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Dear editor,
Adaptive filtering algorithms have been widely
applied in system identification, channel equal-
ization, and echo cancellation over the past
decades [1–3]. Generally, adaptive filtering algo-
rithms can be generalized by the least mean square
(LMS)-based algorithms. According to the shape
of the error nonlinearities in the weight update,
the LMS-based algorithms are therefore divided
into the V-shaped, Λ-shaped, and M-shaped al-
gorithms [4]. However, none of these three types
of algorithms can significantly improve filtering
performance for both Gaussian and non-Gaussian
noises simultaneously.

To this end, we present a novel robust variable
normalization least mean p-power (VNLMP) al-
gorithm using the variable normalization related
to the norm of the input and the power of the
error for the least mean p-power (LMP) algo-
rithm [5], which can adaptively change between
the V-shaped and M-shaped algorithms. Actually,
VNLMP uses high-order and low-order moment in-
formation of the estimation error simultaneously
thanks to its variable normalization, thus leading
to the filtering performance improvement in both
Gaussian and non-Gaussian noises.

Problem formulation. For the adaptive filter-
ing, we consider the following system identification
model [1, 3]:

d(i) = w
T
o u(i) + v(i), (1)

where d(i) is the desired response; wo =

[wo,1, wo,2, . . . , wo,N ]
T

is the unknown optimal
weight vector in the finite impulse response (FIR)
system of length N with (·)T being the transpose;
u(i) = [ui, ui−1, . . . , ui−N+1]

T is the input vector
at discrete time i; v(i) is the disturbance noise.
According to (1), the estimation error is therefore
defined by

e(i) = d(i)−w
T(i)u(i), (2)

where w(i) = [wi,1, wi,2, . . . , wi,N ]T is the weight
vector of the adaptive filter.

The weight update in the LMS-based algo-
rithm [4] with error nonlinearity is generalized by

w(i+ 1) = w(i) + µf(e(i))e(i)u(i), (3)

where µ > 0 is the step-size and f(e(i)) is a non-
linear even function of e(i).

According to the shape of f(e(i)), the existing
LMS-based algorithms can be generalized by the
V-shaped, Λ-shaped, and M-shaped algorithms [4].
Because the V-shaped algorithms cannot combat
impulsive noise, and the Λ-shaped and M-shaped
algorithms generate slow convergence rate in the
absence of impulsive noise, all these three types
of algorithms cannot significantly improve filtering
performance for both Gaussian and non-Gaussian
noises simultaneously. Thus, we propose a novel
VNLMP algorithm to address these issues in the
following.
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Proposed algorithm. Inspired by the LMS-based
algorithm of which the shape of the error nonlin-
earity is related to the power of the estimation
error, we design a novel variable normalization for
adaptive change of the shape of the error nonlin-
earity in LMP [5] to combat both Gaussian and
non-Gaussian noises efficiently. First, the normal-
ized term of LMP [5] in the weight update is con-
sidered using the product of the qth moment of
the norm of the input and the (p − q)th moment
of the error, i.e.,

w(i+ 1) = w(i) + µ
|e(i)|

p−1
sign[e(i)]

α+ ‖u(i)‖
q
|e(i)|

p−q
u(i),

(4)

where p > 0, µ > 0 is the step-size, and α is a
small positive constant. It has been proved that
the error nonlinear function is optimal regarding
the steady-state mean square error when the or-
der of the error in the denominator of the weight
update is one order larger than that of the numer-
ator [6]. Therefore, q ∈ [0, 2] is chosen to ensure
the stability and filtering accuracy of (4), which is
also explained in [7,8]. According to (3), the error
nonlinear function of (4) is rewritten as

f(e(i)) =
|e(i)|

p−2

α+ ‖u(i)‖
q
|e(i)|

p−q
. (5)

The input signal is assumed to be a stationary
sequence of independent zero-mean Gaussian ran-
dom variable with a finite variance σ2

u and dimen-
sion N . By setting σ2

u = 0.01, N = 32, p = 4, and
α = 1, we plot the error surface of (5) in Figure 1,
where u(i) is obtained as an average over 100 in-
dependent runs. As can be seen from Figure 1,
Eq. (4) is a V-shaped algorithm when q = 2 and
an M-shaped algorithm otherwise.

Figure 1 (Color online) Surface of the error nonlinear
function (5).

It is worth mentioning that Eq. (4) with a
fixed q can only be used in a specific noise en-

vironment. Thus, a variable order of error in (4)
is used to combine the characteristics of both V-
shaped and M-shaped algorithms. Generally, dif-
ferent noises require different shapes of error non-
linear functions. For example, the V-shaped algo-
rithms used in the presence of Gaussian and sub-
Gaussian noises cannot combat impulsive noise,
and the M-shaped algorithms used in the presence
of impulsive noise cannot improve filtering accu-
racy for Gaussian and sub-Gaussian noises. There-
fore, q ∈ [0, 2] in (4) is required for different noises.

