SCIENCE CHINA
Information Sciences

@ CrossMark
&click for updates

« LETTER -

September 2020, Vol. 63 190104:1-190104:3
https://doi.org/10.1007/s11432-019-2831-6

Special Focus on Big Data-Driven Intelligent Software Development for Onsite Programming

A quantitative benefit evaluation of code search
platform for enterprises

Zhan SHI', Jie TANG!, Hao YU?, Yongxu XING!, Zhiwei LIU"", Wei BAI? & Tao LI?

LBaidu (China) Co., Ltd, Shanghai 201210, China;
2Baidu Online Network Technology (Beijing) Co., Ltd, Beijing 100193, China

Received 19 September 2019/Revised 27 December 2019/Accepted 20 January 2020/Published online 28 July 2020

Citation Shi Z, Tang J, Yu H, et al. A quantitative benefit evaluation of code search platform for enterprises.
Sci China Inf Sci, 2020, 63(9): 190104, https://doi.org/10.1007/s11432-019-2831-6

Dear editor,

With the size and complexity of modern software
growing, developers need more efficient tools to ac-
complish all kinds of routine tasks, such as coding,
compiling, and analyzing program structure [1].
Among these tasks, code search is the key software
development activity [2]. To deal with the advent
of large code repositories, various code search plat-
forms are designed to maximize developers’ pro-
ductivity. With the help of these platforms, devel-
opers can easily figure out how to use an API or
service by searching and reusing existing codes to
improve efficiency tremendously.

The code search platform is an integrated devel-
opment platform that provides various features to
improve developer’s efficiency, such as code search
(search for code fragments) and code view (read
codes of retrieved results). On how to evaluate
the code search platform, there are many types of
researches on evaluation metrics such as precision,
recall, response time and other platform-related
properties [3,4]. For enterprises, the efficiency
improvement conclusion is obvious but empirical.
We do not know exactly how much efficiency is
improved or how much time is saved using these
platforms compared to traditional ways. A reason-
able benefit evaluation in quantity can not only in-
form us of the value of code search platforms but
also contribute to more reasonable resource allo-
cation for supporting future features. Though the
quantitative evaluation of efficiency improvement

* Corresponding author (email: liuzhiweihome@gmail.com)

(© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

is important, there are few researches focus on this
point.

In this study, based on user behavior data and
code-related information collected from iSearch,
we evaluate the benefit of code search platforms
according to the time saved by using iSearch com-
pared to the internal code host platform only.
iSearch is a code search platform built in Baidu [5]
that supports features like code fragments search,
code navigation and code dependency analysis.
iSearch contributes to productivity improvement
in many aspects, here we choose two easily eval-
uated aspects, code search and code view. Tradi-
tionally, code search can be performed throw local
IDEs if we know in advance which repositories may
contain the desired code and then clone it. As now
we can perform code search over the whole code-
base of Baidu, the cloning process no longer needs
and the time cost of cloning will be saved. More-
over, as code host platforms (like Github) usually
do not support features like jumping to a definition
or find references, if developers are reading code
online they will spend lots of time understanding
the dependency hierarchy, while iSearch can con-
tribute to more efficient code reading. The saved
time in the process of code search and code view
can then be converted to the intuitive labor cost
and we can figure out how much benefit the code
search platform can bring.

From code search aspect. Developers search code
for various purposes, which is classified into five

info.scichina.com link.springer.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2831-6&domain=pdf&date_stamp=2020-8-7
https://doi.org/10.1007/s11432-019-2831-6
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2831-6
https://doi.org/10.1007/s11432-019-2831-6

Shi Z, et al. Sci China Inf Sci

September 2020 Vol. 63 190104:2

Table 1 Time saved of different categories of code search

Category Percent (%) With iSearch Without iSearch Saved time (s) Average time (s)
API consumer needs help 22 R E+B 30 6.6
Discover correct library for task 5 - - - -
Example to build off of 3.5 S CS 61.8 2.16
How to do something 3 — — — —
Check implementation details 20 R CS 61.8 12.36
Browsing 4 S B+ 15 0.6
Check commons style 1 S CS 61.8 6.18
Name completion 1 S+ (CS)+ 125 12.5
Reachability 8.5 G (CS)+ 125 10.62
Showing to someone else 4 B B 0 0
Location in source control 3.5 S CS 65 2.28
Why is something failing 10 - - - -
Understand dependency 4.5 G (CS)+ 240 10.8
Side effects of proposed changes 1.5 G (CS)+ 240 3.6
Trace code history 5 B C 61.8 3.09
Responsibility 3.5 B C 61.8 2.16
Total saved time (s) - - - - 72.59

categories in [2]. The result of our survey on what
code search platform needs to provide is similar to
the study in [2], thus we adopt its categories for
further analysis. The efficiency improvement for
each purpose by iSearch varies. For each specific
task, we conduct an A /B test with iSearch or using
traditional ways such as a web search engine and
get the saved time according to operations needed
to accomplish the task. The detailed steps and
time cost are listed in Table 1.

In Table 1, each letter abbreviation represents
a single operation to accomplish one specific task.
G (request for the view of call and dependency
graph), R (jump to a definition and references),
and S (perform code search) are common features
that iSearch supports. B denotes browsing files
that returned after queries or pages provided by
iSearch directly such as file comparison, change
history, etc. C represents the process of cloning
target repositories and E is assumed to perform
searches with a general web search engine. The
sign + is used the same as regular expression, in-
dicating one or more repetition. Then, each spe-
cific task can be represented by several separate
successive operations.

