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Abstract Many lattice-based schemes are built from the hardness of the learning with errors problem, which

naturally comes in two flavors: the decision LWE and search LWE. In this paper, we investigate the decision

LWE and search LWE by Rényi divergence respectively and obtain the following results: For decision LWE,

we apply RD on LWE variants with different error distributions (i.e., center binomial distribution and uniform

distribution, which are frequently used in the NIST PQC submissions) and prove the pseudorandomness in

theory. As a by-product, we extend the so-called public sampleability property and present an adaptively

public sampling property to the application of Rényi divergence on more decision problems. As for search

LWE, we improve the classical reduction proof from GapSVP to LWE. Besides, as an independent interest,

we also explore the intrinsic relation between the decision problem and search problem.
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1 Introduction

Lattice based crypto and LWE. Lattice-based cryptography has been one of the most promising

candidates in the post-quantum cryptography, since it is not known to be affected by any quantum

algorithms, e.g., Shor’s algorithm. In the recent NIST PQC candidate collections, there are many lattice-

based proposals. Among them, most schemes are relied on the learning with errors (LWE) problem

which was first introduced by Regev in 2005. In the seminal work of [1], the standard LWE problem can

be viewed as decoding random linear codes with discrete Gaussian errors and two versions of LWE —

search LWE (SLWE) and decision LWE (DLWE) were defined. Regev gave a quantum reduction from the

short independent vectors problem (SIVP) in any lattice to the SLWE and then showed the equivalence

between the DLWE and SLWE. However, cryptographic applications based on the plain LWE suffered

from the quadratic key size. In order to improve efficiency of the lattice-based schemes, Lyubashesky

et al. [2] introduced the ring structure and presented the Ring-LWE (RLWE), which can be proved as

hard as SIVP problems in the ideal lattices. Since the algebraic structure may provide the adversaries

additional advantage for solving hard problems in the ideal lattice, a more general definition — module-

LWE (MLWE) was considered by Langlois and Stehlé [3], which can be viewed as a “tensor product” of

the ring to fill the gap between the plain LWE and RLWE.

Up to now, there have been fruitful achievements on cryptographic schemes based on LWE/RLWE/

MLWE problems, such as public key encryption [1, 2, 4, 5], fully homomorphic encryption [6, 7], and au-

thenticated key exchange [8,9]. Hence, LWE problems play a crucial role on the security and performance

*Corresponding author (email: wanghan@iie.ac.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-018-9788-1&domain=pdf&date_stamp=2020-8-10
https://doi.org/10.1007/s11432-018-9788-1
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-018-9788-1
https://doi.org/10.1007/s11432-018-9788-1


Tao Y, et al. Sci China Inf Sci September 2020 Vol. 63 192101:2

Table 1 List of NIST submissions based on LWE with different error distributions

Scheme Functionality Hard problem Error distribution

Kyber [10] KEM/PKE MLWE Center binomial distribution

NewHope [11] KEM/PKE RLWE Center binomial distribution

LAC [12] KEM/PKE RLWE Center binomial distribution

LIMA [13] KEM/PKE RLWE Center binomial distribution

KINDI [14] KEM/PKE MLWE Uniform distribution

Dilithium [15] Signature MLWE Uniform distribution

of such cryptographic schemes. In particular, many NIST candidates even rely on the LWE variants with

different error distributions rather than discrete Gaussian distributions. Concretely, in several NIST can-

didates, in order to avoid the high precise sampling of Gaussian distributions, they choose the efficiently

sampleable center binomial distribution or uniform distribution as an approximation of Gaussian errors

(see Table 1 [10–15]). However, since the worst-case to average-case reductions of LWE problems are

applicable for the standard LWE with Gaussian errors and only the state-of-the-art attacks of such LWE

variants are considered, the security reduction of the above LWE variants with different errors is still

unclear from the theoretical view.

Rényi divergence on LWE. When analyzing the security proof of cryptographic schemes, it is

important to measure the closeness of two different distributions over the same support. In most cases,

we use statistical distance to measure the closeness of two distributions due to its probability preserving

property. In order to preserve certain probability properties, it is often required the negligible statistical

distance between two games of the security proof, which makes the parameters larger and less efficient.

To bypass these issues, Lyubashevsky et al. [2] introduced another tool to measure the distance of two

distributions, i.e., the so-called Rényi divergence (RD). Unlike the statistical distance behaving as the

subtraction of two distributions, RD mainly focuses on the quotient of two distributions. The definition

difference may lead us to get a “small” RD while the statistical distance of the same two distributions

is quite “large”. Thus, Bai et al. [16] improved the security proofs based on search problems, such as

signatures and LWE variants’ reductions1). However, to the best of our knowledge, there is still no effort

to apply RD to the reduction from SLWE to the worst-case lattice problems.

On the other hand, as for the decision problems, RD seems not suitable for such problems. The

major obstacle is that the advantage of a distinguisher is a substraction of two distributions while RD

is the ratio between the given distributions. It is hard to find a lower bound on the substraction of two

distributions (details refer to [16]). Thus, a general strategy [16, 17] to apply RD on DLWE is to apply

it on the SLWE first and then use its search-to-decision equivalence. However, when adapting to the

circumstances where the search-to-decision equivalence seems unclear2), it is meaningful to apply RD

on DLWE directly. Thanks to the public sampleability property, Bai et al. [16] can apply RD on some

decision problems with distributions satisfying such property. However, it seems not trivial to verify

the public sampleability property for many decision problems, e.g., some DLWE variants with different

error distributions, which is frequently used in the NIST submissions and the pseudorandomness of LWE

variants is still short of theoretic foundation.

Owing to the significance of LWE problems in the lattice-based cryptography, motivated by the work

of Bai et al. [16], we consider the following problem: whether can we analyze the LWE using Rényi

divergence?

1.1 Our results

In this paper, we apply RD to the LWE problems. In particular, we consider RD on DLWE and SLWE

respectively. In DLWE, we prove the hardness of DLWE variants with different error distributions (i.e.,

center binomial distribution and uniform distribution) used in many NIST submissions. In SLWE, we

1) The optimization on reductions in [16] are all reductions between average-case problems.
2) In the aspect of MLWE, search-to-decision equivalence of [3] is proved just for prime modulus and Gaussian errors.

