
SCIENCE CHINA
Information Sciences

September 2020, Vol. 63 190106:1–190106:3

https://doi.org/10.1007/s11432-019-2777-2

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. LETTER .
Special Focus on Big Data-Driven Intelligent Software Development for Onsite Programming

Code line generation based on deep

context-awareness of onsite programming

Chuanqi TAO1,2,3*, Panpan BAO1 & Zhiqiu HUANG1,2

1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
Nanjing 211100, China;

2Ministry Key Laboratory for Safety-Critical Software Development and Verification,
Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China;

3National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Received 24 September 2019/Revised 26 December 2019/Accepted 20 January 2020/Published online 7 August 2020

Citation Tao C Q, Bao P P, Huang Z Q. Code line generation based on deep context-awareness of onsite pro-

gramming. Sci China Inf Sci, 2020, 63(9): 190106, https://doi.org/10.1007/s11432-019-2777-2

Dear editor,
Intelligent code generation has become an essen-
tial research task to accelerate modern software de-
velopment. To facilitate effective code generation
for programming languages, numerous approaches
have been proposed to generate token or tokens
by mining existing open software repositories, e.g.,
Nguyen et al. [1] and White et al. [2]. Currently
code token or tokens generation are used to rec-
ommend specific API or variables. There is a lack
of code generation strategy for developers to finish
a complete code line. A feasible solution to code
line generation is to extract relevant context fac-
tors between code lines and mine hidden context
information based on the existing massive source
code using deep learning. The trained model can
generate target code lines by using the existing
source code data and task data in onsite program-
ming. Onsite programming here refers to the set
of elements related to the current programming
in software production, such as source code data,
task data, and other related data. In this letter,
we only use source code data and task data ac-
cording to the actual requirements. Besides, ow-
ing to the variety of software programmers, there
exists a clear quality issue in projects on GitHub
frequently. To address these issues, we propose a
context-sensitive approach named DA4CLG (deep
context-awareness for code line generation) to gen-

erate code lines. The deep context-awareness in ti-
tle means our method uses deep learning to extract
the relevant contextual factors in code lines. Our
contributions are as follows. (1) An approach to
data quality analysis for open source code is pro-
posed to ensure high quality of training data set.
An evaluation framework is proposed to analyze
code data quality of open source projects and con-
struct data set with quality assurance. (2) The po-
tential pattern of source code context from the ex-
isting large-scale open-source data sets is obtained
based on deep learning models. Then we use the
existing source code data in onsite programming to
generate code lines. (3) Developer intention is ac-
quired based on task data in onsite programming
and code lines are re-ranked through semantic sim-
ilarity matching, to ensure the rank of satisfying
recommended items for developers are higher in
the recommended code line list.

DA4CLG consists of three main processes
(marked as (1), (2), (3) in Figure 1). The detailed
process is shown below.

(1) Constructing a large-scale data set including
methods with quality assurance. The proposed ap-
proach is based on deep learning model. Accord-
ing to ‘garbage in and garbage out’, the model
performance depends on training data. We pre-
fer to select methods (code segment) with fewer
bugs, good structure, definite functions (e.g, ‘read

*Corresponding author (email: taochuanqi@nuaa.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2777-2&domain=pdf&date_stamp=2020-8-7
https://doi.org/10.1007/s11432-019-2777-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2777-2
https://doi.org/10.1007/s11432-019-2777-2


Tao C Q, et al. Sci China Inf Sci September 2020 Vol. 63 190106:2

(1) (2) (3)

Projects

in GitHub

Programmer

evaluation

Project

evaluation

Bugs

checking

Function

independence
Deep

learning

Training

instances

Code

line

above

Code

line

next

Java

method

Methods

dataset

Personal

data

Re-ranked

N lines

Re-ranking

Adding

Methods

dataset

User

programming

Programming

scene

Intention

capture

N code

lines

Beam

search

RNN

encoder-

decoder

Code-line

context

Figure 1 Overview of DA4CLG.

file content’) as well as not invoking other meth-
ods programmed in the same project. Aiming to
address the quality problem, an evaluation frame-
work is proposed to analyze code data quality of
open source projects on GitHub based on defined
quality dimensions from different perspectives.

