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Appendix A Average Argument in Proof of Theorem 1

Theorem 1. For decision problems P and P’, assume that Dg(-) and D1 () satisfy the adaptively public sampling property.
Then, given a T-time PPT distinguisher .4 for Problem P with advantage €, we can construct a PPT distinguisher A’ for

Problem P’ with advantage bounded by W . (%)ﬁ - %61 for any a € (1,4o00]) with running time at most

O(ei2 log(%ﬁi’))(TS + T)) where T is the upper bound of running time of Sp and Si.
€ea—

Recall that S| = {r|p1(r) —po(r) = § +3e1}, Sy = {r| —e1 < p1(r) —po(r) < 5 +3e1} and S5 = {r|p1(r) —po(r) < —e1}.
Let a; = %Pr[A(a:) = 1llz < Di(r)] + %Pr[A(x) = 0lz <= Do(r)] = %(1 + p1(r) — po(r)) when randomness r is in S/ for
i =1,2,3. Due to the definition of SZ{ for i = 1,2,3, we have

1
SA+ 5 +3a)<a <1, (A1)
Lo ey <as <ia+43a) (A2)
2 €1)Xx a2 B B €1),
1
0< a3z < 5(1—61). (A3)

Since the advantage of A is Adv(A) = ¢, we have

€= Adv(A) =Y {®(r)(PrlA(z) = 1|z + D1(r)] — Pr[A(z) = 1|z < Do(r)))} (A4)
= (S)(2a; - 1). (A5)
=1

Hence, the probability
1+e

5 = (S1)a1 + B(S3)az + B(S)az < D(Sy)ar + (P(S3) + B(S3))az (A6)
< O(87) + (1 - ©(S)))az < ©(S7) + az (AT)
1 €
< (S + 1+ 5 +3e), (A8)
infers ®(S]) > 1 %el. Since €1 is a negligible function of n, we assert €1 < {5 as the security parameter n increases.
Hence, it follows ®(S7) > g.

Appendix B Proof of Theorem 2
Lemma 1. Let X,Y be two random variables taking values in a common set A. For any (possibly randomized) function
f with domain A, the statistical distance between f(X) and f(Y') satisfies A(f(X), f(Y)) < A(X,Y).

Lemma 2 ( [2], Lemma 7). Let R = Z[z]/(z™ + 1), Rq = Zg[x]/(z™ + 1) for n > 4 a power of 2 and ¢ = 3* a power of
3. Let m > 2[logq] + 2 and a > w(vVInnm). With overwhelming probability over the choice of a <+ ’Réxm, if x + D .,
then ax is within negligible statistical distance from the uniform distribution over R.
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Theorem 2. Let x’ and x = Dg,, be two error distributions over R with Supp(x’) C Supp(x). Let a <« ’Réxm,
s < R m > 2[log, q] + 2 and o > w(vInnm). Then, if there is a PPT distinguisher A against MLWEy,  ¢(x’) with

advantage ¢, there exists a PPT distinguisher A’ against the MLWE,, 1, ¢(x) with the access to oracle O, with advantage

Q(sl+a/(n,—l) Ro (2|®))
€

W) and running time O(}2 log(=“—7")(Ts + T)) where Ty is the upper bound of running time of So and Si,

a1
for any a € (1, +o0].

Proof. By Theorem 1, it suffices to verify the distributions satisfying the adaptively public sampling property. Set
the error term as the randomness from x. Define the distribution Dg(e) = (a,b = as + e) with a « R;*™,s RY,
Di(e) = (a,u) with a + RL*™ and u + Ry. Since the distribution Dj(e) is independent from the randomness e, we
consider instances of D; can be corresponding to any randomness.

In details, for any instance z = (a,b) € R(l]xm X Rq from the distribution Dy (e) for b € {0, 1}, we define the adaptively
public sampling algorithms as follows. Define l~)0 = Do, l~)1 = D1,U; = Us = Uy is the uniform distribution over ’Réxm X Ryq
and Us is a distribution statistically close to the uniform distribution, which is defined later.

e Algorithm Sy with = = (a, b):

- S0(0,z) outputs (a, b + at) with t < Ry

- So(1,z) outputs (a,u) with u + Ry4.

e Algorithm S; with z = (a, b):

- S1(0,z) first samples a random e, and then gets additional m — 1 samples b, € R, by accessing the oracle O for

b
i€ {l,---,m—1}. Set b’ = [bh|b}|---|b/, ]t € RI"™!, b* = {b’] € Ry and output (a,ab* +e).

- S1(1,z) outputs (a,u) with u + Rq.
Now we claim the output of algorithm Sy and S; satisfies the properties. First, for the algorithm Sop,
(1) when = < Dg(e), i.e. z = (a,b=as +e),
e S0(0,z) outputs (a,b + at) with t < Ry*, which is a fresh sample from Do(e) with secret s + t.
e So(1,z) outputs (a,u) with u <— R4, which is a fresh sample from D (e).
(2) when z < Di(e), i.e. x = (a,b) with randomly uniform b,

e S0(0,z) outputs (a,b + at) with t < Ry*. Since b is randomly uniform and independent from a and t, it follows
b + at is uniform, which is a fresh sample from Uj.

e So(1,z) outputs (a,u) with u < R, which is a fresh sample from Us.