It is unclear for MLWE with other error distributions and non-prime modulus.
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can optimize the classical reduction efficiency from SLWE to GapSVP problems [18]. Our contributions

are summarized as follows.

First, we focus on DLWE in the module setting where the search-to-decision equivalence is unclear

and present a polynomial reduction from DLWE variants to the standard MLWE using RD. Our tool

is a modified public sampling property like [16]. It comes from an observation that original public

sampleability property seems a bit rigid. Recall that in [16] the decision problem is to distinguish two

distributions D0(r) and D1(r) given the challenge x. The public sampleability property means there

exists a public sampling algorithm S returning samples from D0(r) with the input (0, x) and samples

from D1(r) with the input (1, x) given x ← Db(r) for all (r, b). Bai et al. cleverly utilized the public

sampleability property to get samples from D0(r) and D1(r), estimated the probability via the Hoeffding

bound and linked the advantage with the measure of randomness set r. However, when we regard the error

term e of LWE as the randomness, it seems non-trivial to verify the public sampleability property. For

simplicity, we take the plain LWE as an example. There are two distributions, i.e., uniform distribution

D1(e) = {(A, b)|A← Z
m×n
q , b← Z

m
q } and LWE distribution D0(e) = {(A, b = As+e)|A← Z

m×n
q , s←

Z
n
q , e ← χm}. In general, given a challenge x = (A, b), the public sampling algorithm S is defined as

S(0, x) = (A, b+At) with t← Z
n
q and S(1, x) = (A,u). For S(0, x), when x is from D0(e), the output

is from D0(e). However, when x is from D1, the output is from D1 (uniform distribution) instead of D0.

Thus, it does not satisfy the public sampleability property.

To overcome the above obstacles, we pose an adaptively public sampling property and apply RD to

DLWE variants. Our observation is that when trying to verify distributions satisfying the public sam-

pleability property given an arbitrary sample x, it is not easy to construct a common public sampling

algorithm for both distributions. However, it often seems not hard to construct different public sam-

pling algorithms for the different distributions. Actually, it is not necessary to share the same public

sampling algorithms for both distributions. Thus, instead of one public sampling algorithm in the pub-

lic sampleability, we define two public sampling algorithms S0 and S1. According to the guess b∗ of

which distribution the challenge x is from, we adaptively choose the sampling algorithm Sb∗ and get

fresh samples. Following the strategy of [16], we can apply RD to such distinguishing problems and

convert a successful distinguisher A between distributions D0(Φ) and D1(Φ) to a successful distinguisher

A′ between distribution D0(Φ
′) and D1(Φ

′) as long as the RD between Φ and Φ′ is bounded by some

polynomial. Furthermore, as an application, we can present a reduction from DLWE variants with error

distributions of center binomial distribution and uniform distribution to the standard MLWE.

Second, we improve the classical reduction iterations of SLWE problem in [18] from polynomial to

constant times. Recall the reduction of [18] is to solve a GapSVP problem using the SLWE oracle.

Informally speaking, the reduction first perturbed a lattice point v ∈ Λ, then called the closest vector

problem (CVP) oracle R on the perturbed point and checked whether R could successfully recover v.

When the input is a NO instance, R can recover v successfully every time. When the input is a YES

instance, v is statistically hidden and R may guess incorrectly with some non-negligible probability.

According to such strategy, we apply RD on the YES instances instead of statistical distance and can

improve the estimation of the accepting probability in the reduction to a constant. Though our statement

is same as [18], our optimization is inspiring to the security guarantee since we can reduce the worst-case

lattice problems to SLWE more efficiently.

Third, as an independent interest, inspired by [16], we explore the relation between search problems and

decision problems and define a “hidden search problem forA” in every decision problem with distinguisher

A. We can link the distinguisher’s advantage with the distributions’ randomness. In fact, if there are

two distributions D0(r) and D1(r) distinguished by an adversary A, then we claim there are many bad r

bringing such difference of two distributions and an algorithm can be constructed to extract such a bad

randomness. Thus, we can convert a successful distinguisher to a solver of hidden search problem. Owing

to the compatible application of RD on search problems, such connection between decision problems and

search problems indicates the feasibility of RD on decision problems. However, since r may be secret

information and such calculation is not trivial, it is still a challenge to analyze RD on decision problems.
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1.2 Related work

Takashima and Takayasu [19] tightened the security proof by adaptively choosing the order of RD.

Bogdanov et al. [17] proved the noise flooding technique was possible with polynomial modulus by ex-

ploiting RD. Recently, Prest [20] applied RD to get tight bounds for distributions that are tailcut or

with a bounded relative error, and made an optimization on Gaussian sampling and rejection sampling

in BLISS signature scheme [21].

2 Preliminary

Denote the real numbers by R and integers by Z. For any real number x ∈ R, let ⌊x⌉ denote the nearest

integer close to x. Denote column vectors over R with lower-case bold letters (e.g., x), and matrices by

upper-case bold letters (e.g., A). Denote the matrix [A1|A2] as the concatenation of the matrix A1 and

A2. If S is a set, write s ← S to denote sampling randomly s from uniform distribution over S. If S

is a distribution, write s ← S to denote sampling s from distribution S. If S is a random algorithm,

write s← S to denote s is an output of S. A function negl(n) : R>0 → R>0 is negligible if for arbitrary

polynomial poly(n), sufficiently large n, negl(n) < 1/poly(n).

The centered binomial distribution Sη for some positive integer η is defined as follows:

Sample (a1, . . . , aη, b1, . . . , bη)← {0, 1}2η and output

η∑

i=1

(ai − bi).

The statistical distance between two random variables X and Y over a countable set D is denoted as

∆(X,Y ) = 1
2

∑
w∈D |Pr[X = w]− Pr[Y = w]|. Let λ denote a security parameter and {Xλ}, {Yλ} be

ensembles of random variables, we say that {Xλ} and {Yλ} are statistically close if ∆(Xλ, Yλ) is negligible

function of λ.

2.1 Lattices and Gaussian measures

In this subsection, we review some facts regarding lattices and Gaussian measures.

Lattices and module lattices. An n-dimension (full-rank) lattice Λ ⊆ R
n is a set of all integer

linear combinations of some set of independent basis vectors B = {b1, . . . , bn} ⊆ R
n, Λ = L(B) =

{
∑n

i=1 zibi : zi ∈ Z}. The minimum distance λ1(Λ) of Λ is the length of its shortest nonzero vector:

λ1(Λ) = min0 6=x∈Λ ‖x‖. The dual lattice of Λ ⊆ R
n is defined as Λ∗ = {x ∈ R

n : 〈Λ,x〉 ⊆ Z}. For

integers n > 1, modulus q > 2 and A ∈ Z
n×m
q , an m-dimensional lattice is defined as Λ⊥(A) = {x ∈

Z
m : Ax = 0 ∈ Z

n
q } ⊆ Z

m. For any y in the subgroup of Zn
q , we also define the coset Λ⊥

y
(A) = {x ∈

Z
m : Ax = y mod q} = Λ⊥(A) + x̄, where x̄ ∈ Z

m is an arbitrary solution to Ax̄ = y. For a lattice

Λ = L(B), let B̃ denote the Gram-Schmidt orthogonalization of B, and ‖B̃‖ is the length of the longest

vector in it.

We consider the ring R = Z[x]/(xn + 1) for n a power of 2 and Rq = Zq[x]/(x
n + 1) for q a power of

3. Each element of R has a polynomial representation of degree n− 1 with coefficients in Z. There is a

coefficient embedding : R→ Z
n, mapping φ(a) = a0 + a1x+ · · ·+ an−1x

n−1 ∈ R 7→ (a0, a1, . . . , an−1)
t ∈

Z
n. The l2-norm and l∞-norm of a are defined as ‖a‖ =

√∑
i |ai|2 and ‖a‖∞ = maxi |ai| for a ∈ R

respectively. Besides, we can also view R as the subring of anti-circulant matrices in Z
n×n by regarding

the element a ∈ R as rot(a) = [φ(a)| · · · |φ(axi−1)| · · · |φ(axn−1)]. If module M is an R-module with

rank d, the dimension of corresponding module lattice is dn. For ∀x = (x1, . . . ,xd) ∈ R1×d, rot(x) =

[rot(x1)| · · · |rot(xd)] ∈ Z
n×dn.

Gaussian measures. Let Λ be a lattice in Z
n. For any vector c ∈ R

n and parameter r > 0, the

n-dimensional Gaussian function ρr,c : Rn → (0, 1] is defined as ρr,c(x) := exp(−π‖x − c‖2/r2). The
discrete Gaussian distribution over Λ with parameter r and center c (abbreviated as DΛ,r,c) is defined

as ∀y ∈ Λ, DΛ,r,c(y) :=
ρr,c(y)
ρr,c(Λ) , where ρr,c(Λ) =

∑
y∈Λ ρr,c(y). When c = 0, we write DΛ,r for short.
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Definition 1 ([22]). For a lattice Λ and a positive real ε > 0, the smoothing parameter ηε(Λ) is the

smallest real r > 0 such that ρ1/r(Λ
∗\{0}) 6 ε.

Lemma 1 ([22]). For any n-dimensional lattice Λ, we have η2−n 6

√
n

λ1(Λ∗) .

2.2 Learning with errors assumption

The LWE problem is at least as hard as several lattice problems in the worst case. There are continuous

version and discrete version of definitions used in the literature. In this paper, we choose the LWE

definition adaptively for convenience.

Plain LWE. For continuous version of LWE, we define the following distribution As,χ, where χ is a

distribution over T = R/Z and s ∈ Z
n
q . A sample from the distribution As,χ is of the form (a, b) ∈ Z

n
q ×T

with b = 〈a,s〉
q + e mod 1, where a is chosen from Z

n
q uniformly and e is chosen from the distribution χ.

Definition 2 (Continuous version). Let χ be a distribution over T, an integer modulo q > 2. The

search version of LWE, denoted as SLWEn,q,χ, is given m samples from the distribution As,χ and recover

s. The decision version of LWE, denoted as DLWEn,q,χ, is given m pairs of (a′, b′) ∈ Z
n
q × T and decide

these pairs are from the uniform distribution or As,χ.

Another discrete form of DLWE defined in Z
n×m
q × Z

n
q is also common in use, which is equivalent to

the continuous version.

Definition 3 (Discrete version). For security parameter λ, let n = n(λ) be an integer dimension, let

q = q(λ) > 2 be an integer, and let χ = χ(λ) be a distribution over Z. The DLWEn,q,χ problem is to

distinguish the following two distributions:

{A,Ats+ x} and {A,u},

where A←Z
n×m
q , s←Z

n
q , u←Z

m
q , and x← χm.

Corollary 1 ([1, 7, 18, 23, 24]). Let q = q(n) be either a prime power q = pr, or a product of co-prime

numbers q =
∏

qi such that for all i, qi = poly(n), and let αq >
√
n. If there is an efficient algorithm

that solves the (average-case) DLWEn,q,α problem, then:

• There is an efficient quantum algorithm that solves GapSVPÕ(n/α) (and SIVPÕ(n/α)) on any n-

dimensional lattice;

• If in addition q > Õ(2n/2), there is an efficient classical algorithm for GapSVPÕ(n/α) on any n-

dimensional lattice.

Module-LWE. The MLWE is a generalization of the plain LWE and RLWE, whose security is studied

in [3]. The MLWE distribution over Rl
q ×Rq is the distribution of (a, b), where a ∈ Rl

q and b = ats+ e

with s←Rl
q and e is sampled from the distribution Ψ. Akin to its counterpart — plain LWE, there are

search version and decision version of MLWE problem (denoted as MLWEn,l,q(Ψ)), which are defined as

follows.

M-SLWE problem. To find the secret s given the polynomial MLWE samples.