We evaluate the quality of source code struc-
ture by gathering information of programmers and
projects on GitHub. Specifically, we calculate the
value of Watch/(Watch+Star+Fork) to evaluate
whether the programmer is experienced or not.
Because when we investigate the behavior to get
more artificial stars in GitHub project, we found
that there may be the behavior to get more ar-
tificial stars and forks at the same time, but no
artificial watches. Therefore, we use the watch
number as the numerator of the division. To cal-
culate the threshold, we select 365 well-established
programmers and calculate total Watch, Star and
Fork numbers of their projects. After remov-
ing the top 30 values and bottom 30 values from
365 Watch/(Watch+Star+Fork) values, the aver-
age value of the remaining is used as a reference
threshold value. The threshold is 0.058. Besides,
we use Watch, Star, Fork, Issues, Pull requests
and Commits on GitHub to evaluate project qual-
ity. To calculate the threshold for each of them,
we gather 6000 projects randomly. To reduce the
influence of extreme value, we calculate the cor-
responding value of each indicator on 6000 items,
sort them from high to low, and then obtain the
average values after removing the top 10% val-
ues and the bottom 10% values. Corresponding
threshold for each metric is 11, 76, 28, 4, 1, and
58. Thus, projects with higher corresponding met-
ric value than threshold perform better on GitHub.
To construct a project data set with higher qual-
ity, we select projects as follows: (i) Programmer’s

metric on Watch/(Watch+Star+Fork) is greater
than 0.058. (ii) Projects have higher correspond-
ing metric value than threshold value 11, 76, 28,
4, 1, and 58.

We use PMD (an extensible cross-language
static code analyzer) to check source code. PMD
checks Java code through its built-in rules, includ-
ing the potential bugs, unused code and repetitive
code and so on. These rules cover the possible de-
fects in source code. According to the opinions of
30 programmers with 4–6 years of java develop-
ment experience, 8 important PMD rules, includ-
ing basic, braces, unused code, string, strict ex-
ception, naming, design, and coupling, are finally
selected. To compute each number of defects in a
java method, we perform PMD on 45 java projects
with high quality. Corresponding number for each
rule is 2, 1, 1, 3, 1, 4, 0, and 1, respectively.

Through parsing source code files into ASTs
(abstract syntax trees), we can validate func-
tion independence relationship through checking
whether a java method invokes other methods in
the project. Finally, we construct a large-scale java
method data set with higher quality.

(2) Training instances construct and model
training. In the second step, java methods selected
in step (1) are used to extract training instances
and train our deep learning model. The number of
java projects is about 6000 and some of the pop-
ular java projects and some common jar package
projects are also included in these projects.

We analyze all classes, record field declara-
tions together with their type bindings and unify
different variable values. We replace all object
types with their real class types. The process
above is beneficial to the learning of the context
of code lines. When building training instances,
we ignore the method declaration and start from



Tao C Q, et al. Sci China Inf Sci September 2020 Vol. 63 190106:3

line 4 to the last line of a method. For example,
we have code lines in a method:

1: String line = “stringValue”;
2: for (String str: list〈String〉);

3: if (str.contains (“stringValue”));

4: line = line + str.trim().

The first 3 lines, String line = “stringValue”, for
(String str: list〈String〉), if (str.contains (“string-
Value”)), act as model input, and the code line
in line 4, line = line + str.trim(), acts as output
(label) of model.