Then, for the algorithm St,
(1) when < Dg(e), i.e. = (a,b = as + e). The oracle O, outputs LWE instances with the same secret s with b.

e S51(0,z) chooses € from the error distribution x and outputs (a,ab* + €’). Since b = as + e and b’ = A’s + &,
where A’ « R{mTDX™ b o
a(Ais+e1)+e =aAis+ae +¢€.

Now, we claim the distribution of (a,ab* + €’) is statistically close to the uniform distribution over R}me X Rq. Define
f(a,u*) = aAjs + u* + € conditioned on any prescribed secret s. By Lemma 1 and Lemma 2, A(f(a,ae1), f(a,u)) <
A((a,ae1), (a,u)) = negl(n), where u is a uniform vector of Rq4. The latter f(a, u) is a uniform vector since u is independent
from aA;s and €’. Thus, the output distribution Us of S1(0, z) is statistically close to the uniform distribution.

e S1(1,z) outputs (a,u) with u < R, which is a fresh sample from Uy.

b
:| = Ais + e with Ay = [:/:| € Ry*™ and e1 = |:f:| € RJ*. Hence, ab* +¢' =
e

(2) when z < Dq(e), i.e. z = (a,b) where b is a uniform vector on Rg.
e S51(0,z) outputs a fresh sample from Dg(e) with the secret b*, since O, is a uniform distribution.
e S1(1,z) outputs (a,u) with u < R4, which is a fresh sample from D1 (e).
In conclusion, Dg(e) and D (e) satisfy the adaptively public sampling property and the proof is completed by Theorem 1.

Appendix C Proof of Corollary

Lemma 3 (Adapted from [1], Lemma 5.2). Let «, 8 be real numbers with 8 > a. Let Ug be uniform distribution over
[-B,8] and Dz o be a discrete Gaussian distribution. Define distribution ¥ = Dy o + Ug. We have

1 1 a 1 a
RQ(UBH"L’) = 5(1 + Wg) < 5(1 + 1.055),

where C = po(Z) is a constant.
Corollary 1. Let m > 2[log, ¢] 4+ 2, @ > w(vVInnm) and a, 8 > 0 be real numbers with 8 = Q(na/logn) for positive
integers n. Then there is a polynomial-time reduction from MLWEy, m,q(DR,a) to MLWE, m q(Ug), where Ug = %l_qU,g.I
and Upg is a continuous uniform distribution over [—23, §].
Proof.  Let Ug denote the uniform distribution over [—3, 8] and ¢ = Dz o + Ug denote the convolution of Dz o and Ug.
Our reduction contains three steps.

e First, we claim there is a reduction from MLWEy m ¢(DR o) to MLWEy, m q(9).

e Second, we prove a reduction from MLWE, m ¢(¢) to MLWEy m,¢(Ug)-

e At last, we reduce MLWEp, 1m,q(Ug) to MLWEy m, q(Ug) by discretization.
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Step 1: Given an instance (a,b) from MLWEy, 1 ¢(DR,o) problem. We choose independent samples b/ from Ug as the
coefficients of element b’ € R and transform (a,b) into (a,b + b’). If (a,b) is from uniform distribution, (a,b + b’) is
uniform. Otherwise, if (a, b) is from MLWE distribution with error from Dx o, then (a,b+b’) is from MLWE distribution
with each error coefficient from 1.

Step 2: It suffices to argue the R2(Ug||¥)") is polynomial bounded, where the error term from ta (resp. Ug) contains
n independent coefficients from 1 (resp. Ug). By the multiplicative property of RD and Lemma 3, we have RQ(UgHwn) <

Ro(Ugll)™ < (1 + 1.05%)" <nP due to g = Q(l:gan)' Therefore, a distinguisher of MLWEy, m,,¢(Ug) problem can be
converted to a distinguisher of MLWEy, , 4(1)) problem.

Step 3: Given an instance (a,b) from MLWE,, 1, 4(Ug) problem. We round each coefficient b; of b to équ,-]. If (a,b)
is from uniform distribution, it is uniform. Otherwise, it is a sample from MLWEy m,q(Ug).

In conclusion, there is a polynomial-time reduction from MLWEy m,q(Da) to MLWEp m q(Ug).

References
1 Bai S, Langlois A, Lepoint T, et al. Improved security proofs in lattice-based cryptography: using the rényi divergence
rather than the statistical distance. In: Iwata T, Cheon J H, eds. Advances in Cryptology - ASTACRYPT 2015,
Auckland, 2015. 3-24
2 Ducas L, Micciancio D. Improved short lattice signatures in the standard model. In: Garay J A, Gennaro R, eds.
Advances in Cryptology - CRYPTO 2014, Santa Barbara, 2014. 335-352



	Average Argument in Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary

