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Dear editor,
Pseudorandom sequences play an important role in
cryptography. In particular in symmetric cryptog-
raphy they serve as the secret key. So the designs
of pseudorandom sequences and cryptographic in-
dicators are the critical research directions. The
cryptographic indicators of sequences mainly in-
clude: balance, correlation, linear complexity, k-
error linear complexity, and so on [1]. In this
study, we compute the k-error linear complexity
of 2p2-periodic binary sequences, so the concepts
of linear complexity and k-error linear complexity
of sequences are introduced.

Let F2 = {0, 1} be the binary field. For an N -
periodic sequence s = (s0, s1, . . .) over F2, the lin-
ear complexity, denoted by LC (s), is the length
of shortest linear feedback shift register (LFSR)
that generates the sequence, i.e., the smallest pos-
itive integer L such that su+L = cL−1su+L−1 +
· · ·+ c1su+1+ c0su for u > 0 and constants c0 6= 0,
c1, . . . , cL−1 ∈ F2. Let s be a binary sequence with
the first period sN = (s0, s1, . . . , sN−1). The gen-
erating polynomial of sN is defined as sN (x) =
s0 + s1x+ · · ·+ sN−1x

N−1. Then the linear com-
plexity over F2 of s can be computed as

LC (s) = N − deg
(

gcd
(

xN − 1, sN (x)
))

, (1)

which is the degree of the minimal polynomial,
xN−1

gcd(xN−1,sN (x)) , of the sequence, see [2] for details.

For integers k > 0, the k-error linear complex-
ity over F2 of s, denoted by LCk (s), is the least

linear complexity over F2 that can be obtained by
changing at most k terms of the sequence per pe-
riod, i.e.,

LCk (s) = min
wt(e)6k

LC (s+ e) , (2)

where e is the error sequence with period N and
wt (e) equals the number of nonzero terms of e per
period, i.e., the weight of e. See [3] for details.

In this study, we always suppose N = 2p2. Now
we arrange the first period of the N -periodic bi-
nary sequence into matrix forms, and then discuss
the k-error linear complexity of s by examining
the column weight of the matrices, involving three
matrix forms.

The first matrix form is a matrix of size p× 2p,
defined as

Ms =













s0 . . . sp . . . s2p−1

s2p . . . s3p . . . s4p−1

...
...

...
...

...

s2(p−1)p . . . s(2p−1)p . . . s2p2−1













, [M0,M1, . . . ,M2p−1] ,

where

Mi =













si

si+2p

...

si+2(p−1)p













is the (i+ 1) th column of Ms for 0 6 i < 2p.
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The second is a matrix of size 2p× p, defined as

As=

























s0 s1 . . . sp−1

sp sp+1 . . . s2p−1

...
...

...
...

sp2 sp2+1 . . . sp2+p−1

...
...

...
...

s(2p−1)p s(2p−1)p+1 . . . s2p2−1

























,

[

A
(1)

A(2)

]

,

where A(1) and A(2) are both matrices of size
p × p, and A(1) , [A

(1)
0 ,A

(1)
1 , . . . ,A

(1)
p−1], A(2) ,

[A
(2)
0 ,A

(2)
1 , . . . ,A

(2)
p−1],

A
(1)
i =













si

si+p

...

si+(p−1)p













and A
(2)
i =













si+p2

si+(p+1)p

...

si+(2p−1)p













are the (i+ 1) th column of A(1) and A(2) for
0 6 i < p, respectively.

The third is a matrix of size p× p, defined as

A
(3) = A

(1) + A
(2) ,

[

A
(3)
0 ,A

(3)
1 , . . . ,A

(3)
p−1

]

,

where A
(3)
i is the (i+ 1)th column of A(3), and

A
(3)
i = A

(1)
i + A

(2)
i for 0 6 i < p.

Lower bounds on linear complexity. Let
ordm (2) denote the order of 2 modulo m, i.e.,
ordm (2) is the least positive integer such that
2ordm(2) ≡ 1 (mod m).

Lemma 1. Let ordp (2) = λ with 1 < λ < p.
If 2p−1 6≡ 1(mod p2), then ordp2 (2) = λp. See
Appendix A.1 for the proof.

Theorem 1. If 2p−1 6≡ 1(mod p2), then the lin-
ear complexity of s satisfies LC (s) > λp, where
1 < λ < p is the order of 2 modulo p. See Ap-
pendix A.2 for the details of the proof.

The theorem can be generalized to arbitrary
binary sequences of period 2pr for r > 1, then
LC (s) > λpr−1.

Lemma 2. For the binary sequences with least
period N = 2p2, (xp2

− 1) ∤ sN (x). See Ap-
pendix A.3 for the proof.

Theorem 2. Let s be a binary sequence with
the least period N = 2p2. If 2 is a primitive root
modulo p2, then the linear complexity of s satisfies
one of the following two cases.

(i) p2 − p < LC (s) 6 p2 + p. In this case,
there are five values of the linear complexity, which
can be written as LC (s) = p2 − p + a where
a ∈ {2, 2p− 2, p+ 1, 2p− 1, 2p}.

