• Supplementary File •

Rényi Divergence on Learning with Errors

Yang TAO^{1,2}, Han WANG^{1,2*} & Rui ZHANG^{1,2}

¹State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China;
²School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

Appendix A Average Argument in Proof of Theorem 1

Theorem 1. For decision problems P and P', assume that $D_0(\cdot)$ and $D_1(\cdot)$ satisfy the adaptively public sampling property. Then, given a T-time PPT distinguisher \mathcal{A} for Problem P with advantage ϵ , we can construct a PPT distinguisher \mathcal{A}' for Problem P' with advantage bounded by $\frac{\epsilon}{8 \cdot R_a(\Phi \parallel \Phi')} \cdot (\frac{\epsilon}{8})^{\frac{a}{a-1}} - \frac{1}{2}\epsilon_1$ for any $a \in (1, +\infty]$) with running time at most $O(\frac{1}{\epsilon^2} \log(\frac{R_a(\Phi \parallel \Phi')}{\epsilon^{\frac{a}{a-1}+1}})(T_S + T))$ where T_S is the upper bound of running time of S_0 and S_1 .

Recall that $\mathcal{S}'_1 = \{r|p_1(r) - p_0(r) \ge \frac{\epsilon}{2} + 3\epsilon_1\}, \mathcal{S}'_2 = \{r|-\epsilon_1 \le p_1(r) - p_0(r) < \frac{\epsilon}{2} + 3\epsilon_1\}$ and $\mathcal{S}'_3 = \{r|p_1(r) - p_0(r) < -\epsilon_1\}$. Let $a_i = \frac{1}{2} \Pr[\mathcal{A}(x) = 1|x \leftarrow D_1(r)] + \frac{1}{2} \Pr[\mathcal{A}(x) = 0|x \leftarrow D_0(r)] = \frac{1}{2}(1 + p_1(r) - p_0(r))$ when randomness r is in \mathcal{S}'_i for i = 1, 2, 3. Due to the definition of \mathcal{S}'_i for i = 1, 2, 3, we have

$$\frac{1}{2}(1+\frac{\epsilon}{2}+3\epsilon_1)\leqslant a_1\leqslant 1,\tag{A1}$$

$$\frac{1}{2}(1-\epsilon_1) \leqslant a_2 < \frac{1}{2}(1+\frac{\epsilon}{2}+3\epsilon_1), \tag{A2}$$

$$0 \leqslant a_3 < \frac{1}{2}(1-\epsilon_1). \tag{A3}$$

Since the advantage of \mathcal{A} is $Adv(\mathcal{A}) = \epsilon$, we have

$$\epsilon = Adv(\mathcal{A}) = \sum_{r} \{\Phi(r)(\Pr[\mathcal{A}(x) = 1 | x \leftarrow D_1(r)] - \Pr[\mathcal{A}(x) = 1 | x \leftarrow D_0(r)])\}$$
(A4)

$$=\sum_{i=1}^{3} \Phi(S_i')(2a_i - 1).$$
(A5)

Hence, the probability

$$\frac{1+\epsilon}{2} = \Phi(\mathcal{S}'_1)a_1 + \Phi(\mathcal{S}'_2)a_2 + \Phi(\mathcal{S}'_3)a_3 \leqslant \Phi(\mathcal{S}'_1)a_1 + (\Phi(\mathcal{S}'_2) + \Phi(\mathcal{S}'_3))a_2$$
(A6)

$$\leqslant \Phi(\mathcal{S}'_1) + (1 - \Phi(\mathcal{S}'_1))a_2 \leqslant \Phi(\mathcal{S}'_1) + a_2 \tag{A7}$$

$$\leq \Phi(\mathcal{S}'_1) + \frac{1}{2}(1 + \frac{\epsilon}{2} + 3\epsilon_1), \tag{A8}$$

infers $\Phi(S'_1) \ge \frac{\epsilon}{4} - \frac{3}{2}\epsilon_1$. Since ϵ_1 is a negligible function of n, we assert $\epsilon_1 < \frac{\epsilon}{12}$ as the security parameter n increases. Hence, it follows $\Phi(S'_1) \ge \frac{\epsilon}{8}$.

