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Abstract It is a widely accepted view that considering the memory effects of historical information (driving

operations) is beneficial for vehicle trajectory prediction models to improve prediction accuracy. However,

many commonly used models (e.g., long short-term memory, LSTM) can only implicitly simulate memory

effects, but lack effective mechanisms to capture memory effects from sequence data and estimate their

effective time range (ETR). This shortage makes it hard to dynamically configure the most suitable length of

used historical information according to the current driving behavior, which harms the good understanding of

vehicle motion. To address this problem, we propose a modified trajectory prediction model based on ordered

neuron LSTM (ON-LSTM). We demonstrate the feasibility of ETR estimation based on ON-LSTM and

propose an ETR estimation method. We estimate the ETR of driving fluctuations and lane change operations

on the NGSIM I-80 dataset. The experiment results prove that the proposed method can well capture the

memory effects during trajectory prediction. Moreover, the estimated ETR values are in agreement with our

intuitions.
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1 Introduction

How to identify and understand vehicle driving behaviors has been a hot research issue for advanced driv-

ing assistance system (ADAS) and automated vehicles in the past few decades. Here, a driving behavior

depicts a set of implicit but understandable rules that the driver reacts to the surrounding vehicles (en-

vironments) and performs targeted driving operations. The driving behaviors can be manually classified

and named according to our understanding of the vehicle movements in the research scenario (e.g., going

straight, lane change, overtaking, etc.). There are various specific tasks of ADAS and automated vehicles

that heavily rely on driving behavior recognition, such as the vehicle trajectory prediction we focus on in

this paper.

There is a commonly accepted view that considering historical information is crucial for behavior

recognition and accurate trajectory prediction [1–4]. To support this view, many researchers have proven

that an instantaneous driving operation can generate a long-term impact on vehicle behavior (movement),

and this phenomenon is called the memory effect [1–3]. The memory effect is an implicit mechanism during
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driving, which cannot be directly observed. It can only be indirectly reflected through some specially

designed models or features.

Some early studies [5–7] did not consider historical information (nor memory effects) and only used the

current observed states (e.g., positions, velocities, accelerations, etc.) for trajectory prediction. These

models are easy to calculate, but they do not consider the uncertainties of the observed states [8] and

cannot distinguish driving fluctuations1) from vehicle behavior changes due to the lack of historical

information, resulting in unreliable long-term predictions.

In the last decade, researchers gradually realize the importance of historical information and memory

effects. Almost all the recent studies utilize historical information, while some studies try various methods

to simplify or simulate memory effects for more accurate predictions. Some studies adopt Gaussian process

regression (GPR) to consider historical coordinates (but not to consider memory effects) of the target

vehicle in trajectory calculations [9–11]. Some studies extract some statistics (e.g., RMS, mean, etc.) of

the observed states in multiple time windows or design some heuristic features to simplify and quantize

the memory effects [12–14]. Recently, LSTM [15–17] became a commonly used model for trajectory

prediction because its gate structures allowed the long-term retention of information and thus could

model long-term dependencies of temporal data [18–22]. This characteristic helps to implicitly simulate

the memory effects during the trajectory prediction and further improves prediction accuracy.

However, an important question about memory effects remains unsolved: How to estimate the effective

time range (ETR) of the memory effect generated by a specific driving operation2)? This question becomes

crucial when we determine the time range of the input historical information for behavior recognition and

trajectory prediction3). We hope that we can automatically obtain the most appropriate range that best

suits the studied behavior by estimating the ETR of the corresponding memory effect. However, there has

not been a mature ETR estimation method yet; thus most of the recent studies can only find a relatively

suitable range by enumerating and testing various candidate values [21,23]. This selection process is time

consuming and the selected range cannot be directly generalized to other datasets. Moreover, this value

is usually overlarge to ensure that sufficient historical information can be provided for most behaviors,

but actually, the provided historical information is redundant for many behaviors.

As described above, the commonly used LSTM can implicitly simulate the memory effects through its

special gate structures. However, two existing problems make it difficult for LSTM to estimate ETR of

memory effects. First, LSTM cannot capture the start time of a certain memory effect by analyzing some

characteristics (e.g., some special change laws) of its gate values. Second, LSTM cannot evaluate the

correlation degree of information between two sequence points to determine the end time of a memory

effect.

There is a common reason for the above two problems. Since the calculation process of LSTM is a

“black box”, both the internal variables and gate values of LSTM cells lack semantics and thus cannot

be used to analyze memory effects [24]. To solve the above problems, inspired by the good application of

ordered neuron LSTM (ON-LSTM) on unsupervised constituency parsing [24], we modify our previous

trajectory prediction model for a single vehicle (i.e., the Cs in [25]) by adopting ON-LSTM instead of

classical LSTM and propose an ETR estimation method in this paper.

The ON-LSTM model introduces the concept of information levels (i.e., a kind of semantic) to dis-

tinguish the information that influences different time ranges. The corresponding hierarchical updating

logic of ON-LSTM cells maintains the semantics of levels during the calculation process, which enables

us to analyze the correlation degrees between adjacent input information (in Section 2). Moreover, the

relationship between memory effects and the change laws of the gate values of ON-LSTM cells will be

discussed in Subsection 3.2. These two characteristics of ON-LSTM well support the feasibility of ETR

1) In this paper, a driving fluctuation refers to a slight driving operation that does not aim to change the vehicle behavior

(e.g., the lateral rectification when the vehicle approaches an adjacent lane during going straight).
2) In this paper, the term driving operation includes both targeted behavior change operations and driving fluctuations.
3) An appropriate range of historical information is important for behavior recognition and trajectory prediction. If the

range is too small, the historical information is not sufficient to express the characteristics of the current behavior. If the

range is too large, the earlier information is not effective (even harmful) to assist the current recognition and prediction due

to the weak correlation.
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estimation.

We train the modified model and evaluate our ETR estimation method on the NGSIM I-80 dataset.

Specifically, we respectively evaluate the ETR of the memory effects caused by the fluctuations during

going straight movements and lane change operations. The experiment demonstrates that the variations

of the gate values in ON-LSTM models can well capture the driving operations (i.e., the start of the

memory effect). Moreover, the estimated ETR values of the different driving behaviors have significant

differences but are in agreement with our intuitions.

The main contributions of this paper can be summarized as follows.

• We propose a novel ETR estimation method based on ON-LSTM for vehicle memory effects during

driving. This method helps to better understand the mechanism of memory effects and to set more

appropriate horizons of historical information for the trajectory prediction problem.

• The proposed method does not increase the time complexity nor the space complexity of the model

and can run both online and offline. Therefore, this method can be easily integrated into LSTM-based

models.

To better present our findings, the rest of this paper is arranged as follows. Section 2 describes the

structure, calculations, and applications of the ON-LSTM model. Section 3 describes the method to

estimate ETR and presents the results of the experiment. Finally, Section 4 concludes the paper.

2 The structure and comprehension of ON-LSTM

The ON-LSTM model is derived from the classical LSTM model by modifying the basic structure of

LSTM cells [24]. It not only inherits the ability of classical LSTM to memorize historical information

through the gate structures and further to simulate the memory effect of sequences, but also introduces

the concept of “information levels” in variables to construct a hierarchical updating logic for information

and simulate more complex memory effects. Moreover, its structure enables us to analyze the correlation

degrees between sequence points by observing the gate values. This new function is important for ETR

estimation.

In this section, we will introduce the detailed structure and advantages of ON-LSTM. In Subsection 2.1,

we will present the structure and the calculations of basic ON-LSTM cells. In Subsection 2.2, we will

first propose the method to evaluate correlation degrees. Then we will describe the typical usages of

ON-LSTM and introduce its application in this paper.

2.1 The structure of ON-LSTM cells

In this subsection, we will compare the different structures and calculations between classical LSTM cells

and ON-LSTM cells.