M-DLWE problem. To distinguish the MLWE distribution from uniform distribution U(Rl
q ×Rq).

Without confusion, we also denote MLWEn,m,q(Ψ) as each coefficient of error from distribution Ψ

below.

Corollary 2 ( [3], Theorem 4.7). Let ε be a negligible function, α ∈ (0, 1) and q > 2 of known

factorization such that αq > 2
√
l ·ω(
√
logn). There is a quantum reduction from solving Mod-GIVPηε

γ in

polynomial time (in the worst case, with high probability) to solving M-SLWEq,Ψ6α in polynomial time

with non-negligible advantage with γ =
√
8n2d · ω(

√
logn)/α.

Assume that q is prime, q 6 poly(nl) and that q = 1 mod 2n. Then there exists a polynomial time

reduction from M-SLWEq,Ψ6α
to M-DLWEq,Υα .

2.3 Decision problems and Rényi divergence

In this subsection, we review some useful results of decision problems and RD.
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Decision problems. Let Φ,Φ′ denote two distributions with Supp(Φ) ⊆ Supp(Φ′), and D0(r) and

D1(r) denote two distributions determined by some parameter r ∈ Supp(Φ′). In this paper, we call r as

the randomness and define two decision problems P, P ′ as follows.

- Problem P . Distinguish whether the input x is sampled from distribution X0 or X1, where

X0 = {x : r ← Φ, x← D0(r)}, X1 = {x : r ← Φ, x← D1(r)}.

- Problem P ′. Distinguish whether the input x is sampled from distribution X ′
0 or X ′

1, where

X ′
0 = {x : r← Φ′, x← D0(r)}, X ′

1 = {x : r ← Φ′, x← D1(r)}.

In general, a successful algorithm A solving the problem P with a non-negligible advantage 1
poly(n)

satisfies Adv(A) = |Pr[A(x) = 1|x ← X1] − Pr[A(x) = 1|x ← X0]| > 1
poly(n) , where the probability is

taken over the choice of x and the randomness of A. Given r ← Φ (resp. Φ′), denote p0(r) and p1(r) as

the (conditional) acceptance probabilities of A given the input samples from D0(r) and D1(r), i.e.,

p0(r) = Pr[A(x) = 1|x← D0(r)], p1(r) = Pr[A(x) = 1|x← D1(r)].

Rényi divergence. For two distributions P and Q such that Supp(P ) ⊆ Supp(Q), the Rényi

divergence of order a between P and Q is defined as Ra(P ||Q) = (
∑

x∈Supp(P )
P (x)a

Q(x)a−1 )
1

a−1 3), where

a ∈ (1,+∞). When a = 1, the Rényi divergence is defined as R1(P ||Q) = exp(
∑

x∈Supp(P ) P (x) log P (x)
Q(x) ).

When a = +∞, the Renyi divergence is defined as R∞(P ||Q) = maxx∈Supp(P )
P (x)
Q(x) .

Lemma 2. Let P and Q be two distributions satisfying Supp(P ) ⊆ Supp(Q), then for all a ∈ [1,+∞],

the following holds:

• Logarithm positivity. Ra(P ||Q) > Ra(P ||P ) = 1.

• Data processing inequality. For any function f , denote P f (resp. Qf) the distribution by applying

the function f to the distribution P (resp. Q). That is P f (y) =
∑

f(x)=y P (x). Then we have for any

a ∈ [1,+∞], Ra(P
f ||Qf) 6 Ra(P ||Q).

• Probability preservation. Let A ⊆ Supp(P ) denote an arbitrary event. Then for any a ∈ (1,+∞),

Q(A) ·Ra(P ||Q) > P (A)
a

a−1 . Moreover, we have Q(A) ·R∞(P ||Q) > P (A).

• Multiplicativity. Suppose P and Q are distributions over the pair (X1, X2). Let Pi (resp. Qi) be the

distribution of Xi under P (resp. Q), i = 1, 2, and let P2|1(·|x1) (resp. Q2|1(·|x1)) denote the conditional

distribution given the condition that X1 = x1. Then we have

- Ra(P ||Q) = Ra(P1||Q1) · Ra(P2||Q2), if X1, X2 are independent;

- Ra(P ||Q) 6 R∞(P1||Q1) ·maxx1Ra(P2|1(·|x1)||Q2|1(·|x1)).

When applying the Rényi divergence on the decision problem of distributions D0 and D1, the public

sampleability property was considered in [16].

Lemma 3 ([16], Theorem 4.1). Assume that D0(·) and D1(·) satisfy the following public sampleability

property: there exists a sampling algorithm S with run-time TS such that for all (r, b), given any sample

x from Db(r):

- S(0, x) outputs a fresh sample distributed as D0(r) over the randomness of S;

- S(1, x) outputs a fresh sample distributed as D1(r) over the randomness of S.

Then, given a T -time distinguisher A for Problem P with advantage ǫ, we can construct a distinguisher

A′ for problem P ′ with run-time and distinguishing advantage respectively bounded from above and below

by O( 1
ǫ2 log(

Ra(Φ‖Φ′)
ǫa/(a−1) ) · (TS + T )) and ǫ

4·Ra(Φ‖Φ′) · ( ǫ2 )
a

a−1 for any a ∈ (1,+∞].

3 Rényi divergence on decision LWE

In this section, we focus on the security of DLWE variants with different error distributions using the

analysis of RD. We first introduce a general tool — adaptively public sampling property, broadening

the applications of RD on distinguishing problems. Then, as an application, we apply it to our DLWE

variants.

3) Our definition of RD is the exponential of the classical definition [25].
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3.1 Adaptively public sampling property

Following the strategy of [16], the high level idea of adaptively public sampling property is to allow

an adversary to get fresh samples from distributions D0 and D1 with some failure, which only makes

negligible impact on the advantage of the decision problem. Concretely, instead of deriving new samples

from D0(r) and D1(r) with probability 1 as [16], given the challenge x ← Db(r) for all (r, b), we define

two public sampling algorithms S0 and S1 and choose the sampling algorithm Sb adaptively according to

the guess of b ∈ {0, 1}, which makes the adversary get the fresh samples correctly with probability 1
2 .