Appendix B Proof of Theorem 2

Lemma 1. Let X, Y be two random variables taking values in a common set A. For any (possibly randomized) function f with domain A, the statistical distance between f(X) and f(Y) satisfies $\Delta(f(X), f(Y)) \leq \Delta(X, Y)$.

Lemma 2 ([2], Lemma 7). Let $\mathcal{R} = \mathbb{Z}[x]/(x^n + 1)$, $\mathcal{R}_q = \mathbb{Z}_q[x]/(x^n + 1)$ for $n \ge 4$ a power of 2 and $q = 3^k$ a power of 3. Let $m \ge 2\lceil \log q \rceil + 2$ and $\alpha \ge \omega(\sqrt{\ln nm})$. With overwhelming probability over the choice of $\mathbf{a} \leftarrow \mathcal{R}_q^{1 \times m}$, if $\mathbf{x} \leftarrow D_{\mathcal{R},\alpha}^m$, then $\mathbf{a}\mathbf{x}$ is within negligible statistical distance from the uniform distribution over \mathcal{R} .

^{*} Corresponding author (email: wanghan@iie.ac.cn)

Theorem 2. Let χ' and $\chi = D_{\mathcal{R},\alpha}$ be two error distributions over \mathcal{R} with $\operatorname{Supp}(\chi') \subseteq \operatorname{Supp}(\chi)$. Let $\mathbf{a} \leftarrow \mathcal{R}_q^{1 \times m}$, $\mathbf{s} \leftarrow \mathcal{R}_q^{m \times 1}$, $m \ge 2\lceil \log_2 q \rceil + 2$ and $\alpha \ge \omega(\sqrt{\ln nm})$. Then, if there is a PPT distinguisher \mathcal{A} against $\operatorname{MLWE}_{n,m,q}(\chi')$ with advantage ε , there exists a PPT distinguisher \mathcal{A}' against the $\operatorname{MLWE}_{n,m,q}(\chi)$ with the access to oracle \mathcal{O}_x with advantage $\Omega(\frac{\varepsilon^{1+\alpha/(\alpha-1)}}{R_a(\chi'\|\chi)})$ and running time $O(\frac{1}{\epsilon^2}\log(\frac{R_a(\Phi\|\Phi')}{\epsilon^{\frac{\alpha}{\alpha-1}+1}})(T_S+T))$ where T_S is the upper bound of running time of S_0 and S_1 , for any $a \in (1, +\infty]$.

Proof. By Theorem 1, it suffices to verify the distributions satisfying the adaptively public sampling property. Set the error term as the randomness from χ . Define the distribution $D_0(\mathbf{e}) = (\mathbf{a}, \mathbf{b} = \mathbf{as} + \mathbf{e})$ with $\mathbf{a} \leftarrow \mathcal{R}_q^{1 \times m}, \mathbf{s} \leftarrow \mathcal{R}_q^m$, $D_1(\mathbf{e}) = (\mathbf{a}, \mathbf{u})$ with $\mathbf{a} \leftarrow \mathcal{R}_q^{1 \times m}$ and $\mathbf{u} \leftarrow \mathcal{R}_q$. Since the distribution $D_1(\mathbf{e})$ is independent from the randomness \mathbf{e} , we consider instances of D_1 can be corresponding to any randomness.

In details, for any instance $x = (\mathbf{a}, \mathbf{b}) \in \mathcal{R}_q^{1 \times m} \times \mathcal{R}_q$ from the distribution $D_b(\mathbf{e})$ for $b \in \{0, 1\}$, we define the adaptively public sampling algorithms as follows. Define $\widetilde{D}_0 = D_0$, $\widetilde{D}_1 = D_1$, $U_1 = U_2 = U_4$ is the uniform distribution over $\mathcal{R}_q^{1 \times m} \times \mathcal{R}_q$ and U_3 is a distribution statistically close to the uniform distribution, which is defined later.

