figure 5. The array factor AF can be calculated as

AF(θ) = 2

16
∑

n=1

an cos

(

2π

λ
dn cos θ + ϕn

)

, (23)

where an refers to the excitation amplitude of the nth element, dn refers to the distance between two

elements, λ refers to the wavelength, and ϕn refers to the excitation phase of the nth element, respectively.

If the phases are preset to be π/2, Eq. (23) can be simplify as

AF(θ) = 2

16
∑

n=1

an cos

(

2π

λ
dn cos θ +

π

2

)

. (24)

In order to find the optimal amplitude of the excitation and the location of the elements to achieve a

minimal SLL and null control, the objective function is set as

fobjective = max (AF (θd)) +
∑

i

AF (θi) , (25)

where θd is the angle at which the SLL needs to be controlled. θi refers to the direction which needs to

control the null depth. If the null control is not considered, the first half of (25) is used.

This case is a 32-dimension optimization problem. MEDO has run 1000 iterations with a population

size of 47, where the 5 coefficients are chosen asB0 = 8.9E−2, ρSbar = 1463, |g| = 6.84E−4,R1 = 3.7E+3,

L2 = 3E + 7 for SLL suppression, and B0 = 0.06, ρSbar = 300, |g| = 1E− 6, R1 = 1E + 3, L2 = 3E + 8

for null control, respectively.

The similar study has been done by PSO [34] for SLL suppression and by RGA [36] for both SLL

suppression and null control. The obtained side lobe levels are shown in Tables 5 and 6. The corresponding

normalized far-field patterns are shown in Figures 6 and 7. Table 7 shows the optimal excitations and

positions of the elements acquired by MEDO and PSO.

From the results, we can conclude that in the SLL suppression, MEDO can attain a −35.71 dB

SLL in the linear antenna array, and PSO achieves −31.29 dB [34]. In the SLL suppression and null

control, MEDO can achieve a lower SLL than RGA, with the comparable null depth with the RGA. The

consequences show a matched potential to the typical optimizations in minimizing the side lobes level

and null control in the antenna array synthesis.
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Table 5 Comparison of the SLL obtained by MEDO and PSO

Optimization SLL (dB)

MEDO −35.71

PSO −31.29

Table 6 Comparison of the SLL obtained by MEDO and RGA

Optimization SLL (dB) Null depth (75◦ and 105◦) (dB) Null depth (68◦ and 112◦) (dB)

MEDO −420.83 −61.65 −61.66

RGA −15.18 −56.00 −86.07
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Figure 6 (Color online) Normalized gain comparison be-

tween MEDO and PSO. MEDO achieves a lower SLL than

PSO.

Figure 7 (Color online) Normalized gain comparison be-

tween MEDO and RGA. MEDO achieves a lower SLL than

RGA, with the comparable null control in 75◦, 105◦, 68◦,

and 112◦.

Table 7 Excitation current amplitudes and element positions of 16-element linear array obtained by MEDO and PSO for

Subsection 4.1.1

Element
number

MEDO (for SLL
suppression only)

MEDO (for SLL suppression
and null control)

PSO (for SLL
suppression only)

Excitation Position Excitation Position Excitation Position
amplitude spacing amplitude spacing amplitude spacing

1st 0.151317 0.62926 0.257102 0.400000 0.210000 0.55053

2nd 0.291622 0.80504 0.310612 0.724125 0.401480 0.66321

3rd 0.468041 0.81434 0.333657 0.650454 0.320900 0.61984

4th 0.584701 0.73644 0.510201 0.559664 0.487930 0.40000

5th 0.564219 0.63420 0.382737 0.529326 0.865320 0.65443

6th 0.69427 0.58506 0.551289 0.550030 1.000000 0.72970

7th 0.719992 0.60010 0.661875 0.574347 0.975160 0.73800

8th 0.595556 0.50668 0.685965 0.703852 0.819060 0.66374

9th 0.777297 0.53528 0.713194 0.708551 0.647310 0.59657

10th 0.762435 0.63004 0.713019 0.689588 0.637890 0.61989

11th 0.710614 0.63960 0.527354 0.666631 0.503760 0.72864

12th 0.629917 0.67286 0.618191 0.655562 0.270990 0.69000

13th 0.435429 0.68788 0.321751 0.532389 0.178350 0.60816

14th 0.330503 0.65466 0.267579 0.444508 0.067443 0.64391

15th 0.213359 0.68206 0.450657 0.715799 0.049728 0.73366

16th 0.136245 0.67226 0.423021 0.809753 0.024616 0.82829

4.1.2 Array failure correction

The performance of the array antenna is seriously affected by each element. Once one or more elements in

the array are failure, it may lead to a sharp variation of the radiation pattern. However, in many situations

like satellites and ships, the replacement of failure elements is difficult. As a result, it is necessary to
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Figure 8 (Color online) Display of the damaged pattern

of a 20-elements linear antenna array with the 3rd and the

5th elements are defective.