Definition 4 (Adaptively public sampling property). We say two distributions D0(r) and D1(r) sat-

isfying the adaptively public sampling property, if there exist two probabilistic polynomial time (PPT)

sampling algorithms S0 and S1 such that for all r, given any sample x from Db(r):

• For algorithm S0, it satisfies the following properties:

When x← D0(r), we have

- S0(0, x) outputs a fresh sample distributed as D̃0(r) over the randomness of S0;

- S0(1, x) outputs a fresh sample distributed as D̃1(r) over the randomness of S0.

When x← D1(r), we have

- S0(0, x) outputs a fresh sample distributed as U1 over the randomness of S0;

- S0(1, x) outputs a fresh sample distributed as U2 over the randomness of S0.

• For algorithm S1, it satisfies the following properties:

When x← D0(r), we have

- S1(0, x) outputs a fresh sample distributed as U3 over the randomness of S1;

- S1(1, x) outputs a fresh sample distributed as U4 over the randomness of S1.

When x← D1(r), we have

- S1(0, x) outputs a fresh sample distributed as D̃0(r) over the randomness of S1;

- S1(1, x) outputs a fresh sample distributed as D̃1(r) over the randomness of S1.

For any r, it satisfies ∆(Di, D̃i) < ǫ1 and ∆(Uj , Uj+1) < ǫ1 with negligible function ǫ1 for ∀i ∈ {0, 1}
and ∀j ∈ {1, 3}. The distributions U1 and U2 are independent from r, so are U3 and U4. Besides, it is

hard to distinguish distribution D̃0 and U1 (resp. D̃0 and U3), D̃1 and U2 (resp. D̃1 and U4)
4).

Remark 1. From the definition, our adaptively public sampling property is incompatible with the

public sampleability property of [16]. For example, considering the LWE problem D0(r) = (A,As + e)

and D1(r) = (A,u) with randomness A, it is easy to verify that satisfies the public sampleability

property of [16]. However, it is a bit tricky to satisfy the adaptively public sampling property, unless

some constraints are needed as in Theorem 25).

On the other hand, when considering LWE problem with error term as randomness, i.e., D0(e) =

(a, b = as + e) with a ← R1×m
q , s ← Rm

q , D1(e) = (a,u) with a ← R1×m
q and u ← Rq, it is easy

to verify the adaptively public sampling property, but hard to verify the public sampleability property.

Detailed analysis is mentioned in the introduction and Theorem 2.

Theorem 1. For decision problems P and P ′, assume that D0(·) and D1(·) satisfy the adaptively public

sampling property. Then, given a T -time PPT distinguisher A for problem P with advantage ǫ, we can

construct a PPT distinguisher A′ for problem P ′ with advantage bounded by ǫ
8·Ra(Φ‖Φ′) · ( ǫ8 )

a
a−1 − 1

2ǫ1

for any a ∈ (1,+∞] with running time at most O( 1
ǫ2 log(

Ra(Φ‖Φ′)

ǫ
a

a−1
+1 )(TS +T )) where TS is the upper bound

of running time of S0 and S1.

Proof. Our proof follows the strategy of [16]. An input x sampled from Db(r) for some r ← Φ′ and

some unknown b ∈ {0, 1} is given to the distinguisher A′. Denote the output of A′ as the guess of the

4) This condition is merely to exclude the trivial decision problems. Take S0(0, x) as an example. Notice that output

distribution of S0(0, x) is either D̃0(r) or U1 according to the distribution of x. If D̃0(r) and U1 can be distinguished easily

for any r, then S0(0, x) can distinguish D0(r) and D1(r) trivially, which means S0(0, x) is a trivial distinguisher between

D0(r) and D1(r) for arbitrary r.
5) Such D0 and D1 satisfy the adaptively public sampling property under the condition of Theorem 2. The public

sampling algorithms S0 and S1 are defined the same as in Theorem 2.
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distribution of x. Then the probability of a successful guess on x is 1
2 Pr[A′(x) = 1|x← D1]+

1
2 Pr[A′(x) =

0|x← D0].

At first, A′ samples a random coin b∗ ∈ {0, 1} as the guess of b, and then calls the sampling algorithm

Sb∗ on (0, x) and (1, x). It runs the distinguisher A on N = O(ǫ−2 log(1/ǫ′))6) independent inputs (ǫ′

is defined later) from Sb∗(0, x) and Sb∗(1, x) and obtains the estimates p̂0 and p̂1 for the acceptance

probabilities p′0(r) and p′1(r), where p′0(r) and p′1(r) are defined as follows:

p′0(r) = Pr[A(y) = 1|y ← Sb∗(0, x)], p′1(r) = Pr[A(y) = 1|y ← Sb∗(1, x)].

By the Hoeffding bound, the estimation errors |p̂0− p′0| < ǫ
8 and |p̂1− p′1| < ǫ

8 hold at most except the

probability of ǫ′. Now A′ runs A as a subroutine and proceeds as follows:

if p̂1 − p̂0 > ǫ
4 + ǫ1

Output A(x);
else

Output a uniformly random bit.

Let p0(r) and p1(r) denote the acceptance probabilities of A given the input samples but from D0(r) and

D1(r), i.e., p0(r) = Pr[A(x) = 1|x← D0(r)], p1(r) = Pr[A(x) = 1|x← D1(r)].

Assuming Pr[A′(x) = 1|x ← D1] − Pr[A′(x) = 1|x ← D0] > 0, we analyse the advantage of the

distinguisher A′ in two cases.

Case 1. If A′ guesses the value of b correctly, i.e., b∗ = b, it obtains samples from D̃0(r) and D̃1(r).

Then we have

p′0(r) = Pr[A(y) = 1|y ← D̃0(r)], p′1(r) = Pr[A(y) = 1|y ← D̃1(r)].

Since ∆(D0, D̃0) < ǫ1 and ∆(D1, D̃1) < ǫ1, it follows |p0 − p′0| < ǫ1 and |p1 − p′1| < ǫ1. Hence,

|p̂0 − p0| < ǫ
8 + ǫ1 and |p̂1 − p1| < ǫ

8 + ǫ1 hold by the triangle inequality, except with the probability ǫ′

over the randomness of public sampling algorithm Sb∗ .