The classical LSTM cell. The classical LSTM cell is a basic memory unit of LSTM. It also allows

LSTM to automatically forget some historical information, incorporate the new information, and generate

output vector when new sequence data vector xt is input at the time t. The above three functions are

respectively controlled by three gate vectors: the forget gate ft, the input gate it and the output gate

ot. The calculation of the updating process is formulated by














































ft = σ (Wfxt +Ufht−1 + bf ),

it = σ (Wixt +Uiht−1 + bt),

ot = σ (Woxt +Uoht−1 + bi),

ĉt = tanh (Wcxt +Ucht−1 + bc),

ct = ft ◦ ct−1 + it ◦ ĉt,

ht = ot ◦ tanh (ct),

(1)

where σ is the Sigmoid function. The operator “◦” means element-wise product. The parameters Wf ,

Uf and bf (Wi, Wo, Wc, Ui, Uo, Uc, bi, bo, bc) are the learned weight matrices and bias vectors for



Dai S Z, et al. Sci China Inf Sci September 2020 Vol. 63 190202:4

ft (it, ot, ĉt). The calculation of ct expresses the fusion between the valid historical information ct−1

(filtered by ft) and the new input information (filtered by it). It also serves as the memorized historical

information for the next time step. The vector ht defines the output vector controlled by ot.

The ON-LSTM cell. The elements of the vectors in classical LSTM cells are unordered and lack

of semantics. Here, we directly introduce the term “ordered” from [24] and retain its original meaning

in [24]. In this paper, an ordered vector means that the vector elements have some semantic continuity

based on their locations in the vector, rather than that the elements have been sorted according to some

measures (such as the numerical values).

In the classical LSTM, since the semantic of vector order is not explicitly defined, the learned knowledge

of vector elements is relatively random (and different elements may learn similar things), which actually

waste some potentials of the occupied space. In ON-LSTM cells, the semantic of order is defined as

information level, which distinguishes and stores the information that influences different ranges of time:

high-level elements store long-term information which is kept for a long time, while low-level elements

store short-term information that can be rapidly forgotten [24]. This definition supports ON-LSTM to

learn extra knowledge of ordered semantics without increasing the space complexity of the LSTM network.

Moreover, this hierarchical structure allows us to separately process the transmission, integration, and

forgetting of the information at different levels and further to simulate a more complex memory effect.

Following the above idea, all the gate vectors (i.e., ft, it, ot) and (hidden) state vectors (i.e., ht, ĉt,

ct) become ordered vectors. Without loss of generality, we set the latter elements in the vectors as the

memory unit for higher-level information.

To organize the calculation of the hierarchical updating process, ON-LSTM designs another two gates:

the master forget gate f̃t and the master input gate ĩt. These two gate vectors are actually masks to

select whether a specific level should follow the historical information or adopt the new input information

or fuse them together by certain weights. The two gate vectors are calculated by







f̃t =
−→cs

(

softmax
(

Wf̃xt +Uf̃ht−1 + bf̃

))

,

ĩt =
←−cs (softmax (Wĩxt +Uĩht−1 + bĩ)),

(2)

where Wf̃ , Wĩ, Uf̃ , Uĩ, bf̃ and bĩ are the learned weight matrixes and bias vectors. −→cs(v) and ←−cs(v)

respectively define a rightward and a leftward cumulative sum function. Suppose v = [v1, v2, . . . , vn], and

then −→cs(v) = [v1, (v1 + v2) , . . . ,
∑n

i=1 vi] and
←−cs(v) = [

∑n

i=1 vi,
∑n−1

i=1 vi, . . . , v1].

It is straightforward that the elements on the right (left) side of f̃t (ĩt) approach to 1, so the higher-level

(lower-level) information can be activated by f̃t (ĩt). Moreover, another generated gate vector ωt = f̃t◦ ĩt

is used to activate the middle-level information. Therefore, the calculation of ct is formulated by

ct = ωt ◦ (ft ◦ ct−1 + it ◦ ĉt) +
(

f̃t − ωt

)

◦ ct−1 +
(

ĩt − ωt

)

◦ ĉt. (3)

Eq. (3) and Figure 1(a) express three updating logics of ct. The first item updates the middle-level

information by fusing the historical information and the new input information, just like the classical

LSTM cell. The second item updates the high-level information by directly adopting the historical

information since it is sufficient to depict long-term memory effects. In contrast, the third item updates

the low-level information only by the new input information.

Suppose f̃t = [f̃1, . . . , f̃n] and ĩt = [̃i1, . . . , ĩn]. fmas is the lowest level activated by f̃t, and imas is

the highest level activated by ĩt. We can find that ωt approximates to a zero vector when fmas > imas.

