
SCIENCE CHINA
Information Sciences

September 2020, Vol. 63 190105:1–190105:3

https://doi.org/10.1007/s11432-019-2860-3

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. LETTER .
Special Focus on Big Data-Driven Intelligent Software Development for Onsite Programming

A data-driven approach for recommending UI

element layout

Yonghao LONG1, Xiangping CHEN2* & Yuting XIE1

1School of Information Science and Technology, National Engineering Research Center of Digital Life,
Sun Yat-sen University, Guangzhou 510006, China;

2Guangdong Key Laboratory for Big Data Analysis and Simulation of Public Opinion,
School of Communication and Design, Sun Yat-sen University, Guangzhou 510006, China

Received 19 September 2019/Revised 31 December 2019/Accepted 20 March 2020/Published online 7 August 2020

Citation Long Y H, Chen X P, Xie Y T. A data-driven approach for recommending UI element layout. Sci China

Inf Sci, 2020, 63(9): 190105, https://doi.org/10.1007/s11432-019-2860-3

Dear editor,
Smartphones and tablets with rich graphical user
interfaces (GUI) are becoming increasingly popu-
lar. GUI design plays an important role in offering
a smooth user experience. The complexity of the
apps often depends on the user interface (UI) [1]
with minor data processing or data processing del-
egates to the backend component.

When developing a UI, considerable effort can
be saved by seeking inspiration from examples
than by starting a design from scratch [2]. Con-
siderable work has been proposed to ease GUI de-
velopment. Doppio [3] generated a screenflow di-
agram organized by callback methods and inter-
action flow to assist developers to understand user
interaction implementation. GUI code search engi-
neer [4] was proposed to generate and recommend
UI implementation examples. In some previous
study, knowledge was gained from UI examples
that facilitated in guiding UI development [5, 6].
In these studies, datasets containing a large num-
ber of UI examples were constructed, and the ex-
amples were provided as a design gallery and were
used to mine design patterns.

Fast prototyping development of mobile appli-
cations requires the understanding of user habits
and design trends when designing the layout of
UI elements. To facilitate the developer to read
a large number of UI design cases, we propose a
data-driven approach that attempts to mine the

UI element layout pattern and recommends proper
positions and sizes for layout implementation of
the UI visual component. Our approach collects
the layout information of UI elements from apps
using a black-box testing tool [7]. Based on a
repository [7] containing more than 3585976 UI el-
ements of 146942 UI pages collected from 21233
Android apps, our approach analyzes the layout
distribution of the elements, which contains the
keyword and are of the same component type, to
determine whether a layout pattern exists. If so,
the layout will be extracted and recommended for
implementation. The experiment conducted by us
shows that the recommended layouts can be used
to guide UI development.

Approach overview. A novice developer who is
not sure about the layout of an element can in-
put the keyword and the element’s type to our
tool. As shown in Figure 1, suppose the user
wants to search the skip button’s layout and in-
puts the keyword “skip” and the type “button”,
then our method will generate the sample set from
the dataset [7]. Based on the elements’ layout in-
formation, our method will generate a heatmap
where the color of each pixel represents the lay-
out possibility. Subsequently, the approach mines
the frequent pattern based on edge detection and
heuristic rules. Finally, the skip button’s recom-
mendation layout is showed to the user.

Heatmap generation. Our approach selects UI

*Corresponding author (email: chenxp8@mail.sysu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2860-3&domain=pdf&date_stamp=2020-8-7
https://doi.org/10.1007/s11432-019-2860-3
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2860-3
https://doi.org/10.1007/s11432-019-2860-3

Long Y H, et al. Sci China Inf Sci September 2020 Vol. 63 190105:2

(skip,
button)

Repository

of element

Input

(keyword,

type(optional))

Extract element

examples

Heatmap

generation

Layout pattern

mining

Layout

recommendation

(accept,
button)

(time picker) (back,
button)

(calendar,
EditText)

(image,
scollbar)

(progress,
textView)

(next)

Keyword: skip
Type: button

x:20
y:430
w:220
h:70

Figure 1 (Color online) Approach overview.

element examples according to the input keywords
with component type as an optional supplement.
Because the types of UI elements are limited, it is
hard to find a layout pattern for a particular type.
Keywords are texts in the UI element, which usu-
ally describe or imply the functional information
of a component. Keywords with the component
types are used to define which UI elements can be
used as examples. It should be noted that text in-
formation of the UI elements is processed by stan-
dard normalization techniques of stemming and re-
moving stop words. If the number of UI element
examples is large enough for mining layout pat-
terns (a threshold of 100 is defined in this article),
the examples will be extracted.

