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Abstract This study proposes a learning impedance controller comprising a proportional feedback control

term, a composite-learning-based uncertainty estimation term, and a robot-environment interaction control

term. The impedance control problem is converted into a particular reference-trajectory tracking problem

based on a generated reference trajectory. The proposed controller ensures the exponential convergence of

the auxiliary tracking error and the uncertainty estimation error. The interaction control term improves the

transient control performance through suppression/encouragement of the incorrect/correct robot movements.

The composite-learning update law enhances the transient and steady-state control performances based on

the exponential convergence of the uncertainty estimation error and auxiliary tracking error. Finally, the

effectiveness and advantages of the proposed impedance controller are validated by theoretical analysis and

simulations on a parallel robot.
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1 Introduction

Compliant robot behaviour is required when a robot comes in contact with its environment. However, such

behavior cannot be ensured using position control strategies [1–4]. Impedance control of robots, originally

proposed by Hogan in the late 1980s, is one of the most powerful compliance control methods [5–8] and has

been applied in robot-assisted rehabilitation [9, 10], robot-assisted walking [11], robot-assisted assembly,

and human-robot collaboration [12].

An impedance controller aims to obtain the desired spring-damping dynamics between the desired-

trajectory tracking error and the robot-environment interaction force. Over the past decades, numerous

impedance control laws have been designed for robots in case of robot-environment interaction [13].

However, some existing impedance controllers fail to guarantee the convergence of impedance errors

to zero or its small neighborhoods [14–18]. This failure has been observed to affect the stability and

reliability of the impedance controllers [14–18]. Uncertainties and disturbances in robot modeling are

among the most important factors that affect impedance control performances. Thus, designing robust

impedance controllers to improve impedance control performances continues to be a significant research

topic.

Sliding-mode impedance control is one possible approach for improving the impedance control perfor-

mance [19,20]. In spirit of robust passivity-based control, the desired impedance dynamics can be achieved
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by reaching a sliding surface constructed by the switching function and its time derivative [19,20]. In [19],

a sliding-mode impedance controller was proposed with the switching function reaching zero in finite time.

After this finite time, the switching function remains constant at zero, and the desired sliding surface can

be theoretically achieved. However, chattering severely affects the impedance control performance and

achievement of the desired impedance dynamics. In [20], a dead-zone strategy was applied to alleviate

chattering problem in a sliding-mode impedance controller. However, this strategy may not effectively

decrease chattering and may lead to difficulties in arriving at the desired sliding surface, which will affect

the impedance control performances.

In the previous few decades, iterative-learning-based and adaptive impedance controllers have been pro-

posed for improving the impedance control performance under the assumption that the desired impedance

dynamics can be factorized in real number field [21–25]. However, these impedance controllers suffer from

following deficiencies: (1) The assumption of factorizability with respect to the desired impedance dynam-

ics in real number field severely limits the controller applications. (2) Iterative learning controllers may be

fit only for robots in repeated actions, limiting the applications of the iterative learning impedance con-

trollers [21–23]. (3) The adaptive impedance controllers proposed in previous studies [24,25] can be used

to obtain the boundedness of impedance errors; however, they cannot ensure good transient impedance

control performance and cannot achieve convergence of impedance errors to zero. The recently proposed

composite learning impedance controller (CLIC) [26] has ensured the convergence of the impedance er-

ror to zero and improved the impedance control performance; however, the factorizability of the desired

impedance dynamics in real number field is still required. Based on a constructed impedance trajectory,

an adaptive fuzzy neural impedance controller was designed for robots in a previous study [27] without

the factorizability assumption; however, this controller still suffers from the third deficiency mentioned

above.

In almost all the impedance controllers [13–27], robot-environment interaction forces are completely

compensated; this compensation leads to control conservativeness. Further, interaction forces can be

used to enhance the transient impedance control performance. If the robot-environment interaction

forces can boost the convergence of impedance errors, robot movements can be considered as correct

and should be encouraged. Otherwise, the robot movements will be considered incorrect and requiring

suppression. A previous study [28] proposed multi-model control for robotic exoskeletons driven by

series elastic actuators. The proposal used an interaction control term to improve the transient control

performance by rejecting/encouraging incorrect/correct movements. However, the implementation of

the interaction control term requires estimation of the high-order derivatives of joint positions, which

introduces difficulties in terms of control implementation.