Figure 9 (Color online) Comparison between the origi-

nal radiation pattern and the correction results by MEDO

and QPSO. MEDO can attain a matched performance with

QPSO.

Table 8 Excitation current amplitude distribution for original and corrected pattern of MEDO and QPSO

Element number Original pattern Corrected pattern by MEDO Corrected pattern by QPSO

1st 0.2769 0.01 0.1741

2nd 0.3087 0.035661 0.1523

3rd 0.4087 0 0

4th 0.2993 0.151105 0.3372

5th 0.5075 0 0

6th 0.5807 0.2104 0.2692

7th 0.775 0.25398 0.5821

8th 0.7555 0.257913 0.5638

9th 0.7742 0.5 0.6564

10th 0.7219 0.520421 0.692

11th 0.8832 0.60911 0.8583

12th 0.7731 0.686959 0.7872

13th 0.6126 0.765111 0.864

14th 0.809 0.748587 0.8718

15th 0.5706 0.788953 0.8739

16th 0.5349 0.669952 0.6647

17th 0.5196 0.551261 0.5375

18th 0.3102 0.556071 0.4607

19th 0.2837 0.50677 0.3564

20th 0.1598 0.246381 0.1574

reconstruct the radiation pattern by designing the exactions of the remainder normal elements [37–39].

MEDO is effective to solve this kind of problem because of its strong global search ability.

In this part, a uniformly placed linear array of 20 parallel half-wavelength vertical dipole antennas is

considered. The normal excitation current amplitude of each element is calculated in [39] to obtain a

desired side lobe level and return loss. We will use the excitation as an original condition of this example.

However, if the 3rd and 5th elements of the array are out of work, it will result in a severe distortion

between 30◦–65◦ and 115◦–150◦ in the radiation pattern. The radiation patterns of the original and

failure array are shown in Figure 8 in black line and red line, respectively.

MEDO is applied here to find an optimal exaction amplitude of the non-defective elements, which can

form a new radiation pattern with the maximal similarity with the antenna performance. The maximal

iteration is set to be 100, the population size is 60, and the range of the amplitude to optimize is (0,1],

respectively. The objective function is expressed as

fobjective = SLL (AForigin)− SLL (AFcorrected) . (26)

The similar study has been done by quantum particle swarm optimization (QPSO) [39], whose results

can be seen in Figure 9. Table 8 shows excitation current amplitudes of the elements including original
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Figure 10 (Color online) Structure of the FSS being designed. (a) Array and (b) crossed dipole element.

Table 9 Parameters of the two-layers FSS structure

Class Parameter Value

Substrate
ǫr 4.4

Loss rangent 0.02

Structure 1

L1 9.87 mm

w1 1.35 mm

h1 1.57 mm

Tx1 13 mm

Ty1 13 mm

Structure 2

L2 9.1 mm

w2 1.77 mm

h2 1.57 mm

Tx2 13 mm

Ty2 13 mm

array, corrected results by MEDO, and corrected results by QPSO.

The result shows a strong consistency between the corrected radiation pattern and the original pattern,

which means that MEDO can be qualified to optimize the array failure correction problem.

4.2 Wideband frequency selective surface structures design

Frequency selective surfaces (FSSs) are meta-surfaces which can transmit or reflect the incident elec-

tromagnetic wave in a certain range of frequency, acting like spatial filters. A common FSS generally

consists of several identical periodic 2-D radiation elements and a dielectric substrate [40]. Crossed dipole

is one of the basic types of radiation unit cell that is constantly used in FSS. FSS with crossed dipoles

has a good performance in the absorbing of the electromagnetic wave, but still suffers from the limited

bandwidth [41]. One of the countermeasures to enhance the bandwidth is to use a multi-layer structure.

Properly choosing the gap distance between two layers of the multi-layer FSS, a good balance can be

achieved between the bandwidth and insert loss at the resonant frequency [42].

In this subsection, MEDO is applied to optimize the gap distance between two cascaded crossed dipole

frequency selective surfaces named structures 1 and 2. The structure of the coupled FSS is shown in

Figure 10. The substrate material is FR-4. The gap between two layers is filled by air. More detailed

parameters of the coupled FSS can be found in Table 9. Under the above parameters settings, the

resonant frequency of the two FSS structures is 9.5 and 10.5 GHz, respectively. The optimization goal

is to obtain a wider bandwidth of the coupled FSS structure, and at the same time try not to affect the

insert loss at the resonant frequency compared with the single-layer FSS. Thus, the objective function

can be expressed as

fobjective = S21(9.5 GHz) + S21(10.5 GHz) + abs (S21(6 GHz)) + abs (S21(12 GHz)) , (27)
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Figure 11 (Color online) Insert loss comparison between MEDO and GA. MEDO can obtain a wider bandwidth than

GA.