In Figure 1, a large error requires a small q

for guaranteeing the convergence of the algorithm,
and a small error requires a large q to improve the
steady-state performance. Thus, to obtain vari-
able q(i), we need to design a monotone decreasing
function with respect to e(i) with upper and lower
bounds of 2 and 0, respectively. Motivated by the
“S” shape function of sigmoid function [9], we de-
fine a sigmoid function as follows:

sgm [e(i)] =
1

1 + exp (−β|e(i)|
p
)
, (6)

where parameter p > 0 is the same as that in (4),
and β > 0 is the steepness parameter which con-
trols the steepness of the sigmoid function curve.

The sigmoid function (6) is a symmetric func-
tion regarding the origin and has the maximum
of 1 and only a global minimum of sgm[0] = 0.5.
Thus, using the sigmoid function (6), we propose
the variable method for q(i) as follows:

q(i) = 4 (1− sgm [e(i)])

= 4−
4

1 + exp (−β|e(i)|
p
)
∈ [0, 2]. (7)

In (7), a larger β results in a steeper sigmoid
curve, which can be used in impulsive noise, while
Eq. (4) requires a smaller q to combat such noise.
On the contrary, a smaller β can be used in non-
impulsive noise to smooth the steady-state perfor-
mance. In addition, q(i) with a larger p has a
steeper curve at moderate errors and a smoother
curve at smaller errors. Otherwise, q(i) has a con-
trary curve. Therefore, q(i) with different p can
be applied in different noise environments.

Finally, replacing q in (4) with q(i) in (7) gives
the proposed novel robust VNLMP algorithm, i.e.,

w(i + 1) = w(i) + µ
|e(i)|p−1sign[e(i)]

α+ ‖u(i)‖
q(i)

|e(i)|
p−q(i)

u(i).

(8)

Remark 1. According to (7) used in the nor-
malization, VNLMP can automatically switch be-
tween the V-shaped and M-shaped algorithms.
When e(i) is very large, i.e., a large |e(i)|, we have
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that q(i) → 0 from (7) and VNLMP in (8) can
be viewed as an M-shaped algorithm. This means
that VNLMP can combat various outliers includ-
ing impulsive noise efficiently. When e(i) is very
small, i.e., |e(i)| → 0, q(i) → 2 is obtained from
(7) and VNLMP reduces to a V-shaped algorithm.
Therefore, VNLMP can improve the steady-state
performance in the presence of both Gaussian and
non-Gaussian noises simultaneously.

Remark 2. In the absence of impulsive noise,
the error shown in (7) is usually small, and thus
a small q(i) is required in (8) to improve the con-
vergence performance. Note that q(i) with p = 2
has a smooth curve when the error is not large
enough, which leads to the desirable performance.
Thus, in the non-impulsive noise environments, we
reasonably choose p = 2 in (7).

Remark 3. In the VNLMP algorithm shown in
(8), there exist four parameters, i.e., error power
p, positive constant α, steepness parameter β, and
step-size µ. We generally choose p as a positive in-
teger for different applications [4, 7]. As α is used
to avoid the normalization of VNLMP being 0, we
can set it as a small positive number. According
to Figure 1, we see that β can affect the switch-
ing rate of VNLMP between the V-shaped and M-
shaped algorithms. Specifically, a lager β leads
to a more probable M-shaped algorithm, while
a smaller β leads to a more probable V-shaped
algorithm. Therefore, steepness parameter β to-
gether with step-size µ can achieve a trade-off be-
tween the transient and steady-state filtering per-
formance in different noise environments. Because
the V-shaped algorithm can smooth a small error
and the M-shaped algorithm can combat a large
error, a relatively small β is set for non-impulsive
noise and a relatively large β for impulsive noise
generally.

In Appendix A, the steady-state performance
of VNLMP in terms of excess mean-square error
(EMSE) and mean square deviation (MSD) is de-
rived with a white Gaussian reference for theoret-
ical analysis. In Appendix B, simulations in the
context of system identification confirm the the-
oretical results and illustrate the superiorities of
VNLMP over other typical algorithms for both
Gaussian and non-Gaussian noises.

Conclusion. VNLMP is presented using the
variable product of the norm of the input and
the power of the estimation error as the nor-
malization. VNLMP can adaptively switch be-
tween the V-shaped and M-shaped algorithms,

and thus utilize the higher-order and lower-order
information of the estimation error simultane-
ously. Therefore, VNLMP implements filtering
performance improvement for Gaussian and non-
Gaussian noises simultaneously. The analytical re-
sults for theoretical analysis of VNLMP are sup-
ported by simulations. Simulation results in the
context of system identification show that VNLMP
outperforms the normalized least mean square
(NLMS) algorithm and the normalized least mean
2Lth (NLM2L) algorithm for Gaussian noise. For
non-Gaussian noise, VNLMP has comparable per-
formance to NLM2L for uniform noise, and outper-
forms the generalized maximum correntropy crite-
rion (GMCC) algorithm for impulsive noise.
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