Therefore, the elements in the middle levels of ct are not activated, as shown in Figure 1(b).

To sum up, the complete hierarchical updating logic of ordered information is formulated by (4). It

is straightforward that the introduce of “order” does not increase the computational complexity of cell
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Figure 1 (Color online) The illustration of the hierarchical updating logic of ON-LSTM. (a) The hierarchical update

when ωt does not approximate to zero vector; (b) the hierarchical update when ωt approximates to zero vector; (c) the

hierarchical updating process and the corresponding constituency tree of a specific sequence.
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ĉt = tanh (Wcxt +Ucht−1 + bc),

f̃t =
−→cs

(

softmax
(

Wf̃xt +Uf̃ht−1 + bf̃

))

,

ĩt =
←−cs (softmax (Wĩxt +Uĩht−1 + bĩ)),

ct = ωt ◦ (ft ◦ ct−1 + it ◦ ĉt) +
(

f̃t − ωt

)

◦ ct−1 +
(

ĩt − ωt

)

◦ ĉt,

ht = ot ◦ tanh (ct).

(4)

2.2 The advantages and applications of ON-LSTM models

According to Subsection 2.1, the main modification of ON-LSTM lies in that we attach a constraint with

specific semantics to the memory effects of the model. This modification allows the model to explicitly

distinguish the information that influences different ranges of time, which cannot be learned in classical

LSTM. Moreover, this modification provides the capability to track the introduction time of a certain

level information by observing the values of historical f̃t and ĩt (fmas and imas).

We simulate the hierarchical updating process of a sequence in Figure 1(c). According to the figure, we

can clearly find that the second to fourth highest-level information of ct is mainly brought from the input

at the time (t − ∆t). Thus the elements at the time (t − ∆t) and t in this sequence are demonstrated

to have a strong correlation while lacking correlation with earlier data. So we can split the original

sequence at (t − ∆t) to obtain two relatively independent subsequences. It is straightforward that a

suitable segmentation point is usually at the local peak of fmas since most low-level elements tend to

forget historical information.

Similarly, we can continue to segment the sequence based on the above method until obtaining the
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smallest units (i.e., single elements). During performing segmentation, we can build a tree-like graph to

record the relevance between different subsequences, as shown in Figure 1(c). This tree is proved to be a

reasonable constituency parsing, which helps to understand the semantics or grammars of sequence data

such as sentences [24].

However, the sequence data (i.e., vehicle trajectories) studied in this paper do not have clear grammat-

ical bounds to split different components (driving motions), so we cannot build a parse tree for vehicle

trajectories like [24]. But we can still use the above method to evaluate the correlation degree between

two adjacent trajectory points, which is a core method for the ETR estimation task.

3 The ETR estimation method and experiments

In this section, we will demonstrate that the ON-LSTM model can dynamically capture the memory

effect when a driving operation is performed. Specifically, the start time of memory effect is observable

through the variations of fmas and imas, which is another core method for ETR estimation. Our ETR

estimation method is established based on the above two basic methods.

In this section, we first present the training of the ON-LSTM trajectory prediction model (in Subsec-

tion 3.1) to support the following ETR estimation. Then we propose the method to capture memory

effects by observing the change laws of gate values of the learned ON-LSTM in Subsection 3.2. Finally,

we propose the detailed ETR estimation method and present the testing results in Subsection 3.3.

3.1 The model, dataset, and experiment settings

The trajectory prediction model. The model we use in this paper is modified from our previous

trajectory prediction model (i.e., the single-vehicle model Cs in [25])4). We adopt ON-LSTM instead of

classical LSTM to introduce the hierarchical updating logic for multiple information levels, which helps

to simulate a more complex process of memory effects. Thus ideally, the modified model will yield more

accurate trajectory predictions than the original model. Moreover, the modified model will support the

following ETR estimation method.

Note that we only modify the LSTM cells, while keeping the original model structure and hyper-

parameters of Cs. Because the computational complexities of LSTM cells and ON-LSTM cells are the

same, the new trajectory prediction model has a similar prediction consuming time to Cs.