Based on the generated reference trajectory, we propose a CLIC comprising a proportional feedback

control term, a composite-learning-based uncertainty estimation term, and an interaction control term.

When compared with the existing impedance controllers, the contributions and innovation of this study

can be given as follows:

(1) The proposed CLIC enhances the transient and steady-state impedance control performances

through exponential convergence of the generated-reference trajectory tracking error and the uncertainty

estimation error.

(2) The robot-environment interaction control term improves the transient impedance control perfor-

mance through suppression/encouragement of incorrect/correct robot movements without estimating the

high-order derivatives of angle positions.

(3) The factorizability of the desired impedance dynamics in real number field is not required in the

impedance control design.

2 Problem formulation

Consider a robot with the following Euler-Lagrangian dynamics:

M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) = u+ τe, (1)
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where q ∈ R
n, q̇ ∈ R

n and q̈ ∈ R
n denote the joint angular position, the joint angular velocity, and

the joint angular acceleration, respectively; M(q) ∈ R
n×n denotes the inertia matrix of the rigid body;

C(q, q̇) ∈ R
n×n denotes the Coriolis and centripetal matrix; G(q) ∈ R

n denotes the gravitational torque;

F (q̇) ∈ R
n denotes the friction force; u(t) ∈ R

n is the control input; and τe ∈ R
n denotes the interaction

force in the joint space.

The robot dynamics described by (1) exhibits the following properties.

Property 1. M(q) is a positive definite matrix; i.e., there exist positive constants σ1 and σ2, such that

σ1I 6 M(q) 6 σ2I with I being the n× n-sized identity matrix.

Property 2. The system uncertainties can be linearly expressed as

M(q)φ1 + C(q, q̇)φ2 +G(q) + F (q̇) = Y (φ1, φ2, q, q̇)θ, (2)

where φ1 and φ2 are the auxiliary vectors, Y (φ1, φ2, q, q̇) ∈ R
n×nq is a known regression matrix, and

θ ∈ R
nq is an unknown constant vector.

Property 3. The matrix Ṁ(q)− 2C(q, q̇) is skew-symmetric.

Further, we present the following robot dynamics assumption and definitions of persistent excitation

(PE) and interval excitation (IE) to facilitate impedance control design.

Assumption 1. The desired trajectory qd and its time derivatives q̇d and q̈d are bounded.

Definition 1. A bounded signal W (t) ∈ R
n×nq is of IE over t ∈ [Te − τd, Te] with τd > 0 and Te > τd

if and only if there exists ρ > 0 such that
∫ Te

Te−τd
W (σ)TW (σ)dσ > ρI.

Definition 2 ([29]). A bounded signal W (t) ∈ R
n×nq is of PE if and only if there exist ρ > 0 and

τd > 0 such that
∫ t

t−τd
W (σ)TW (σ)dσ > ρI for all t > 0.

The study aims to design a composite learning controller to obtain the following spring-damping

dynamics:

− τe = Md(q̈d − q̈) +Bd(q̇d − q̇) +Kd(qd − q), (3)

which is equivalent to

q̈ +M−1
d Bdq̇ +M−1

d Kdq = q̈d +M−1
d Bdq̇d +M−1

d Kdqd +M−1
d τe, (4)

where Md, Bd, and Kd are the desired inertia matrix, the desired damping matrix, and the desired

stiffness matrix, respectively, which are diagonal and positive definite.

3 Impedance control design

Define the impedance error e as

e = Md(q̈d − q̈) +Bd(q̇d − q̇) +Kd(qd − q) + τe. (5)

It is obvious that the desired impedance dynamics in (3) can be accurately achieved if and only if the

impedance error e converges to zero as t → ∞.

Let the reference trajectory qr for the robot be generated by

(s2I +M−1
d Bds+M−1

d Kd)qr = q̈d +M−1
d Bdq̇d +M−1

d Kdqd +M−1
d τe, (6)

where s is a differential operator. Based on (4)–(6), the impedance error e can be presented as

e =Md(q̈r − q̈) +Bd(q̇r − q̇) +Kd(qr − q) = Mdë1 +Bdė1 +Kde1, (7)

where e1 = qr − q is the reference-trajectory tracking error.

If e1 → 0, ė1 → 0, and ë1 → 0 as t → ∞, then, from (7), we can observe that the impedance error e

converges to zero as t → ∞, and the desired impedance dynamics can be achieved. In the following of

this section, we design a CLIC, such that e1 → 0, ė1 → 0, and ë1 → 0 can be given as t → ∞.
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Remark 1. If the impedance error e converges to zero or its small neighborhoods, impedance control

stability can be obtained and the desired impedance dynamics can be achieved accurately or with a small

error. Otherwise, the desired impedance dynamics cannot be obtained.