- Algorithm S_0 with $x = (\mathbf{a}, \mathbf{b})$:
- $S_0(0, x)$ outputs $(\mathbf{a}, \mathbf{b} + \mathbf{at})$ with $\mathbf{t} \leftarrow \mathcal{R}_q^m$.
- $S_0(1, x)$ outputs (\mathbf{a}, \mathbf{u}) with $\mathbf{u} \leftarrow \mathcal{R}_q$.
- Algorithm S_1 with $x = (\mathbf{a}, \mathbf{b})$:

- $S_1(0,x)$ first samples a random **e**, and then gets additional m-1 samples $\mathbf{b}'_i \in \mathcal{R}_q$ by accessing the oracle \mathcal{O}_x for

$$i \in \{1, \cdots, m-1\}$$
. Set $\mathbf{b}' = [\mathbf{b}'_1 | \mathbf{b}'_2 | \cdots | \mathbf{b}'_{m-1}]^t \in \mathcal{R}_q^{m-1}, \ \mathbf{b}^* = \begin{bmatrix} \mathbf{b} \\ \mathbf{b}' \end{bmatrix} \in \mathcal{R}_q^m$ and output $(\mathbf{a}, \mathbf{ab}^* + \mathbf{e})$.

- $S_1(1, x)$ outputs (\mathbf{a}, \mathbf{u}) with $\mathbf{u} \leftarrow \mathcal{R}_q$.

Now we claim the output of algorithm S_0 and S_1 satisfies the properties. First, for the algorithm S_0 , (1) when $x \leftarrow D_0(\mathbf{e})$, i.e. $x = (\mathbf{a}, \mathbf{b} = \mathbf{as} + \mathbf{e})$,

• $S_0(0,x)$ outputs $(\mathbf{a}, \mathbf{b} + \mathbf{at})$ with $\mathbf{t} \leftarrow \mathcal{R}_q^m$, which is a fresh sample from $D_0(\mathbf{e})$ with secret $\mathbf{s} + \mathbf{t}$.

• $S_0(1, x)$ outputs (\mathbf{a}, \mathbf{u}) with $\mathbf{u} \leftarrow \mathcal{R}_q$, which is a fresh sample from $D_1(\mathbf{e})$.

(2) when $x \leftarrow D_1(\mathbf{e})$, i.e. $x = (\mathbf{a}, \mathbf{b})$ with randomly uniform \mathbf{b} ,

• $S_0(0,x)$ outputs $(\mathbf{a}, \mathbf{b} + \mathbf{at})$ with $\mathbf{t} \leftarrow \mathcal{R}_q^m$. Since **b** is randomly uniform and independent from **a** and **t**, it follows $\mathbf{b} + \mathbf{at}$ is uniform, which is a fresh sample from U_1 .

• $S_0(1, x)$ outputs (\mathbf{a}, \mathbf{u}) with $\mathbf{u} \leftarrow \mathcal{R}_q$, which is a fresh sample from U_2 .

Then, for the algorithm S_1 ,

(1) when $x \leftarrow D_0(\mathbf{e})$, i.e. $x = (\mathbf{a}, \mathbf{b} = \mathbf{as} + \mathbf{e})$. The oracle \mathcal{O}_x outputs LWE instances with the same secret \mathbf{s} with \mathbf{b} .

• $S_1(0,x)$ chooses \mathbf{e}' from the error distribution χ and outputs $(\mathbf{a}, \mathbf{ab}^* + \mathbf{e}')$. Since $\mathbf{b} = \mathbf{as} + \mathbf{e}$ and $\mathbf{b}' = \mathbf{A}'\mathbf{s} + \bar{\mathbf{e}}$, where $\mathbf{A}' \leftarrow \mathcal{R}_q^{(m-1)\times m}$, $\mathbf{b}^* = \begin{bmatrix} \mathbf{b} \\ \mathbf{b}' \end{bmatrix} = \mathbf{A}_1\mathbf{s} + \mathbf{e}_1$ with $\mathbf{A}_1 = \begin{bmatrix} \mathbf{a} \\ \mathbf{A}' \end{bmatrix} \in \mathcal{R}_q^{m \times m}$ and $\mathbf{e}_1 = \begin{bmatrix} \mathbf{e} \\ \bar{\mathbf{e}} \end{bmatrix} \in \mathcal{R}_q^m$. Hence, $\mathbf{ab}^* + \mathbf{e}' = \mathbf{A}'\mathbf{b}'$