The input and output of the model. The input of the trajectory prediction model is a set of

sequences that contains the lateral and longitudinal coordinates of the target vehicle within a historical

time horizon th. The output is a predicted trajectory sequence within a prediction time horizon tp.

During training, these time horizons are set as th = 3 s and tp = 6 s, which follow the values in [25].

The dataset and preprocessing. We train and evaluate our model on the NGSIM I-80 dataset.

The research scenario is a straight road with multiple lanes. As we discussed in [25], the NGSIM I-80 is

a severely unbalanced dataset, so we perform dataset balancing trajectory trimming as we did in [25].

To evaluate the function of ETR estimation, we build a testing set that contains 3000 trajectory

segments with a length of 8 s (80 points with the time resolution of 0.1 s). We manually label the driving

behaviors of all the trajectory points in the obtained testing set. The behavior categories include five

types: going straight (GS), left lane change (LLC), merging into the left lane (MLL), right lane change

(RLC), and merging into the right lane (MRL). Here, the transition region between GS and LLC/RLC

is considered to have a real lane change operation.

Model training and testing. The training process and hyper-parameter values of our model are

the same as those of Cs in [25]. During testing, the first 3 seconds’ data in each trajectory segment serve

as the initial historical information. Then we gradually perform the calculation at each time step and

record the values of f̃t (ĩt) in each ON-LSTM cell. Finally, we analyze the variation process of f̃t (ĩt) to

4) In this section, we only introduce the differences between the two models and some major details. The omitted

specific model structure, the preprocessing of the dataset, the method to select hyper-parameters, the training process, and

the overfitting analysis method are presented in [25].
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Table 1 RMS values of prediction error

Prediction RMS value (m)

horizon (s) C-LSTM ON-LSTM

1 0.54 0.48

2 1.17 1.04

3 1.90 1.71

4 2.73 2.50

5 3.67 3.43

6 4.70 4.40

capture driving operations and estimate the corresponding ETR, whose detailed method will be proposed

in Subsection 3.2.

The RMS prediction error of the trained model. We compare the RMS prediction error between

our model (denoted as ON-LSTM) with our previous single-vehicle model based on classical LSTMmodels

(denoted as C-LSTM). The definition and calculation of the RMS error are the same as those in [25]. The

RMS testing result is shown in Table 1 and indicates that the ON-LSTM yields more accurate predictions

than C-LSTM. This result is in line with our intuition that the more complex memory effects simulated

by ON-LSTM benefit to the prediction task.

We also calculate the prediction consuming time of the two models. Specifically, the average time of

C-LSTM and ON-LSTM to perform a single trajectory prediction with the horizon of 6 s is respectively

1.07 ms (C-LSTM) and 1.19 ms (ON-LSTM) on a TITAN X (Pascal) GPU. Therefore, the model based

on ON-LSTM is sufficient to execute a real-time trajectory prediction.

3.2 Capturing memory effects based on ON-LSTM

We have demonstrated that ON-LSTM can estimate the end time of a memory effect by analyzing the

correlation degrees between adjacent points (in Subsection 2.2). In this subsection, we will prove that

ON-LSTM can also estimate the start time of an impact (i.e., the corresponding driving operation) by

observing some special variation laws of fmas and imas
5). That is, the feasibility of ETR estimation is

theoretically proven.

We find that the values of fmas and imas have two change laws during the calculation of the trajectory

prediction model. When the driving of the target vehicle is relatively stable (and the trajectory is smooth),

the variations of fmas and imas are usually slight.

When a certain driving operation happens, the varations of fmas and imas present a “forgetting-

rebuilding” process. Specifically, the value of fmas first reaches a local peak to forget more long-term

historical information (i.e., knowledge of the previous vehicle motion). Then fmas drops rapidly and keeps

fmas < imas for some time6), so ωt can continuously activate some middle information layers. During this

time, the ON-LSTM model quickly rebuilds a new understanding of the current characteristic of vehicle

motion by fusing both historical information and new information (i.e., simulating the memory effect).

After the model accumulates a certain amount of knowledge of the current motion, fmas will gradually

rise and imas will gradually drop. In this paper, we can capture such “forgetting-rebuilding” processes to

locate the start time of memory effects.