Remark 2. The convergence of a signal to zero cannot ensure the convergence of the time derivative

of the signal to zero. For example, the function 10e−t sin(et) converges to zero as t → +∞; but its time

derivative −10e−t sin(et) + 10 cos(et) will not converge to zero as t → +∞. Thus, the convergence of e1
alone or even of both e1, ė1 cannot ensure the convergence of ë1 and the convergence of the impedance

error e.

Remark 3. The dynamics in (6) can be expressed as

[

q̇r

q̈r

]

= A

[

qr

q̇r

]

+

[

0

ξ

]

, (8)

with ξ = q̈d +M−1
d Bdq̇d +M−1

d Kdqd +M−1
d τe and

A =

[

0 I

−M−1
d Kd −M−1

d Bd

]

. (9)

Because Md, Bd, and Kd are diagonal and positive definite matrices, matrix A is Hurwitz. Based on the

boundedness of τe, qd, q̇d, and q̈d, we can conclude that qr, q̇r, and q̈r are bounded and that the generated

reference qr is reasonable.

Remark 4. In traditional robot tracking problems [1–4], only the convergence of the tracking error

e1 has to be obtained. Based on the generated reference trajectory qr, the impedance control problem

is converted into a particular tracking problem, whose particularity lies in requiring the achievement of

convergence of not only e1 but also ė1 and ë1. It quickly becomes clear that the reference-trajectory

tracking problem is considerably difficult than the traditional tracking problem.

Define the error e2 as

e2 = ė1 + k1e1. (10)

If e2 and ė2 converge to zero as t → ∞, then e1 → 0, ė1 → 0, and ë1 → 0 as t → ∞; therefore the

impedance error e will converge to zero. Based on (1) and (10), we obtain

M(q)ė2 = − C(q, q̇)e2 +M(q)(q̈d + k1ė1) + C(q, q̇)(q̇ + e2) +G(q) + F (q)− u− τe

= − C(q, q̇)e2 + Y (q̈d + k1ė1, q̇ + e2, q, q̇)θ − u− τe. (11)

It is convenient to design the impedance controller u as

u = −k2e2 − β(e2, τe) + M̂(q̈d + k1ė1) + Ĉ(q̇ + e2) + Ĝ+ F̂

= k2e2 + Y (q̈d + k1ė1, q̇ + e2, q, q̇)θ̂ − β(e2, τe), (12)

where k2 is the positive control gain; M̂, Ĉ, Ĝ, and F̂ are the estimators of M(q), C(q, q̇), G(q), and F (q̇),

respectively; θ̂ is the estimator of θ; and β(r, τe) is designed to suppress/encourage incorrect/correct robot

movements and can be defined as

β(e2, τe) =











[

1 + tanh

(

eT2 τe
−ǫ

)]

τe, if −eT2 τe 6 0,

τe, else,

(13)

with ǫ being a small positive constant.

Substituting (12) into (11) yields

M(q)ė2 =− C(q, q̇)e2 − k2e2 + β(e2, τe)− τe + Y (q̈d + k1ė1, q̇ + e2, q, q̇)θ̃, (14)

where θ̃ = θ − θ̂ is the parameter estimation error.
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Remark 5. If −eT2 τe > 0, the interaction force can decrease the convergence of e2, where the robot

movement is considered as incorrect. In such cases, β(e2, τe) = τe will be used to suppress the incorrect

movement. If −eT2 τe 6 −ǫ, the interaction force can boost the convergence of e2, where the robot

movement is considered as correct. In such cases, β(e2, τe) = 0 will be used to encourage the movement.

The zone −ǫ < −eT2 τe < 0 is treated as a transition stage to ensure the continuity of β(e2, τe).