A heatmap is a graphical way of displaying a
table of numbers using colors to represent the nu-
merical values. In this study, a heatmap is used
to indicate the possibility of the component ap-
pearing in each UI pixel. For a pixel 〈x, y〉, we
define its possibility p(x, y) considering the num-
ber of UI components covering this pixel c n(x, y),
and the maximum number of UI components cov-
erage among all the pixels 〈i, j〉 in the UI.

p(x, y) =
c n(x, y)

max(i,j)∈UI c n(i, j)
. (1)

The number of words in the UI elements may
differ and affect the importance of the UI element
for a specific input keyword. For example, a UI
element containing “If you like our app, please
rate it!” and a UI element containing “like” may
have different importance for the button with the
input keyword “like”. In addition, we find that
some apps use templates to generate UIs. An ap-
plication may contain a set of interfaces with the
same UI element in the same position. The times
of keywords’ appearance in component c covering
the pixel 〈x, y〉 as cover(c, x, y, keyword) is com-
puted and the number of UI components for a pixel

c n(x, y) is computed as

c n(x, y) =
∑

c∈E

cover(c, x, y, keyword)
√

|c.word| ·App(c)
, (2)

where |c.word| is the number of words in this com-
ponent and App(c) represents the number of com-
ponent appearances in all UIs of the same app.

Then, the heatmap can be drawn using the fol-
lowing rules: the heatmap starts from a grayscale
image of white with the most commonly used size
of 480 × 800. The color of each pixel depends on
its distribution probability: the higher the proba-
bility is, the darker the pixel’s color will be

color(x, y) = 255 · (1− p(x, y)). (3)

Mining layout patterns. As a UI element may be
in different sizes and placed in different positions,
the most frequent layouts professional developers
prefer to use are needed to be mined.

First, we evaluate whether the heatmap H con-
tains a layout pattern. According to the statis-
tics of our dataset, we find that the possibility of
a layout pattern existing is positively correlated
with the average heat and the hot-area’s size. The
score to indicate the possibility of a layout pattern
s(H) is calculated as

s(H) =

∑

〈x,y〉∈H p(x, y)

count(H, 0)
·
count(H, t)

fs(E)
,

count(H,n) =
∑

〈x,y〉∈H

p(x, y) > n?1 : 0.
(4)

However, the size of the layout pattern is not
known and more than one pattern for recommen-
dation may exist. The closed areas in the heatmap
are extracted as candidate patterns. Opening op-
erations are used to remove the noise and the edge
detection method [8] is used to obtain the bounds.
The edge detection result is a set of closed areas.

We calculate the score of candidate layout pat-
tern lp based on the average distribution possibil-
ity p(x, y) of all the pixels and the distance be-
tween the size of lp and the most frequent size

Long Y H, et al. Sci China Inf Sci September 2020 Vol. 63 190105:3

in UI element examples fs(E) using the following
equation:

score(lp) =

∑

〈x,y〉∈lp p(x, y)

size(lp) ·max(fs(E)
size(lp) ,

size(lp)
fs(E))

. (5)

The top-3 layout patterns are then recom-
mended. For each layout pattern, a description
of its position and size is provided, as shown in
Figure 1.

Experiments. Two research questions are pro-
posed in this study to check the correctness and
effectiveness of the proposed method. RQ1: How
effective the proposed approach is in detecting lay-
out patterns? RQ2: Are the recommended layout
patterns valuable for developers?