To learn the potential pattern of source code
context, we use the attention-based recurrent neu-
ral network (RNN) encoder-decoder model and
long short-term memory (LSTM). As a specific ap-
plication of RNN with better performance, LSTM
has achieved good results in many applications [3].
Specifically, we construct the model as follows: in
the decoder, we use two RNNs for the encoder, in-
cluding a forward RNN that directly encodes the
source sentence and a backward RNN that encodes
the reversed source sentence. We set all RNN here
with 1000 hidden units and the dimension of word
embedding with 120.

(3) Generating code lines and re-ranking. We
have discussed the model training in step (2).
Now we present the approach to applying the
trained RNN encoder-decoder model to generate
code lines. In the programming language, there
is a certain disorder between code lines. It means
exchanging the order of some lines will not affect
the realization of program functions. Therefore,
based on existing code lines, the target lines may
not be unique. Hence, a good model should gener-
ate N target code lines which might be correct and
rank them according to possible priorities. Our
method collects the code lines that the developer
has already entered in onsite programming, then
the trained model generates the most likely tar-
get code lines based on Beam Search [4]. To en-
hance the rank of items from a developer perspec-
tive in the recommended code line list, we need
to re-rank the recommended results based on the
similarity. We use latent semantic analysis (LSA)
to measure semantic similarity to improve the ac-
curacy of information retrieval. We calculate the
similarity between methods in onsite programming
and methods programmed by the same writer in
history. The code line is re-ranked if the similarity
value is more than 0.7.

To evaluate DA4CLG, we compare our results
with Lexical n-gram and RNN. To reduce bias
or mistakes, we check all results (500 sets of
test cases) carefully by two authors and two non-
authors. In all cases, in Top1, DA4CLR achieves

0.18 higher than the Lexical n-gram and 0.13
higher than RNN on BLEU (bilingual evaluation
understudy) measure. The BLEU measures how
close a candidate sequence is to a reference se-
quence. When the recommended number of items
is 5 and 10, the average BLEU score between
DA4CLR, Lexical n-gram, and RNN is similar. We
discover that only a few code lines are useful in
all 10 lines. When generating 10 code lines, the
corresponding mean reciprocal rank (MRR) score
of RNN and Lexical n-gram is much smaller than
DA4CLR. The higher MRR value represents the
overall ranking of the recommended items list is
better. This indicates that our re-ranking method
based on similarity achieves good performance.
Overall, the study results show DA4CLR can im-
prove the precision and enhance the rank of code
line list.

Conclusion. We propose a code line genera-
tion approach based on deep context-awareness of
onsite programming. We take into account data
quality of open source projects and information in
onsite programming. Besides, we re-rank the code
lines list by semantic similarity matching, thereby
the items needed by the developer are set higher in
the rank list. This approach focuses on code lines
and task data in onsite programming and limits
to java language. In future work, we will improve
the proposed DA4CLR through extension to other
programming languages and apply it to different
granularity from segment to API. Moreover, we
will continue the related work of intelligent pro-
gramming with data model quality assurance.

Acknowledgements This work was supported by

National Key R&D Program of China (Grant No.

2018YFB1003900), National Natural Science Foundation of

China (Grant Nos. 61602267, 61402229), Open Fund of

the State Key Laboratory for Novel Software Technology

(Grant No. KFKT2018B19), and Fundamental Research

Funds for the Central Universities (Grant No. NS2019058).

References

1 Nguyen T T, Nguyen A T, Nguyen H A, et al. A
statistical semantic language model for source code.
In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, Saint Peters-
burg, 2013. 532–542

2 White M, Vendome C, Linares-Vásquez M, et al. To-
ward deep learning software repositories. In: Proceed-
ings of the 12th Working Conference on Mining Soft-
ware Repositories, Florence, 2015. 334–345

3 Greff K, Srivastava R K, Koutńık J, et al. LSTM: a
search space odyssey. IEEE Trans Neur Net Lear Syst,
2016, 28: 2222–2232

4 Gu X, Zhang H, Zhang D, et al. Deep API learn-
ing. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, Seattle, 2016. 631–642