The composite learning law is updated by error e2 and a model prediction error. To construct the

prediction error, we pass the dynamics described by (1) through the following low-pass filter:

Φ(s) =
α

s+ α
, (15)

with φ(t) = αe−αt being the impulse response of Φ(s). Further, convolving both sides of (1) by φ(t)

yields

φ(t) ∗ Y (q̈, q̇, q, q̇)θ = φ(t) ∗ (u(t) + τe(t)) , y(t). (16)

Define W (q, q̇) as

W (q, q̇) = φ(t) ∗ Y (q̈, q̇, q, q̇). (17)

Then, from (16) and (17), we obtain

W (q, q̇)θ = y(t). (18)

Assume W (q, q̇) is of IE over t ∈ [Te−τd, Te] as in Definition 1. Define the prediction error as ep = Qeθ̃,

where

Qe =

{

0, for t < Te,

Q(Te), for t > Te,
(19)

and

Q(t) =

∫ t

t−τd

W (q(τ), q̇(τ))TW (q(τ), q̇(τ))dτ. (20)

Subsequently, the composite learning update law of θ̂ can be obtained as

˙̂
θ = γ(Y T(q̈d + k1ė1, q̇ + e2, q, q̇)e2 + kpep), (21)

where γ denotes a positive learning rate and kp denotes a positive weight factor.

Theorem 1. Consider a robot with the dynamics described using (1) and that Assumption 1 is satisfied.

Let us design a CLIC as in (12) using the composite learning law presented in (21). Further, under the

IE condition, the errors e2 and θ̃ will converge to zero as t → ∞, and the desired impedance dynamics

can be achieved.

Proof. Consider the following Lyapunov function candidate:

V =
1

2
eT2 M(q)e2 +

1

2γ
θ̃Tθ̃. (22)

Taking the time derivative of V and substituting (14) into V̇ , we obtain

V̇ = eT2 M(q)ė2 +
1

2
eT2 Ṁ(q)e2 −

1

γ
θ̃T

˙̂
θ

= −k2e
T
2 e2 +

1

2
eT2 (Ṁ(q)− 2C(q, q̇))e2 − θ̃T(

˙̂
θ/γ − Y T(q̈d + k1ė1, q̇ + e2, q, q̇)e2) + eT2 (β(e2, τe)− τe).

(23)
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Because the matrix Ṁ(q)−2C(q, q̇) is skew symmetric, eT2 (Ṁ(q)−2C(q, q̇))e2 = 0. Based on the definition

of β(e2, τe) in (13), we obtain

eT2 (β(e2, τe)− τe) =























0, if −eT2 τe > 0,

−eT2 τe, if −eT2 τe < −ǫ,

tanh

(

eT2 τe
−ǫ

)

eT2 τe, else.

(24)

Thus, eT2 (β(e2, τe)− τe) 6 0. Then, using (23) and (24), we can obtain

V̇ 6− θ̃T(
˙̂
θ/γ − Y T(q̈d + k1ė1, q̇ + e2, q, q̇)e2)− k2e

T
2 e2. (25)

Substituting the composite learning law in (21) into (25) yields

V̇ 6− k2e
T
2 e2 − kpθ̃

Tep

6− k2e
T
2 e2 − kpθ̃

TQeθ̃. (26)

Based on the definition of Qe, we can observe that for t > 0,

V̇ (t) 6 −k2e
T
2 e2. (27)

Thus, V (t), θ̃, and e2 are bounded for t > 0. From the boundedness of qr, q̇r, qd, q̇d, and q̈d, we can

observe that q, q̇, and the right side of (14) are bounded. Thus, e2 is consistently continuous on t ∈ [0,∞).

By integrating both sides of (27) from t = 0 to ∞, we obtain

∫ ∞

0

eT2 e2dt 6
1

k2
[V (0)− V (∞)] 6 ∞. (28)

According to Babalat’s lemma, we can conclude that e2 converges to zero as t → ∞.

For t > Te,

V̇ 6 −k2e
T
2 e2 − kpθ̃

TQ(Te)θ̃

6 −k2e
T
2 e2 − kpρθ̃

Tθ̃

6 −α1V, (29)

where α1 = min{2k2/σ2, 2kpργ}, implying that V exponentially converges to zero if t > Te. Further, e2
and θ̃ will converge to zero as t → ∞.

From the convergence of e2 and the definition β(e2, τe) in (13), we obtain

lim
t→∞

[β(e2, τe)− τe] = 0. (30)

Then, based on (13) and the convergence of e2, θ̃, and β(e2, τe) − τe, we can observe that ė2 converges

to zero as t → ∞. From the definitions of e1 and e2 and ė2 = ë1 + k1ė1, we can conclude that q → qr,

q̇ → q̇r, and q̈ → q̈r as t → ∞ and that the desired impedance dynamics in (3) can be obtained.