 $\mathbf{a}(\mathbf{A}_1\mathbf{s} + \mathbf{e}_1) + \mathbf{e}' = \mathbf{a}\mathbf{A}_1\mathbf{s} + \mathbf{a}\mathbf{e}_1 + \mathbf{e}'.$

Now, we claim the distribution of $(\mathbf{a}, \mathbf{ab}^* + \mathbf{e}')$ is statistically close to the uniform distribution over $\mathcal{R}_q^{1 \times m} \times \mathcal{R}_q$. Define $f(\mathbf{a}, \mathbf{u}^*) = \mathbf{aA}_1 \mathbf{s} + \mathbf{u}^* + \mathbf{e}'$ conditioned on any prescribed secret \mathbf{s} . By Lemma 1 and Lemma 2, $\Delta(f(\mathbf{a}, \mathbf{ae}_1), f(\mathbf{a}, \mathbf{u})) \leq \Delta(((\mathbf{a}, \mathbf{ae}_1), (\mathbf{a}, \mathbf{u})) = negl(n)$, where \mathbf{u} is a uniform vector of \mathcal{R}_q . The latter $f(\mathbf{a}, \mathbf{u})$ is a uniform vector since \mathbf{u} is independent from $\mathbf{aA}_1 \mathbf{s}$ and \mathbf{e}' . Thus, the output distribution U_3 of $S_1(0, x)$ is statistically close to the uniform distribution.

• $S_1(1, x)$ outputs (\mathbf{a}, \mathbf{u}) with $\mathbf{u} \leftarrow \mathcal{R}_q$, which is a fresh sample from U_4 .

- (2) when $x \leftarrow D_1(\mathbf{e})$, i.e. $x = (\mathbf{a}, \mathbf{b})$ where **b** is a uniform vector on \mathcal{R}_q .
 - $S_1(0,x)$ outputs a fresh sample from $D_0(\mathbf{e})$ with the secret \mathbf{b}^* , since \mathcal{O}_x is a uniform distribution.
 - $S_1(1, x)$ outputs (\mathbf{a}, \mathbf{u}) with $\mathbf{u} \leftarrow \mathcal{R}_q$, which is a fresh sample from $D_1(\mathbf{e})$.

In conclusion, $D_0(\mathbf{e})$ and $D_1(\mathbf{e})$ satisfy the adaptively public sampling property and the proof is completed by Theorem 1.

Appendix C Proof of Corollary

Lemma 3 (Adapted from [1], Lemma 5.2). Let α, β be real numbers with $\beta \ge \alpha$. Let U_{β} be uniform distribution over $[-\beta, \beta]$ and $D_{\mathbb{Z},\alpha}$ be a discrete Gaussian distribution. Define distribution $\psi = D_{\mathbb{Z},\alpha} + U_{\beta}$. We have

$$R_2(U_\beta \| \psi) = \frac{1}{C} \left(1 + \frac{1}{1 - \exp^{-\pi\beta^2/\alpha^2}} \frac{\alpha}{\beta} \right) < \frac{1}{C} \left(1 + 1.05 \frac{\alpha}{\beta} \right),$$

where $C = \rho_{\alpha}(\mathbb{Z})$ is a constant.