Table 10 Optimization results comparison between MEDO and GA

Optimal Resonant Resonant Bandwidth

gap (mm) frequency (1) (GHz) frequency (2) (GHz) (−10 dB) (GHz)

MEDO 8.2 9.75 10.53 3.09

GA 7.43 9.73 10.49 3.04

where the value of S21 at each frequency point needs to be calculated in conjunction with Ansoft HFSS,

which cannot be simply given by the analytical expression.

A population with 47 individuals is optimized for 50 iterations in MEDO, where the following values

were used for the coefficients: B0 = 0.32, ρSbar = 320, |g| = 0.0025, R1 = 500, L2 = 3E + 7. The

optimized distance is 8.2 mm, as illustrated in Table 10.

Similar study can also be accomplished by GA [42], whose results are shown in Figure 11 and Table 10.

For the sake of fail comparison, we use the data provided in [42] to simulate again with Ansoft HFSS.

In consequence, the result of GA is a little different from [42] because of the different electromagnetic

software. As can be seen from the results, MEDO can acquire a satisfying bandwidth in the coupled FSS,

with 50 MHz (−10 dB) wider than the GA.

4.3 Numerical dispersion reduction for finite-difference method

Finite-difference method (FDM) is a classic numerical method to solve Maxwell’s equations [43]. However,

it suffers from the numerical dispersion problems seriously because it is developed based on grids [44].

Obtaining the proper coefficients for difference terms of FDM in the concerned frequency can be efficient

to reduce numerical dispersion. It is an optimization problem with multimodal.

Under the assumption of the plane wave, the analytical numerical dispersion relationship for the two-

dimensional FDM with the 2nd order in time domain and the 2Mth order in spatial domain can be

expressed as

cos(Ω) +

M
∑

m=0

cm cos(mK cos θ) +

M
∑

m=0

bm cos(mK sin θ) = 0, (28)

where K = k∆x refers to the normalized wavenumber, Ω = γK = ω∆t denotes the normalized fre-

quency, γ = c∆t
∆x

is the Courant-Friedirchs-Lewy number, and θ is the propagation angle in the cylinder

coordinator system. Therefore, the numerical velocity could be obtained as

cnumerical(K) =
creal
γK

arcos

(

−
M
∑

m=0

cm cos(mK cos θ)−
M
∑

m=0

bm cos(mK sin θ)

)

, (29)
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Figure 12 (Color online) Resonant frequency comparison between the TE-based, AWDO-based, and MEDO-based FDM

with the analytic results. MEDO-based FDM can obtain a more accurate resonant frequency.

where K and θ are discretized to be a series of values {Ki, θi}
2M+1
i=1 .

With the ideal coefficients {bm} and {cm}, cnumerical should be the same as creal for all K varied from

0 to π and all θ from 0 to π

2 . However, because of the error caused by discretization, (cnumerical \ creal)

is not always 1. MEDO is applied here to find a series of optimal coefficients {bm} and {cm} that make

(cnumerical \ creal) as close to 1 as possible. Thus, the objective function is defined as

fobjective =

∣

∣

∣

∣

cnumerical

creal
− 1

∣

∣

∣

∣

, (30)

where cnumerical

creal
is obtained from (29).

To verify the effectiveness of the numerical dispersion reduction method, the FDM with designed

coefficients obtained above is used to calculate the resonant frequency of a two-dimensional cavity with

perfect electrical conductor boundary condition. The size of the cavity is 120 cm×120 cm. The excitation

source is set to be a Gauss wave φ(t) = e
−4π(t−t0)2

t2
c , with t0 = 0.8tc = 0.8×10−9 s. In FDM, γx = γx = 0.6,

∆x = 0.1 m, ∆t = 2× 10−10 s, M = 2, and the max time step size is 10000.

Amounts of similar studies have been done in this area, such as TE-based method [45, 46], and opti-

mization methods like AWDO [27].

In MEDO, the population size is 13, and the max iteration number is 200. B0, ρSbar, |g|, R1, L2 are

valued at 2.3, 298, 0.001, 1934, and 3E + 5, respectively.

The results are shown in Figure 12. It can be concluded that MEDO can converge to a more precise

resonant frequency than AWDO. In consequence, MEDO offers another powerful choice in the coefficients

optimization process to reduce numerical dispersion.

4.4 Parameters extraction for trapezoidal wave

The trapezoidal wave is widely used as a clock signal in the digital circuits. It often acts as an interference

source because of its rich harmonics, which may influence the normal operation of other components. As

a result, identifying the trapezoidal wave and extracting its parameters from its emission spectrum are

an important work to find the electromagnetic interference (EMI) [47]. In addition, the stability of the

parameter extraction method has a great influence on the accurate positioning of EMI [28].