Let S ′1 = {r|p1(r)−p0(r) > ǫ
2+3ǫ1}, S ′2 = {r|−ǫ1 6 p1(r)−p0(r) < ǫ

2+3ǫ1} and S ′3 = {r|p1(r)−p0(r) <
−ǫ1}. Then:
• If r ∈ S ′1, we have p̂1 − p̂0 > ǫ

4 + ǫ1, except with the probability ǫ′ over the randomness of Sb∗ .

Therefore, the distinguisher A′ outputs A(x). Hence, for b = 1, we have Pr[A′(x) = 1|r ∈ S ′1] >

Pr[A(x) = 1|r ∈ S ′1] > (1 − ǫ′)p1(r) > p1(r) − ǫ′, and for b = 0, we have Pr[A′(x) = 1|r ∈ S ′1] =
(1− ǫ′) · p0(r) + 1

2ǫ
′ 6 p0(r) + ǫ′.

• If r ∈ S ′2, let u(r) denote the probability that p̂1− p̂0 > ǫ
4 + ǫ1 over the randomness of Sb∗ . Then A′

will output what A returns with probability u(r) and a uniform bit with probability 1− u(r). Hence, for

b = 1, we have Pr[A′(x) = 1|r ∈ S ′2] = u(r)p1(r) +
1−u(r)

2 , and for b = 0, we have Pr[A′(x) = 1|r ∈ S ′2] =
u(r)p0(r) +

1−u(r)
2 .

• If r ∈ S ′3, we have p̂1 − p̂0 < ǫ
4 + ǫ1, except with the probability ǫ′ over the randomness of Sb∗ , and

A′ will output a uniform bit. Thus for b = 1, we have Pr[A′(x) = 1|r ∈ S ′3] > (1 − ǫ′)12 >
1
2 − ǫ′, while

for b = 0, Pr[A′(x) = 1|r ∈ S ′3] 6 (1− ǫ′)12 + ǫ′ · p0(r) 6 1
2 + ǫ′.

When b∗ = b, the advantage Adv(A′) is as follows:

Advb
∗=b(A′) =

∑

r

{Φ′(r)(Pr[A′(x) = 1|x← D1(r), b
∗ = b]− Pr[A′(x) = 1|x← D0(r), b

∗ = b])} (1)

>
∑

r∈S′

1

Φ′(r)(p1(r) − p0(r) − 2ǫ′) +
∑

r∈S′

2

Φ′(r)u(r)(p1(r) − p0(r)) −
∑

r∈S′

3

Φ′(r)2ǫ′ (2)

>

(
Φ′(S ′1) ·

ǫ

2
+

∑

r∈S′

2

Φ′(r)u(r) · (−ǫ1)− 2ǫ′
)

> Φ′(S ′1) ·
ǫ

2
− ǫ1 − 2ǫ′. (3)

6) Concretely, ǫ′ = 2 exp(−2N( ǫ

8
)2) from the Hoeffding inequality and we get N = 32ǫ−2 log(2/ǫ′).
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Case 2. If A′ does not guess the distribution of x correctly, i.e., b∗ 6= b, it obtains samples from Ui

and Ui+1, for i ∈ {1, 3}. Then we have

p′0(r) = Pr[A(x) = 1|x← Ui], p′1(r) = Pr[A(x) = 1|x← Ui+1].

Since the distributions Ui and Ui+1 are independent of the randomness r, |p′0(r)−p′1(r)| 6 ∆(Ui, Ui+1) <

ǫ1 satisfies for any r. It follows |p̂1 − p̂0| < ǫ
4 + ǫ1 except the probability ǫ′. Hence, A′ output a uniform

bit except the probability ǫ′, otherwise A′ returns what A outputs with probability ǫ′.

Let S ′′1 = {r|p1(r) − p0(r) >
ǫ
2}, S ′′2 = {r|0 6 p1(r) − p0(r) < ǫ

2} and S ′′3 = {r|p1(r) − p0(r) < 0}.
Then, the advantage of A′ is as follows:

Advb
∗ 6=b(A′) =

∑

r

{Φ′(r)(Pr[A′(x) = 1|x← D1(r), b
∗ 6= b]− Pr[A′(x) = 1|x← D0(r), b

∗ 6= b])} (4)

> ǫ′
∑

r

Φ′(r)(p1(r) − p0(r)) > ǫ′
∑

r∈Φ′(S′′

3 )

Φ′(r)(p1(r) − p0(r)) > ǫ′ · (−Φ′(S ′′3 )) > −ǫ′. (5)

Combining the above two cases, the advantage of A′ is as follows:

Adv(A′) =
∑

r

{Φ′(r)(Pr[A′(x) = 1|x← D1(r)] − Pr[A′(x) = 1|x← D0(r)])} (6)

= Pr[b = b∗] · Advb=b∗(A′) + Pr[b 6= b∗] ·Advb6=b∗(A′) (7)

>
1

2

(
Φ′(S ′1) ·

ǫ

2
− ǫ1 − 3ǫ′

)
. (8)

We claim the set S ′1 has the probability Φ(S ′1) > ǫ
8 under the distribution Φ by an averaging argument

in Appendix A. By Lemma 2, Φ′(S ′1) > (ǫ/8)
a

a−1

Ra(Φ‖Φ′) . Set ǫ′ = (ǫ/12) · (ǫ/8) a
a−1 /Ra(Φ‖Φ′), then Adv(A′) >

ǫ
8·Ra(Φ‖Φ′) · ( ǫ8 )

a
a−1 − 1

2ǫ1.

Remark 2. Our property is a complement to the RD application on decision problems. It seems

the public sampleability property is easy to be satisfied for distributions D0(r) and D1(r) with the

publicly known r. However, when r is confidential, our adaptively public sampling property may be more

applicable.

3.2 Application on DLWE

With adaptively public sampling property, we declare that MLWE with error from center binomial dis-

tribution or uniform distribution can be as hard as the standard MLWE.

