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Appendix A Average Argument in Proof of Theorem 1

Theorem 1. For decision problems P and P ′, assume thatD0(·) andD1(·) satisfy the adaptively public sampling property.

Then, given a T -time PPT distinguisher A for Problem P with advantage ε, we can construct a PPT distinguisher A′ for

Problem P ′ with advantage bounded by ε
8·Ra(Φ‖Φ′) · (

ε
8

)
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a−1 − 1
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ε1 for any a ∈ (1,+∞]) with running time at most

O( 1
ε2

log(
Ra(Φ‖Φ′)
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)(TS + T )) where TS is the upper bound of running time of S0 and S1.

Recall that S′1 = {r|p1(r)−p0(r) > ε
2

+3ε1}, S′2 = {r|−ε1 6 p1(r)−p0(r) < ε
2

+3ε1} and S′3 = {r|p1(r)−p0(r) < −ε1}.
Let ai = 1

2
Pr[A(x) = 1|x ← D1(r)] + 1

2
Pr[A(x) = 0|x ← D0(r)] = 1

2
(1 + p1(r) − p0(r)) when randomness r is in S′i for

i = 1, 2, 3. Due to the definition of S′i for i = 1, 2, 3, we have
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(1− ε1). (A3)

Since the advantage of A is Adv(A) = ε, we have

ε = Adv(A) =
∑
r

{Φ(r)(Pr[A(x) = 1|x← D1(r)]− Pr[A(x) = 1|x← D0(r)])} (A4)

=

3∑
i=1

Φ(S′i)(2ai − 1). (A5)

Hence, the probability

1 + ε

2
= Φ(S′1)a1 + Φ(S′2)a2 + Φ(S′3)a3 6 Φ(S′1)a1 + (Φ(S′2) + Φ(S′3))a2 (A6)
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infers Φ(S′1) > ε
4
− 3

2
ε1. Since ε1 is a negligible function of n, we assert ε1 <

ε
12

as the security parameter n increases.

Hence, it follows Φ(S′1) > ε
8

.

Appendix B Proof of Theorem 2

Lemma 1. Let X,Y be two random variables taking values in a common set A. For any (possibly randomized) function

f with domain A, the statistical distance between f(X) and f(Y ) satisfies ∆(f(X), f(Y )) 6 ∆(X,Y ).

Lemma 2 ( [2], Lemma 7). Let R = Z[x]/(xn + 1), Rq = Zq [x]/(xn + 1) for n > 4 a power of 2 and q = 3k a power of

3. Let m > 2dlog qe+ 2 and α > ω(
√

lnnm). With overwhelming probability over the choice of a← R1×m
q , if x← DmR,α,

then ax is within negligible statistical distance from the uniform distribution over R.

* Corresponding author (email: wanghan@iie.ac.cn)



Yang Tao, et al. Sci China Inf Sci 2

Theorem 2. Let χ′ and χ = DR,α be two error distributions over R with Supp(χ′) ⊆ Supp(χ). Let a ← R1×m
q ,

s← Rm×1
q , m > 2dlog2 qe+ 2 and α > ω(

√
lnnm). Then, if there is a PPT distinguisher A against MLWEn,m,q(χ′) with

advantage ε, there exists a PPT distinguisher A′ against the MLWEn,m,q(χ) with the access to oracle Ox with advantage

Ω( ε
1+a/(a−1)

Ra(χ′‖χ)
) and running time O( 1

ε2
log(

Ra(Φ‖Φ′)

ε
a

a−1
+1

)(TS + T )) where TS is the upper bound of running time of S0 and S1,

for any a ∈ (1,+∞].

Proof. By Theorem 1, it suffices to verify the distributions satisfying the adaptively public sampling property. Set

the error term as the randomness from χ. Define the distribution D0(e) = (a,b = as + e) with a ← R1×m
q , s ← Rmq ,

D1(e) = (a,u) with a ← R1×m
q and u ← Rq . Since the distribution D1(e) is independent from the randomness e, we

consider instances of D1 can be corresponding to any randomness.

In details, for any instance x = (a,b) ∈ R1×m
q ×Rq from the distribution Db(e) for b ∈ {0, 1}, we define the adaptively

public sampling algorithms as follows. Define D̃0 = D0, D̃1 = D1, U1 = U2 = U4 is the uniform distribution overR1×m
q ×Rq

and U3 is a distribution statistically close to the uniform distribution, which is defined later.

• Algorithm S0 with x = (a,b):

- S0(0, x) outputs (a,b + at) with t←Rmq .

- S0(1, x) outputs (a,u) with u←Rq .
• Algorithm S1 with x = (a,b):

- S1(0, x) first samples a random e, and then gets additional m − 1 samples b′i ∈ Rq by accessing the oracle Ox for

i ∈ {1, · · · ,m− 1}. Set b′ = [b′1|b′2| · · · |b′m−1]t ∈ Rm−1
q , b∗ =

[
b

b′

]
∈ Rmq and output (a,ab∗ + e).

- S1(1, x) outputs (a,u) with u←Rq .
Now we claim the output of algorithm S0 and S1 satisfies the properties. First, for the algorithm S0,

(1) when x← D0(e), i.e. x = (a,b = as + e),

• S0(0, x) outputs (a,b + at) with t←Rmq , which is a fresh sample from D0(e) with secret s + t.