(ii) LC (s) > 2(p2 − p). In this case, there
are nine values of the linear complexity, which
can be written as LC(s) = 2(p2 − p) + b where
b ∈ {0, 1, 2, p− 1, 2p− 2, p, p+ 1, 2p− 1, 2p}.

See Appendix A.4 for the details of the proof.

k-error linear complexity. We first discuss the k-
error linear complexity of s when p2−p < LC(s) 6
p2 + p.

Lemma 3. If p2 − p < LC (s) 6 p2 + p, then for
0 6 i < p,

(i) wt (Mi) = wt (Mi+p);

(ii) wt (Mi)+wt (Mi+p) = p, and there must ex-
ist 0 6 i0 < p such that wt (Mi0)+wt (Mi0+p) = p.

See Appendix B.1 for the proof.

Theorem 3. Let s be a binary sequence
with the least period N = 2p2 and µ1 =
2
∑

06i<p min {wt (Mi) , p− wt (Mi)}. If 2 is a

primitive root modulo p2 and LC (s) = 2p2 − 2p,
then

LCk (s) =

{

p2 − p+ 2, if 0 6 k < µ1,

6 2p, if k > µ1.

The other cases and proofs in Theorem 3 are
presented in Appendix B.2.

Then we discuss the k-error linear complexity of
s when LC (s) > 2(p2 − p).

Theorem 4. Let s be a binary sequence with
the least period N = 2p2. If 2 is a primitive root
modulo p2 and LC(s) = 2p2−2p, then the possible
values of k-error linear complexity include 2p2−2p,
p2 + p, p2 + p− 2, p2 − p+2, p2 − p and some val-
ues 6 2p, which correspond to some parameters
µi. These parameters µi are related to the column
weight of the corresponding matrices. The final
values of k-error linear complexity are determined
according to the ascending order of parameters µi.
The determination of k-error linear complexity is
similar when the linear complexity of s is other
values.

The detailed content and proof of Theorem 4
are presented in Appendix B.3.

Comparison of the methods. For calculating the
k-error linear complexity of 2p2-periodic binary se-
quences, the available methods are based on the
algorithms in [4, 5] introducing different cost vec-
tors, which are iterative algorithms. The difficulty
of these algorithms is to calculate and update the
values of cost vectors in each iteration. These al-
gorithms can only compute one value of k once.
To obtain all the k-error linear complexity, the al-
gorithms should be executed repeatedly.

With the matrix method proposed in this study,
we can quickly arrange the sequences into three



Niu Z H, et al. Sci China Inf Sci September 2020 Vol. 63 199101:3

matrix forms. Once the values of relevant parame-
ters µi and their ascending order are obtained, all
the final values of k-error linear complexity and
the corresponding range of k can be determined
directly according to the relevant conclusion. The
whole process does not require repeat.

Application and numerical evidence. We use the
method introduced by Ding and Helleseth [6] to
construct a class of generalized cyclotomic binary
sequences with least period 2p2, and obtain some
conclusion about the k-error linear complexity of
the sequences by the matrix method.

See Appendix C.1 for the detailed definition of
the sequences.

Lemma 4. Let sN be the first period (N = 2p2)
of the generalized cyclotomic binary sequence. If
sN is arranged into the 2p × p matrix form As ,

[A
(1)

A(2) ], then A(1) and A(2) are complementary, i.e.,
sn + sn+p2 = 1, for all 0 6 n < p2. See Ap-
pendix C.2 for the proof.

Theorem 5. Let s be the generalized cyclotomic
binary sequence with period N = 2p2 mentioned
above, then LC (s) = p2+1, and if k = p− 1, then
LCk (s) 6 2p. See Appendix C.3 for the details of
the proof.

We give an example of generalized cyclotomic
binary sequences (applying Theorem 3) in Ap-
pendix C.4.1 and found that such sequences are
not “good” pseudorandom sequences. In recent
years, the pseudorandom sequences derived from
Fermat quotients have attracted extensive atten-
tion [7–9], these sequences are of high linear com-
plexity, and the problem of their k-error linear
complexity deserves further study. We also give
another numerical example (applying Theorem 4)
in Appendix C.4.2.

Conclusion. In this study, we propose the ma-
trix method to calculate the k-error linear com-
plexity of binary sequences with the least period
2p2. We first analyze the lower bounds on linear
complexity and conclude that there are two cases,
p2 − p < LC (s) 6 p2 + p and LC (s) > 2

(

p2 − p
)

.
Then according to these two cases, we discuss
the k-error linear complexity by arranging the se-
quences into three matrix forms and calculating
the column weight. If the linear complexity of a
sequence is obtained, then all the values of k-error
linear complexity and the corresponding range of
k can be obtained directly by using this matrix
method. Finally, we apply the matrix method to
a class of generalized cyclotomic binary sequences

with period 2p2 defined by Ding and Helleseth.
The results show that the stability on linear com-
plexity of the sequences is poor, and their linear
complexity will decrease from p2 + 1 to less than
2p by changing k = p− 1 terms.
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