Regarding RQ1, 50 pairs of keywords and com-
ponent types were randomly selected and the pro-
posed approach was used to select the UI element
examples to generate heatmaps. These heatmaps
are considered with layout patterns by the pro-
posed approach. Then, 25 participants (8 of them
were Android developers) were asked to answer
whether they can find the layout patterns in the
heatmap and manually draw the bounds of the
patterns in the heatmaps. The 50 heatmaps were
divided into 5 groups, and each heatmap was pre-
sented to 5 participants. A heatmap was consid-
ered to contain a layout pattern if more than 3
participants agreed on it. The edge detection re-
sult was considered to be identical if the offsets
of x and y-axis between the two results were less
than 5 pixels. The detection results were com-
pared with the results drawn by the participants.
The experimental results showed that 41 heatmaps
(82%) were thought to provide considerable loca-
tion recommendations and the proposed method
could detect the bounds of components with an
accuracy of 60.4%. This accuracy is relatively low
because not all the participants can correctly ex-
tract layout patterns.

Regarding RQ2, heatmaps for 50 pairs of key-
words and component types were generated and
the layout patterns were also generated. Then, 25
participants (13 of them were experienced users
and 12 were Android developers) were asked to
evaluate whether the recommending patterns were
valuable. The 50 heatmaps were divided into 5
groups, and each heatmap group was presented to
5 participants. It was found that 84.8% of the rec-
ommended patterns were considered as valuable.

A comparison experiment was conducted to
compare the proposed method’s results with the
random method results. For the 50 pairs of key-
words and component types used in RQ2, 50 cor-
responding samples from the proposed dataset
were randomly selected. For each pair of key-

word and component type, two layout recommen-
dations were generated: one using the proposed
method and the other from the sample. Then, 5
questionnaires were sent to 25 participants. Each
questionnaire contained 10 questions. Participants
were asked to select the recommendations that
were consistent with their knowledge of the com-
ponents’ layouts. The recommendation for a pair
of keyword and component type was judged by 5
participants. The recommendation selected by the
majority of the participants was set as the compo-
nents’ layout recommendation. 43 recommenda-
tions by the proposed method were regarded as
satisfying, which was much more than the corre-
sponding number of random sampling (7 samples
were selected to be satisfying).

Conclusion. We propose an approach to mine
layout patterns and recommend the proper place-
ment and size for UI layout implementation.
Based on 146942 UI pages collected from 21233
Android apps, our approach could extract the UI
element examples to generate a heatmap based on
user input. Heuristic rules and edge detection were
used to find layout patterns. The experiment re-
sults show that our method is effective in recom-
mending valuable layout patterns and the accuracy
of our approach needs to be improved.

Acknowledgements This work was supported by Na-

tional Key R&D Program of China (Grant No. 2018YFB-

1004800), National Natural Science Foundation of China

(Grant No. 61672545), and Science and Technology Pro-

gram of Guangzhou (Grant No. 201902010056).

References

1 MacHiry A, Tahiliani R, Naik M. Dynodroid: an input
generation system for Android apps. In: Proceedings
of the 9th Joint Meeting on Foundations of Software
Engineering, 2013. 224–234

2 Miller S R, Chang C C, Krantzler J, et al. Getting
inspired!: understanding how and why examples are
used in creative design practice. In: Proceedings of
SIGCHI Conference on Human Factors in Computing
Systems, 2009. 87–96

3 Chi P Y, Hu S P, Li Y. Doppio: tracking UI flows and
code changes for app development. In: Proceedings
of CHI Conference on Human Factors in Computing
Systems, 2018

4 Reiss S P. Seeking the user interface. Autom Softw
Eng, 2014, 25: 103–114

5 Kumar R, Satyanarayan A, Torres C, et al. Webzeit-
geist: design mining the web. In: Proceedings of
SIGCHI Conference on Human Factors in Computing
Systems, 2013. 3083–3092

6 Deka B, Huang Z F, Chad F, et al. Rico: a mobile app
dataset for building data-driven design applications.
In: Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology, 2017. 845–
854

7 Chen X P, Zou Q W, Fan B T, et al. Recommending
software features for mobile applications based on user
interface comparison. Requir Eng, 2019, 24: 545–559

8 Marr D, Hildreth E. Theory of edge detection. Proc
R Soc Lond B, 1980, 207: 187–217

https://doi.org/10.1007/s00766-018-0303-4
https://doi.org/10.1098/rspb.1980.0020