We allow the access to the oracle Ox explicitly, which returns the instances from the same distribution

of x. Concretely, if x is a uniform instance, Ox returns uniform instances. If x is an LWE instance with

secret s, Ox returns fresh LWE instances with the same secret s. The following theorem shows that

assuming the hardness of the standard MLWE problem with Gaussian error distribution Dα, the variant

MLWEn,m,q(χ
′) with error distribution χ′ is indistinguishable from the uniform distribution as long as

Ra(χ
′‖Dα) is polynomially bounded.

Theorem 2. Let χ′ and χ = DR,α be two error distributions over R with Supp(χ′) ⊆ Supp(χ). Let

a←R1×m
q , s←Rm×1

q , m > 2⌈log2 q⌉+ 2 and α > ω(
√
lnnm). Then, if there is a PPT distinguisher A

against MLWEn,m,q(χ
′) with advantage ε, there exists a PPT distinguisher A′ against the MLWEn,m,q(χ)

with the access to oracle Ox with advantage Ω( ε
1+a/(a−1)

Ra(χ′‖χ) ) and running time O( 1
ǫ2 log(

Ra(Φ‖Φ′)

ǫ
a

a−1
+1 )(TS +T ))

where TS is the upper bound of running time of S0 and S1, for any a ∈ (1,+∞].

In the proof of Theorem 2, it suffices to verify the adaptively public sampling property. Thus, we

postpone it in Appendix B.

Corollary 3. Let φ be a center binomial distribution, m > 2⌈log2 q⌉+ 2 and α > ω(
√
lnnm). If R(φ

‖DR,α) is bounded by some polynomial, then there is a polynomial-time reduction fromMLWEn,m,q(DR,α)

to MLWEn,m,q(φ).
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In particular, when the error distribution is uniform distribution in a small interval, we can argue the

hardness of MLWE with uniform noise, which can be viewed as an adaptation of Theorem 5.1 in [16] to

the module setting.

Corollary 4. Let m > 2⌈log2 q⌉ + 2, α > ω(
√
lnnm) and α, β > 0 be real numbers with β =

Ω(nα/ logn) for positive integers n. Then there is a polynomial-time reduction from MLWEn,m,q(DR,α)

to MLWEn,m,q(Ūβ), where Ūβ = 1
q ⌊qUβ⌉ and Uβ is a continuous uniform distribution over [−β, β].

The proof is similar as Theorem 5.1 in [16] but with RD on decision problems directly, and we put

details in Appendix C.

4 Rényi divergence on search LWE

In this section, we improve the classical reduction proof of SLWE in [18]. Our proof strategy is almost

the same as [18] but with a different analysis on YES instances using RD. Rather than polynomial times

in [18], such crucial analysis results in the constant iterations in the proof.

Definition 5 ([18], Definition 2.5). For functions ζ(n) > γ(n) > 1, an input to GapSVPζ,γ is a pair

(B, d), where

• B is a basis of an n-dimensional lattice Λ = L(B) for which λ1(Λ) 6 ζ(n),

• mini ‖b̃i‖ > 1, and

• 1 6 d 6
ζ(n)
γ(n) .

It is a YES instance if λ1(Λ) 6 d, and a NO instance if λ1(Λ) > γ(n) · d.
Theorem 3. Let α = α(n) ∈ (0, 1) be a real number and γ = γ(n) > n/(α

√
logn). Let ζ = ζ(n) > γ

and q = q(n) > (ζ/
√
n) · ω(

√
logn). There is a PPT reduction from solving GapSVPζ,γ to solving

SLWEn,q,Φα using polynomial samples. Furthermore, the iteration of reduction algorithm is expected to

be four times.

Proof. The input (B, d) as an instance of GapSVPζ,γ has the properties: min||b̃i|| > 1, λ1(L(B)) 6 ζ

and 1 6 d 6 ζ/γ. The reduction runs the following procedure four times.

• Sample a point w uniformly at random from the ball d′ · Bn, where Bn is an n-dimensional unit ball

and d′ = d ·
√
n/(4 logn). Let x = w mod B.

• Given the LWE oracle and sampling oracleD fromDΛ∗,r
7), call the CVPαq/(

√
2r) reduction algorithm

R of Lemma 3.4 in [1] on the input (B,x) with parameter r = q·
√
2n

γ·d . Let v be the output of R.

If v 6= x−w in any of the 4 iterations, it outputs YES. Otherwise, output NO.

The analysis of the NO instance is the same as [18]. For completeness, we give a sketch of the proof.

We have that ηǫ(Λ
∗) 6

√
n

γ·d , for ǫ(n) = 2−n = negl(n) by Lemma 1. Therefore r >
√
2q · ηǫ(Λ∗) as the

algorithm R from Lemma 3.4 in [1] required. Moreover, since x −w ∈ Λ, the distance from x to Λ is

at most d′ = d ·
√

n
4 logn 6

αγd√
4n

= αq√
2r
. By the definition of d′, λ1(Λ) > γ · d > 2d′ and the solution of

CVPαq/(
√
2r) is unique. The algorithm R outputs v = x−w in each iteration, and our reduction rejects.

Now, we focus on the YES instance, i.e., (B, d) satisfies λ1(Λ) 6 d. The maximum distance between

the point on the surface of n
√
9/8d′ · Bn and the point on the surface of d′ · Bn is n

√
9/8d′ + d′, while the

minimum distance between the point on the surface of n
√
9/8d′ · Bn and the point on the surface of d′ · Bn

is n
√
9/8d′−d′. Thus, n

√
9/8d′+d′− ( n

√
9/8d′−d′) = 2d′ > 2d > 2λ1(Λ). Then there exists some integer

m, such that n
√
9/8d′ + d′ > m · λ1(Λ) > ( n

√
9/8d′ − d′). Thus, there exists at least one point w0 on the

surface of d′ · Bn and one point w′
0 on the surface of the ball n

√
9/8d′ · Bn such that w0 − w′

0 = m · z,
where z is the shortest vector in the lattice. Denote the rotation of the ball n

√
9/8d′ · Bn that transforms

n
√
9/8d′ ·w0 to w′

0 by T . Suppose w′ is the point T ( n
√
9/8w) where w is chosen uniformly from d′ · Bn.