We randomly select a trajectory segment that contains an active lane change operation, record the

values of fmas and imas during the calculation, and plot the variation processes in Figure 2. In the selected

trajectory, the manually labeled boundary between GS and LLC is at 2.9 s7). We can capture five local

peaks (A1–A5) that may indicate the start of a memory effect in Figure 2. The target vehicle keeps a

5) Note that fmas and imas in this paper are from the ON-LSTM cells in the first layer of the overall trajectory prediction

model. However, we have tested ON-LSTM cells in the latter layers and find similar variation laws of those variables.
6) In most of the captured “forgetting-rebuilding” processes, the decrease of fmas is usually accompanied by an obvious

increase of imas, such as the variations after A1 and A3 in Figure 2. However, the increase of imas is not a requirement, so

the variations after A4 in Figure 2 still indicate a valid “forgetting-rebuilding” process.
7) This value just follows our prior knowledge and has an inestimable deviation compared with the actual lane change

operation time.
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Figure 3 (Color online) The statistics of the captured memory effects in the testing set. (a) The proportion of significant

memory effects of different behavior change relationships. The coordinate values in the figure respectively indicate different

driving behaviors, specifically, MLL: −2; LLC: −1; GS: 0; RLC: 1; MRL: 2. (b) The distribution of the time deviation

between the labeled behavior change point and the estimated start time of the memory effect.

relatively stable GS behavior at 0–1.7 s. During the period of 1.7–2.9 s, the vehicle’s movement starts

to differ from the previous GS and the values of fmas and imas also indicate the occurrence of LLC (i.e.,

the fluctuations after A1 and A2). During the period of 2.9–5 s, the target vehicle continues the LLC

behavior and the fluctuation amplitudes are much larger than those in 1.7–2.9 s, showing more intense

“forgetting-rebuilding” processes.

In the above example, we can capture a typical memory effect (i.e., the fluctuation after A3) near

the labeled boundary between different driving behaviors8). In fact, this is a common phenomenon for

vehicle trajectories with driving behavior changes. In this paper, we label a total of 2161 behavior change

moments from the 3000 trajectories in the testing set. We successfully capture significant memory effects

within 1 s before or after 72.1% behavior change moments, as shown in Figure 3(a). Here, a significant

memory effect requires that the value of fmas declines (or imas increases) more than 10% and keeps

fmas < imas for a while.

Figure 3(b) shows that the distribution of the time deviation between the labeled behavior change time

Tl and the estimated start time Te of a nearby memory effect approximates to a Gaussian distribution.

8) For the present, we suppose that this manually labeled boundary approximates to the real start time of the corre-

sponding behavior change operation.
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The standard deviation of this distribution is not a small value. Moreover, in Figure 2, we can find that

the ON-LSTM model has already started to learn the knowledge of LLC since more than 1 s before Tl

(i.e., the time of A1), which indicates that the driver may have already performed some operations since

that time. These two facts indirectly prove that manual labeling is not an accurate way for finding the real

start time of driving operations (denoted by Tg). Due to the deviation between Tl and Tg, it is also not

guaranteed to capture a valid memory effect within 1 s before and after Tl, even if valid memory effects

do exist nearby. Therefore, the percentages in Figure 3(a) cannot be simply understood as recognition

accuracies9).

Furthermore, we cannot study the duration (of the motion changes) nor the corresponding ETR (of the

operations) by a supervised method. Fortunately, the above ON-LSTM-based approach does not require

supervision, and the successful capture of A1 and A2 proves the feasibility of this unsupervised approach

to estimate the ETR generated by driving operations.

ON-LSTM models can also capture driving fluctuations. In our testing set, most of the captured

memory effects are caused by the lateral rectifications during GS, while the corresponding operations are

usually too slight to be manually labeled. We perform similar experiments and prove that ON-LSTM is

also capable to deal with these slight operations.

3.3 The ETR estimation based on ON-LSTM

We have already presented the two necessary approaches for ETR estimation. Specifically, we introduce

the method to capture a certain memory effect and estimate its start time by observing the variations

of fmas and imas (in Subsection 3.2). We also introduce the method to evaluate the correlation degree

between two adjacent trajectory (sequence) points based on ON-LSTM, which is used to estimate the

end time of the memory effect caused by a driving operation (in Subsection 2.2). In this subsection, we

combine these two approaches for ETR estimation.