Remark 6. By multiplying both the sides of (18) with W (θ, θ̇)T and integrating from t − τd to t, we

obtian

Q(t)θ =

∫ t

t−τd

W (q(σ), q̇(σ))Ty(σ)dσ. (31)

Then, Qeθ can be calculated, and the update law in (21) can be implemented.

Remark 7. When compared with the existing impedance controllers, the proposed learning impedance

controller improves the control stability and robustness through the convergence of the impedance error

e and ensures the suppression/encouragement of incorrect/correct robot movements. In the proposed

controller, the required IE condition for W (q, q̇) is much more easily to be satisfied than the PE condition,
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Figure 1 (Color online) Five-bar parallel structure of the considered robot.

which can be easily observed from the definitions of IE and PE and is illustrated in previous studies [29,30].

In the worst case, if the IE condition is never satisfied, then the proposed controller is reduced to a

composite adaptive impedance controller, which is also better than the conventional adaptive impedance

controllers because of the advantages of better identification effect and smaller tracking error associated

with composite adaptive control.

4 Simulation results

The considered robot operates on a five-bar parallel structure (see Figure 1), where link 2 is parallel to

link 4 and link 1 is parallel to link 3; further, there is a fifth link at the interaction point P . In the

parallel robot, only links 1 and 2 are actuated by the direct current (DC) motors, whereas the others are

passive. Thus, there are two degrees of freedom in the robot, identified as angles q1 and q2 in Figure 1.

The readers can refer to [31] for detailed description of the considered robot. The parallel mechanism

exhibits several advantages, such as simple joint design, high stiffness, and low inertia, when compared

with its serial counterparts.

The matrices and vectors of the Lagrangian model of the robot can be described as follows [31, 32]:

M(q) =

[

M11(q) M12(q)

M21(q) M22(q)

]

, G(q) = [0, 0]T, C(q, q̇) =

[

0 hq̇2

−hq̇1 0

]

,

F (q̇) = diag(kv1, kv2)q̇, τe = JT(q)fe, (32)

where

M11(q) = m1l
2
c1 +m3l

2
c3 +m4l

2
1 + I1 + I3, M12(q) = M21(q) = (m3l2lc3 +m4l

2
c4) cos(q2 − q1),

M22(q) = m2l
2
c2 +m3l

2
2 +m4l

2
c4 + I2 + I4, h = −(m3l2lc3 +m4l

2
c4) sin(q2 − q1). (33)

Here, l1, l2, l3, and l4 are the lengths of the joints links L1, L2, L3 and L4, respectively; lc1, lc2, lc3, and

lc4 are the distances between the joints and respective centers of mass; I1, I2, I3, and I4 are the inertial

moments of the links; m1, m2, m3, and m4 are the masses of the links; J(q) is the Jacobian matrix; and

fe is the interaction force at the end effector.

The elements of the regression matrix Y (φ1, φ2, q, q̇) and θ can be described as follows:

Y11 = φ11, Y12 = φ12 cos(q2 − q1) + q̇2φ22 sin(q1 − q2), Y13 = Y15 = 0, Y14 = q̇1,

Y22 = φ11 cos(q2 − q1) + q̇1φ21 sin(q2 − q1), Y23 = φ12, Y25 = q̇2, Y21 = Y24 = 0,

θ1 = m1l
2
c1 +m3l

2
c3 +m4l

2
1 + I1 + I3, θ2 = m3l2lc3 +m4l

2
c4,
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θ3 = m2l
2
c2 +m3l

2
2 +m4l

2
c4 + I2 + I4, θ4 = kv1, θ5 = kv2. (34)

In the simulation, the robot parameters are selected as l1 = 0.3 m, l2 = l4 = 0.6 m, l3 = 0.75 m, lc1 =

0.15 m, lc2 = lc4 = 0.3 m, lc3 = 0.375m, I1 = 0.15 kg ·m2, I2 = I4 = 0.3 kg ·m2, I3 = 0.45 kg ·m2, m1 =

0.75 kg, m2 = m4 = 1.5 kg, m3 = 2.25 kg, kv1 = 0.6 N ·m · s, kv2 = 0.6 N ·m · s. Then, θ1 = 1.0683, θ2 =

0.6413, θ3 = 1.68, θ4 = θ5 = 0.6. Then, the following results hold:

φ(t) ∗ q̈1 = φ̇(t) ∗ q̇1, φ(t) ∗ q̈2 =φ̇(t) ∗ q̇2,

φ(t) ∗ [q̈2 cos(q2 − q1) + q̇22 sin(q1 − q2)] = φ(t) ∗

[

d

dt
(q̇2 cos(q2 − q1))− q̇1q̇2 sin(q2 − q1)

]

= φ̇(t) ∗ (q̇2 cos(q2 − q1))− φ(t) ∗ [q̇1q̇2 sin(q2 − q1)],

φ(t) ∗ [q̈1 cos(q2 − q1) + q̇21 sin(q2 − q1)] = φ(t) ∗

[

d

dt
(q̇1 cos(q2 − q1)) + q̇1q̇2 sin(q2 − q1)

]

= φ̇(t) ∗ (q̇1 cos(q2 − q1)) + φ(t) ∗ [q̇1q̇2 sin(q2 − q1)]. (35)

Therefore, by convolving each element of the matrix Y (q̈, q̇, q, q̇) with φ(t) = αe−αt, one can obtain the

filtered counterpart W (q, q̇) as follows:

W (q, q̇) =







αs

s+ α
q̇1

αs

s+ α
[q̇2 cos(q2 − q1)]−

α

s+ α
[q̇1q̇2 sin(q2 − q1)] 0

α

s+ α
q̇1 0

0
αs

s+ α
[q̇1 cos(q2 − q1)] +

α

s+ α
[q̇1q̇2 sin(q2 − q1)]

αs

s+ α
q̇2 0

α

s+ α
q̇2






. (36)

In the control implementation, the initial position and velocity of the manipulator are q(0) = [0, 0]T rad

and q̇(0) = [0, 0]T rad/s, respectively; τd in the IE is selected as τd = 4 s, α = 1. In the desired impedance

model, the desired trajectory qd = [qd1, qd2]
T can be generated as

qd1 = 0.2 + 0.5 cos(πt/5), qd2 = 0.2 + 0.5 sin(πt/5). (37)

During the manipulation, the interaction force fe = [fe1, fe2]
T is considered to be

fe1 = fe2 =



































5, 0 6 t 6 3,

5 + 2.5(t− 3), 3 6 t 6 5,

10, 5 6 t 6 10,

10 + 2(t− 10), 10 6 t 6 14,

18− 3(t− 14), 14 6 t 6 18.

(38)

The simulations are conducted in two cases with different impedance profiles to illustrate the control

effectiveness and show advantages of the proposed impedance controller (Figures 2–6). Case 1: Md =

I, Bd = 10I,Kd = 21I; Case 2: Md = I, Bd = 10I,Kd = 30I.

(1) Effectiveness of the proposed CLIC. In the aforementioned two cases, the control parameters for

the CLIC are selected as k1 = 1, k2 = 2, γ = 2, kp = 4, ǫ = 0.01. From Figures 2 and 5, the proposed

CLIC u = [u1, u2]
T ensures the convergence of the impedance error e = [e(1), e(2)]T to a very small

neighborhood of zero with a radius of less than 0.002. By comparing between Figures 2 and 3, and

between Figures 5 and 6, we can observe that the impedance errors in Figures 2 (Figure 5) converge

much faster than those in Figures 3 (Figure 6). This shows the advantages of the robot-environment

interaction control term β(e2, τe) in improving transient impedance control performances.

(2) Comparison with the adaptive impedance controllers in [24, 25]. In Case 1, the desired impedance

profiles satisfy the factorization in real number field s2I + M−1
d Bds + M−1

d Kd = s2I + 10Is + 21I =

(sI + 3I)(sI + 7I). Then, the adaptive impedance controllers in [24, 25] can be implemented, where the

control gain is selected as 2 and the learning rate of the update law is selected as 4. By comparing the
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Figure 2 (Color online) Simulation results of the pro-

posed CLIC in Case 1.

Figure 3 (Color online) The proposed CLIC results in

Case 1 without encouragement of the correct robot move-

ments.

control performances between Figures 2 and 4, one can observe that if the desired impedance dynamics

can be factorized in real number field, the the proposed CLIC exhibits better transient performance and

steady-state performances of impedance error than that exhibited by the adaptive impedance controllers

in [24, 25].

In Case 2, the desired impedance dynamics cannot be factorized in real space and the adaptive

impedance controllers in [24,25] cannot be implemented. Based on the proposed CLIC, the good perfor-

mance of impedance errors in Figure 5 shows the advantages of the proposed CLIC in general applications.