Let x′ = w′ mod B and invoke R on x′. Then R(x′) = x′−w is an event. By the probability preserving

property, we have that

Pr2[R(x)− x = −w] 6 R2(x||x′) · Pr[R(x′)− x′ = −w] (9)

7) The oracle D can be implemented by Lemma 2.3 in [26] on the reversed dual basis D of B.
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6 R2(w||w′) · Pr[R(x′)− x′ +w = 0]. (10)

The inequality 10 follows from R2(x||x′) 6 R2(w||w′), since x = w mod B and x′ = w′ mod B.

By the property of RD in Lemma 2, we have

Pr2[R(x)− x+w = 0] 6 R2(w||w′) · Pr[R(x′)− x′ +w′ = 0]. (11)

Invoking the algorithm R on x′, it may return x′ −w′, x′ −w or something else. Thus, Pr[R(x′) −
x′ +w′ = 0] 6 1− Pr[R(x′)− x′ +w = 0] and we have

Pr2[R(x)− x+w = 0] 6 R2(w||w′) · (1− Pr[R(x′)− x′ +w′ = 0]). (12)

Sum the inequalities (11) and (12), we have that Pr2[R(x) = x−w] 6 R2(w||w′)/2. Furthermore,

Pr[R(x) = x−w] 6

√(
V
(

n
√
9/8d′ · Bn

)
/V (d′ · Bn)

)
/2 6

√
9/16. (13)

Since Pr[R(x) 6= x−w] = 1− Pr[R(x) = x−w] > 1 −
√
9/16 > 1/4, we have v 6= x−w in at least

one iteration of the four iterations and the reduction accepts.

Remark 3. Our reduction runs the basic procedure only four times, while [18] needs a large polynomial

iterations. Therefore, with access to the SLWEn,q,Φα solver, the running time of our reduction solving

GapSVPζ,γ is polynomial times less than that of [18].

5 Links between decision problems and search problems

Motivated by the strategy of [16] and Theorem 1, we explore the relation between search problems and

decision problems as an independent interest. In the decision problem, we can extract a search problem—

hidden search problem for each distinguisher A.
Definition 6 (Hidden search problem for A). For a decision problem P , we say an algorithm solving

a hidden search problem for A (denoted as PA) if given two distributions X0 and X1, we can find a

randomness r over which there is a non-negligible difference in acceptance probability on inputs from X0

versus from X1, i.e., our goal is to output an r from the set R = {r|p1(r) − p0(r) is non-negligible}. If

the set R is empty, we output ⊥.
Proposition 1. If an algorithm A can solve the decision problem P with the advantage ε and run-

ning time T , there exists an algorithm W solving the hidden search problem for A with probability

exponentially close to 1. Besides, the running time of W is upper bounded by O(1ε )T .

Proof. Without loss of generality, we may assume the difference in acceptance probability on inputs

from X1 versus from X0 is positive. If an algorithm A can solve the decision problem, there is a non-

negligible ε such that Adv(A) = Pr[A(x) = 1|x← X1]− Pr[A(x) = 1|x← X0] = ε.

We divide the randomness domain into three disjoint parts, i.e., S1 = {r|p1(r) − p0(r) > 3ε
4 }, S2 =

{r|0 6 p1(r) − p0(r) < 3ε
4 } and S3 = {r|p1(r) − p0(r) < 0}. Define an algorithm W : choose r ← Φ

and estimate the conditional acceptance probability of A on X0 and X1 by sampling from D0(r) and

D1(r) several polynomial times. By the Hoeffding bound, we have estimations p̃0 and p̃1 satisfying

|p̃i − pi(r)| < ε
8 , for i ∈ {0, 1} with probability exponentially close to 1. If p̃1 − p̃0 > ε

2 , we output r.

Otherwise, we repeat the above procedure.

We now prove that W can successfully output an r in the polynomial time. For correctness, the output

r has the property p1(r) − p0(r) = p1 − p̃1 + p̃1 − p̃0 + p̃0 − p0 > ε
4 . Notice that as long as r ∈ S1, it

will be an output, since p̃1 − p̃0 > ε
2 . By the average argument, we claim the probability Φ(S1) > ε

4 .

Therefore, we can repeat the procedure polynomial times and successfully choose r in S1 in the expected

time O(1ε )T as an output.

Remark 4. Since RD is appropriate for search problems, Proposition 1 illustrates a method of applying

RD on decision problems via analyzing the adversaries’ advantage with the measure of r. However,

such calculation may need additional properties (e.g., public sampleability or adaptively public sampling

property). Thus, applying RD on more decision problems is still an open problem.
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6 Conclusion

In this paper, we investigate the security of DLWE and SLWE using RD respectively. As for DLWE, we

prove the pseudorandomness of MLWE with different error distributions, especially for center binomial

distribution and uniform distribution, which can be viewed as a theoretic support to several NIST sub-

missions. As for SLWE, we optimize the iterations in classical reduction of GapSVP to LWE problem.

Furthermore, we find a relation between search problems and decision problems to interpret the feasibility

and challenge of RD on decision problems. We leave the extension of RD on more decision problems as

our future work.
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25 van Erven T, Harremoes P. Rényi divergence and Kullback-Leibler divergence. IEEE Trans Inform Theory, 2014, 60:

3797–3820

26 Brakerski Z, Langlois A, Peikert C, et al. Classical hardness of learning with errors. In: Proceedings of Symposium

on Theory of Computing Conference, Palo Alto, 2013. 575–584

https://doi.org/10.1109/TIT.2014.2320500

	Introduction
	Our results
	Related work

	Preliminary
	Lattices and Gaussian measures
	Learning with errors assumption
	Decision problems and Rényi divergence

	Rényi divergence on decision LWE
	Adaptively public sampling property
	Application on DLWE 

	Rényi divergence on search LWE
	Links between decision problems and search problems
	Conclusion