• S0(1, x) outputs (a,u) with u←Rq , which is a fresh sample from D1(e).

(2) when x← D1(e), i.e. x = (a,b) with randomly uniform b,

• S0(0, x) outputs (a,b + at) with t ← Rmq . Since b is randomly uniform and independent from a and t, it follows

b + at is uniform, which is a fresh sample from U1.

• S0(1, x) outputs (a,u) with u←Rq , which is a fresh sample from U2.

Then, for the algorithm S1,

(1) when x← D0(e), i.e. x = (a,b = as + e). The oracle Ox outputs LWE instances with the same secret s with b.

• S1(0, x) chooses e′ from the error distribution χ and outputs (a,ab∗ + e′). Since b = as + e and b′ = A′s + ē,

where A′ ← R(m−1)×m
q , b∗ =

[
b

b′

]
= A1s + e1 with A1 =

[
a

A′

]
∈ Rm×mq and e1 =

[
e

ē

]
∈ Rmq . Hence, ab∗ + e′ =

a(A1s + e1) + e′ = aA1s + ae1 + e′.

Now, we claim the distribution of (a,ab∗ + e′) is statistically close to the uniform distribution over R1×m
q ×Rq . Define

f(a,u∗) = aA1s + u∗ + e′ conditioned on any prescribed secret s. By Lemma 1 and Lemma 2, ∆(f(a,ae1), f(a,u)) 6
∆((a,ae1), (a,u)) = negl(n), where u is a uniform vector ofRq . The latter f(a,u) is a uniform vector since u is independent

from aA1s and e′. Thus, the output distribution U3 of S1(0, x) is statistically close to the uniform distribution.

• S1(1, x) outputs (a,u) with u←Rq , which is a fresh sample from U4.

(2) when x← D1(e), i.e. x = (a,b) where b is a uniform vector on Rq .
• S1(0, x) outputs a fresh sample from D0(e) with the secret b∗, since Ox is a uniform distribution.

• S1(1, x) outputs (a,u) with u←Rq , which is a fresh sample from D1(e).

In conclusion, D0(e) and D1(e) satisfy the adaptively public sampling property and the proof is completed by Theorem 1.

Appendix C Proof of Corollary

Lemma 3 (Adapted from [1], Lemma 5.2). Let α, β be real numbers with β > α. Let Uβ be uniform distribution over

[−β, β] and DZ,α be a discrete Gaussian distribution. Define distribution ψ = DZ,α + Uβ . We have

R2(Uβ‖ψ) =
1

C
(1 +

1

1− exp−πβ2/α2

α

β
) <

1

C
(1 + 1.05

α

β
),

where C = ρα(Z) is a constant.

Corollary 1. Let m > 2dlog2 qe + 2, α > ω(
√

lnnm) and α, β > 0 be real numbers with β = Ω(nα/ logn) for positive

integers n. Then there is a polynomial-time reduction from MLWEn,m,q(DR,α) to MLWEn,m,q(Ūβ), where Ūβ = 1
q
bqUβe

and Uβ is a continuous uniform distribution over [−β, β].

Proof. Let Uβ denote the uniform distribution over [−β, β] and ψ = DZ,α + Uβ denote the convolution of DZ,α and Uβ .

Our reduction contains three steps.

• First, we claim there is a reduction from MLWEn,m,q(DR,α) to MLWEn,m,q(ψ).

• Second, we prove a reduction from MLWEn,m,q(ψ) to MLWEn,m,q(Uβ).

• At last, we reduce MLWEn,m,q(Uβ) to MLWEn,m,q(Ūβ) by discretization.
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Step 1: Given an instance (a,b) from MLWEn,m,q(DR,α) problem. We choose independent samples b′i from Uβ as the

coefficients of element b′ ∈ R and transform (a,b) into (a,b + b′). If (a,b) is from uniform distribution, (a,b + b′) is

uniform. Otherwise, if (a,b) is from MLWE distribution with error from DR,α, then (a,b+b′) is from MLWE distribution

with each error coefficient from ψ.

Step 2: It suffices to argue the R2(Unβ ‖ψ
n) is polynomial bounded, where the error term from ψα (resp. Unβ ) contains

n independent coefficients from ψ (resp. Uβ). By the multiplicative property of RD and Lemma 3, we have R2(Unβ ‖ψ
n) 6

R2(Uβ‖ψ)n < (1 + 1.05α
β

)n 6 nO(1) due to β = Ω( nα
logn

). Therefore, a distinguisher of MLWEn,m,q(Uβ) problem can be

converted to a distinguisher of MLWEn,m,q(ψ) problem.

Step 3: Given an instance (a,b) from MLWEn,m,q(Uβ) problem. We round each coefficient bi of b to 1
q
bqbie. If (a,b)

is from uniform distribution, it is uniform. Otherwise, it is a sample from MLWEn,m,q(Ūβ).

In conclusion, there is a polynomial-time reduction from MLWEn,m,q(Dα) to MLWEn,m,q(Ūβ).
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