In the testing set, we capture a total of 7475 significant memory effects that are caused by driving

fluctuations from the 3000 trajectories. 7171 of them are in the GS behavior. Figure 4 shows the statistics

of the estimated ETR of these captured driving fluctuations. Here, the estimated ETR values are grouped

according to the peak value of fmas (denoted by Fmas) at the beginning of the memory effect.

As shown in Figure 4, the mean ETR of the driving fluctuations is 0.9 s. Moreover, we find that with

the increasing of Fmas, the subsequent descent rate of fmas usually gets larger (as shown in Figure 4(f))

and the estimated ETR of the corresponding driving operation gets smaller (as shown in Figure 4(a)–(e)).

To explain this change, we traverse the testing set to observe the memory effects that begin with large

Fmas values. We find most of these trajectories have frequent jitters, which indicates that frequent driving

operations (active adjustments) are performed to maintain the current behavior (such as GS). In those

cases, subsequent adjustments will continuously interrupt the previous memory effect and start a new

one, thus shortening the ETR of each memory effect.

On the other hand, frequent adjustments are more easy to be recognized by the ON-LSTM model than

mild driving fluctuations. Thus the model will automatically adopt a more aggressive measure (i.e., the

above phenomenon) to rapidly learn the knowledge of the new motion, which also reduces the value of

ETR.

Similarly, we estimate the ETR values of the captured lane change operations in Subsection 3.2 (as

shown in Figure 5). The mean ETR of these operations is 1.4 s and is larger than that of driving fluctu-

ations. This result is in agreement with our intuition, because the behavior changes during driving are a

longer-term process than slight fluctuations, so the corresponding ETR value should also be larger.

According to Figures 4 and 5, the ETR values of most captured memory effects are less than 3 s.

Thus when studying the trajectory prediction for straight road scenarios (i.e., only considering the five

driving behaviors defined in this paper), a 3 s (or even less) range of historical information is sufficient to

understand most vehicle motions and perform accurate trajectory prediction. However, we cannot ignore

9) It just intuitively illustrates a kind of consistency between the behavior changes we understand (based on prior

knowledge) and the capturing results of memory effects.
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Figure 4 (Color online) The statistics of the estimated ETR of the captured driving fluctuations (grouped by the Fmas

at the beginning of the memory effect). (a) Fmas ∈ (0, 0.67], 1760 cases in total; (b) Fmas ∈ (0.67, 0.73], 3639 cases in total;

(c) Fmas ∈ (0.73, 0.78], 1240 cases in total; (d) Fmas ∈ (0.78, 0.83], 477 cases in total; (e) Fmas ∈ (0.83, 1], 359 cases in total;

(f) the boxplot of the descent rate of fmas during the memory effect.
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Figure 5 (Color online) The statistics of the estimated ETR of the captured motion change operations.

that the ETR values in some cases are still very large. Some current studies attempt to set a large range

of historical information to cover these cases [23], while the overlarge range may harm the prediction of

some cases with very small ETR. In contrast, our ETR estimation method could flexibly explore the best

ranges for different behaviors, which helps to avoid the above shortcomings.

Moreover, the above statistics are performed offline (i.e., ETR is estimated after a complete trajectory is

provided), but our method can also be run online (i.e., ETR of the current memory effect is estimated after

each trajectory point is input). Therefore, our ETR estimation method also enables us to dynamically

adjust the range of historical information according to the current situation.

4 Conclusion

In this paper, we study the memory effects generated by driving operations during vehicle movements.

We focus on the difficulty of estimating the ETR and propose an estimation method based on the ON-

LSTM model. The experiment on the NGSIM I-80 dataset proves that the estimated ETR values are

in agreement with our intuitions. Moreover, the trajectory prediction model based on ON-LSTM yields

more accurate predictions than the classical LSTM model.

However, we only test our method on NGSIM I-80, which only contains going straight and lane change
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movements. In the future work, we will perform ETR estimations on more types of vehicle movements

to verify the effectiveness of this method.
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