In general, the trapezoidal wave is a periodic signal wave which consists of two triangle waves and one

ideal rectangular wave, as shown in Figure 13. There are 6 parameters that need to be used to describe

a trapezoidal wave: ω0, T , E, D1, D2, D3. The parameters denote fundamental angular frequency,

time cycle, amplitude, rise time proportion, duty cycle proportion, and fall time proportion, respectively.
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Figure 13 Trapezoidal wave in time domain. Figure 14 Spectrum from 10 MHz to 200 MHz of the

trapezoidal wave.

Among the 6 parameters, fundamental angular frequency ω0 and time cycle T can be accurately obtained

through Lomb-Scargle method [48]. The work in the part is to extract the other three time-domain

parameters D1, D2, and D3 from the spectrum of the trapezoidal wave. It can be realized by contrasting

the harmonic amplitudes in the spectrum and the harmonic formula that are introduced below.

The positive frequency Fourier series expansion of the trapezoidal wave can be expressed as

y(t) = a0 +
∞
∑

n=1

|an| cos (nω0t+ ∠an) , (31)

where |an| is the amplitude of each harmonic, shown as

an = −j
E

πn
e−

jnω0T(1.5D1+D2+0.5D3)
2

×

[

Sa

(

nω0TD1

2

)

e
jnω0T (0.5D1+D2+0.5D3)

2 −Sa

(

nω0TD3

2

)

e
jnω0T (0.5D1+D2+0.5D3)

2

]

.
(32)

The objective function to minimize is

fobjective = max
i=1:N

{

20 log10

(

abs

(

ai
a1

))

− (Ai −A1)

}

, (33)

where Ai is the measurement harmonic amplitude of the ith harmonic in dB form, A1 is the first measure-

ment harmonic amplitude in dB form, ai is calculated by (31), and N is the total number of sampling.

Optimization algorithms like AWDO [28] are applied to obtain the optimal value of D1, D2, and D3,

so as MEDO.

In order to compare the effectiveness and stability of different optimization algorithms to extract time

domain parameters, we use a signal generator to generate a trapezoidal wave. D1, D2, and D3 are set

to be 0.04, 0.36, and 0.05, respectively, which are the theoretical values of the optimization results. The

spectrum data obtained from the spectrum analyzer is shown in Figure 14. Thirteen sample points from

1st to 13th harmonic are selected to extract the time-domain parameters.

In MEDO, the population size is 57, and the max iteration number is 300. B0, ρSbar, |g|, R1, L2 are

valued at 1.001, 300, 0.0033, 950, 5E + 7, respectively.

To compare the stability of different optimization methods, the simulations with the MEDO and

AWDO are repeated 100 times. Table 11 shows the extraction results with the minimum error and the

variance of the results for MEDO and AWDO. Figure 15 displays the minimal error of the extraction

results for every time.

From Table 11 and Figure 15, we can conclude that MEDO can obtain an optimization result with

a comparable accuracy with AWDO, but more stable. Therefore, MEDO is a considerable optimization

which can provide a robust result in parameters extraction.
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Table 11 Comparison of the parameters extraction results obtained by MEDO and AWDO

Item Preset value (%)
AWDO MEDO

Best Variance Best Variance

D1 4.00 3.94 1.03E − 2 3.94 3.98E − 3

D2 36.0 36.1 1.09E − 2 36.1 3.96E − 3

D3 5.00 4.95 1.09E − 2 4.96 5.20E − 3
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Figure 15 (Color online) Extraction results of D1, D2, and D3 obtained by different optimization algorithms in 100

times.

5 Conclusion

In this paper, a novel global optimization, named MEDO, is proposed. The core idea of MEDO is

that constructing an optimization algorithm from the electromagnetic theory may efficiently solve the

electromganetic problems, which is presented for the first time. The algorithm transforms the relationship

between the variables and the objective function into the positional relationship between two conductors

in the parallel circuit. We derived its iterative formula through analyzing the current on the circuit using

the Maxwell’s equations. Several typical benchmark functions are used to test the accuracy and robustness

of MEDO. The results show that MEDO is a stable algorithm and can attain accurate results for both

unimodal and multimodal functions. In addition, MEDO is applied to four practical electromagnetic

optimization problems, some of which are high dimensional, some have no analytical expressions, some

are multimodal, and some require high stability. These examples demonstrate that MEDO is a potential

optimization algorithm, and can provide a competitive choice to solve the troublesome optimization

problems in electromagnetics. MEDO has also some aspects that need to be improved, admittedly, such

as the high time complexity. The work to reduce the time complexity of the proposed MEDO method is

in progress, and the related results will be analysed and explained in our future work.
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