Corollary 1. Let $m \ge 2\lceil \log_2 q \rceil + 2$, $\alpha \ge \omega(\sqrt{\ln nm})$ and $\alpha, \beta > 0$ be real numbers with $\beta = \Omega(n\alpha/\log n)$ for positive integers *n*. Then there is a polynomial-time reduction from MLWE_{*n*,*m*,*q*}(*D*_{*R*,*\alpha*)} to MLWE_{*n*,*m*,*q*}(\bar{U}_{β}), where $\bar{U}_{\beta} = \frac{1}{q} \lfloor qU_{\beta} \rceil$ and U_{β} is a continuous uniform distribution over $[-\beta, \beta]$.

Proof. Let U_{β} denote the uniform distribution over $[-\beta, \beta]$ and $\psi = D_{\mathbb{Z},\alpha} + U_{\beta}$ denote the convolution of $D_{\mathbb{Z},\alpha}$ and U_{β} . Our reduction contains three steps.

- First, we claim there is a reduction from $MLWE_{n,m,q}(D_{\mathcal{R},\alpha})$ to $MLWE_{n,m,q}(\psi)$.
- Second, we prove a reduction from $MLWE_{n,m,q}(\psi)$ to $MLWE_{n,m,q}(U_{\beta})$.
- At last, we reduce $MLWE_{n,m,q}(U_{\beta})$ to $MLWE_{n,m,q}(\bar{U}_{\beta})$ by discretization.

Step 1: Given an instance (\mathbf{a}, \mathbf{b}) from $\text{MLWE}_{n,m,q}(D_{\mathcal{R},\alpha})$ problem. We choose independent samples \mathbf{b}'_i from U_β as the coefficients of element $\mathbf{b}' \in \mathcal{R}$ and transform (\mathbf{a}, \mathbf{b}) into $(\mathbf{a}, \mathbf{b} + \mathbf{b}')$. If (\mathbf{a}, \mathbf{b}) is from uniform distribution, $(\mathbf{a}, \mathbf{b} + \mathbf{b}')$ is uniform. Otherwise, if (\mathbf{a}, \mathbf{b}) is from MLWE distribution with error from $D_{\mathcal{R},\alpha}$, then $(\mathbf{a}, \mathbf{b} + \mathbf{b}')$ is from MLWE distribution with error coefficient from ψ .

Step 2: It suffices to argue the $R_2(U_{\beta}^n || \psi^n)$ is polynomial bounded, where the error term from ψ_{α} (resp. U_{β}^n) contains n independent coefficients from ψ (resp. U_{β}). By the multiplicative property of RD and Lemma 3, we have $R_2(U_{\beta}^n || \psi^n) \leq R_2(U_{\beta} || \psi)^n < (1 + 1.05 \frac{\alpha}{\beta})^n \leq n^{O(1)}$ due to $\beta = \Omega(\frac{n\alpha}{\log n})$. Therefore, a distinguisher of MLWE_{n,m,q}(U_{β}) problem can be converted to a distinguisher of MLWE_{n,m,q}(ψ) problem.

Step 3: Given an instance (\mathbf{a}, \mathbf{b}) from MLWE_{$n,m,q}(<math>U_\beta$) problem. We round each coefficient b_i of \mathbf{b} to $\frac{1}{q} \lfloor qb_i \rceil$. If (\mathbf{a}, \mathbf{b}) is from uniform distribution, it is uniform. Otherwise, it is a sample from MLWE_{$n,m,q}(\bar{U}_\beta)$.</sub></sub>

In conclusion, there is a polynomial-time reduction from $MLWE_{n,m,q}(D_{\alpha})$ to $MLWE_{n,m,q}(\bar{U}_{\beta})$.

References

- 1 Bai S, Langlois A, Lepoint T, et al. Improved security proofs in lattice-based cryptography: using the rényi divergence rather than the statistical distance. In: Iwata T, Cheon J H, eds. Advances in Cryptology ASIACRYPT 2015, Auckland, 2015. 3-24
- 2 Ducas L, Micciancio D. Improved short lattice signatures in the standard model. In: Garay J A, Gennaro R, eds. Advances in Cryptology CRYPTO 2014, Santa Barbara, 2014. 335-352