(3) Comparison with the sliding-mode impedance controllers. Based on the passivity-based control

theory [32], the sliding-mode impedance controllers were proposed in [19,20], where the switching function

can be constructed as r = [r1, r2]
T = q̇ − q̇d + z and z is generated as ż = Az +Kpz(q − qd) +Kvz(q̇ −

q̇d) +Kfz − τe and Kpz = 30I,Kvz = 0,Kfz = I. If the sliding mode {ṙ = 0, r = 0} is reached, then the

desired impedance dynamics in (3) can be achieved. The sliding-mode controller in [19] is presented as

u =M̂(q)ėeq + Ĉ(q, q̇)(q̇d − z) + F̂ (q̇)− 5r − τe − [δ1sgn(r1), δ2sgn(r2)]
T, (39)
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Figure 4 (Color online) Control results of the adaptive impedance controllers [24, 25] in Case 1.

where ėeq = q̈d − ż and eeq = q̇d − z, the values of estimators θ̂i in M̂(q), Ĉ(q, q̇), and F̂ (q̇) are chosen

to be θ̂1 = 0.6, θ̂2 = 0.8, θ̂3 = 1, θ̂4 = θ̂5 = 0.4, and δ = [δ1, δ2]
T satisfies δi > |δ̃i|, i = 1, 2 with

δ̃ = [M(q) − M̂ ]ėeq + [C(q, q̇) − Ĉ](q̇d − z) + [F (q̇) − F̂ ]. In theory, the controller in (39) ensures the

convergence of r to zero in finite time; subsequently, r ≡ 0 ensures that ṙ = 0. The sliding-mode

impedance controller in [20] is given by

u = Y (ėeq , eeq, q, q̇)(θ̂ + a)− 5r − τe, (40)

where a is a robust term defined as

a =











−1.08
Y Tr

||Y Tr||
, ||Y Tr|| 6= 0,

0, ||Y Tr|| = 0.

(41)

To alleviate chattering, the following dead-zone is chosen to replace a in (40):

a =











−1.08
Y Tr

||Y Tr||
, ||Y Tr|| 6= 0.01,

−1.08Y Tr/0.01, ||Y Tr|| 6 0.01.

(42)

The simulation results of the sliding-mode controllers in (39) and (42) are presented in Figures 7 and

8, respectively. From the two figures, we can see that chattering affects the stability and robustness

of sliding-mode controllers. Although the dead-zone implementation alleviates the chattering in [20],

chattering still exists in the simulation results. This shows the disadvantages of sliding-mode impedance

controllers.

Based on aforementioned analysis, the proposed CLIC using the composite learning law and the robot-

environment interaction control term improves the transient and steady-state impedance error perfor-

mances beyond those of the adaptive impedance controllers in [24, 25] and the sliding-mode impedance
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Figure 5 (Color online) The proposed CLIC results in

Case 2.

Figure 6 (Color online) The proposed CLIC results in

Case 2 without encouragement of the correct robot move-

ments.

controllers in [19,20]. The proposed CLIC shows its advantages in improving impedance control stability

and robustness.

5 Conclusion

An impedance controller aims to achieve desired impedance dynamics between the desired-trajectory

tracking error and the robot-environment interaction force. The desired impedance dynamics can be

achieved if and only if an impedance error converges to zero or its small neighborhoods. Although many

impedance controllers have been designed in the past few decades, uncertainty and disturbances in robot

modeling continue to severely affect the control stability and robustness.

To improve the impedance control stability and robustness, this study proposes a composite-learning

impedance controller for robots with a robot-environment interaction control term to encourage/suppress

correct/incorrect robot movements. Convergence of the impedance error is guaranteed by the convergence
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Figure 7 (Color online) Simulation results using the

sliding-mode impedance controller in (39) in Case 2.

Figure 8 (Color online) Simulation results using the

sliding-mode impedance controller in (40) in Case 2.

of the auxiliary error e2 and the parameter estimation error θ̃, ensuring that the desired impedance

dynamics can be achieved. The simulations on a parallel robot with a five-bar structure illustrate the

control effectiveness and advantages in comparison with the existing impedance controllers.

Although variable impedance control is appealing for its ability to realize human-like robot motions,

majority of the existing impedance controllers use constant impedance profiles; therefore, it remains an

open problem to guarantee the control stability of variable impedance controllers. In the near future, we

will design stability-guaranteed variable impedance controllers for robots.
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