The saved time in the fifth column means that
to handle the task, less time is spent with features
provided by iSearch compared to traditional ways.
The saved time is based on both practical data
analysis (such as the clone time cost) and empir-
ical experience A/B test performed by five devel-
opers, i.e., the time cost to search for some queries
with or without code search platform. The five
developers are the first five authors of this study
and their experience ranges from the most expert
engineer (10 years) to the least experienced (sev-

eral months-recent college graduate). R, G, and
S operations correspond less than one second, B
and E last for seconds. In this study, we take
the average time cost of cloning key repositories
(including main repositories of each product line
and frequently updated repositories) as the aver-
age clone time of all repositories. We select 486
key repositories, count the number of users who
have conducted code search more than once in each
repository in workday and clone time. The average
clone time, i.e., the time saved per search Tc(fgne is
61.8 s. The specific clone time cost of each repos-
itory is not given here because of short space.

Adding the saved time of each task with its per-
centage, the average saved time per code search is
72.59 s. It means that iSearch can save 72.59 s
in average for each code search, compared to code
host platform only. Then, the efficiency improve-
ment, i.e., the saved time by code search is

Eimproved = C'code_semrch X Tper_code_search; (1)

where Ciodesearch 18 the number of valid code
searches, i.e., searches that satisfy users’ requests,
Toer_codesearch 1S the average saved time by iSearch
and equals 72.59 s according to Table 1. We can
further convert the efficiency improvement into la-
bor cost by dividing Eimproved by average work-
ing hours (8 h) and get how many humans can
save with iSearch or other similar code search plat-
forms.

iSearch has been applied on the base of Git code
host platform in Baidu, which includes more than
ten billion LOCs (lines of codes) with millions of
LOCs added or deleted every day. Till now, more
than half of developers (5000+) in Baidu have used
common features supported by iSearch, such as

Shi Z, et al. Sci China Inf Sci

code search, finding the definition and references.
The click through rate (CTR) of code search now
is about 40%. Although some of the clicks per-
haps do not correspond to users’ searches, there
are also many queries that do not need to click,
such as searches for macro definition, attributions,
and query autocompletion. Thus, it is conserva-
tive to assume that the number of effective code
searches is approximately half of click times. In
the past year, all 1.75 million code search queries
are performed. Then Ceodesearcn in (1) can be
taken as the number of half of click times, i.e.,
1750000 20% = 350000.

Thus, the saved time or the efficiency improve-
ment Eiyproved Will be 7057 h or 882 humans per
year.

From code view aspect. Compared to code host
platforms such as Github, iSearch provides more
features to avoid the cloning process, help devel-
opers find information more easily and read code
more efficiently. Suppose there are developers who
are willing to read code in online platforms, with-
out code search platforms such as iSearch, they
have to do that in code host platforms, which is
inefficient if the aforementioned features are not
supported. The wasted time or in other studies,
saved time by iSearch can be evaluated by

Tcode_view - C1open_ﬁle X Az})&r.OpBﬂ; (2)

where Copen_sile is the number of times users browse
files in the code host platform, AT}er open is the
average saved time that users apply iSearch rather
than common code host platform in the code view
process. It is a weighted mean of a bunch of oper-
ations mentioned above. Similarly, the saved time
by code view can also be converted to labor cost.
Here, according to [6], about 58% of developers’
time is spent on program comprehension, then the
labor cost saved by iSearch will be Ttode view di-
vided by 4.64 working hours.

To evaluate the efficiency improvement by typi-
cal features supported by iSearch in the code view
process, we summarize the time cost of common
development activities, such as file browsing with
file tree, finding definition, references and exam-
ple codes as well as comparing history and blame,
performed by our developers with and without
iSearch. The time saved is 5, 40, 60 and 31.8 s,
respectively. There may still be other activities
in daily development, here we only list the most
common ones. If one browses a file, he will at

September 2020 Vol. 63 190104:3

least perform one of the operations. The precise
proportion of each operation is hard to estimate.
Each time a developer browses a file, he may con-
duct ‘find a definition’ several times while others
may not. For simplification, we just add up them,
i.e., the time saved of each time browsing files with
the help of iSearch is about 136.8 s.

Till now, developers in Baidu browse files in
the internal Git code host platform more than
19000 times every day. According to (2), the to-
tal saved time by iSearch by code view feature is
722 working hours or 156 labor cost per day.

Conclusion and future work. The code search
platforms are designed to maximize developers’
productivity. In this study, we present a method
to quantitatively evaluate the benefits brought by
code search platforms for enterprises. The effi-
ciency improvement is estimated using the saved
time that is calculated based on data acquired by
iSearch. The analysis result shows that, in the
current scale of users in Baidu, iSearch can save
7057 working hours from code search feature per
year and 722 h from code view per workday, con-
verting to labor cost is 882 per year and 156 per
workday. The statistics can also be taken as refer-
ence to evaluate other code search platforms.

If code search platforms optimize existing tools
and support more effective features, which will be
studied in future, more users will adopt them and
the cost saved for enterprises will also grow. Be-
sides, we will evaluate the relevance and quality
of iSearch. Now we are surveying on how the re-
sults are relevant to the queries and comparing our
results with other code search platforms.

References

1 Potvin R, Levenberg J. Why Google stores billions of
lines of code in a single repository. Commun ACM,
2016, 59: 78-87

2 Sadowski C, Stolee K T, Elbaum S. How developers
search for code: a case study. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering, 2015. 191-201

3 Oppenheim C, Morris A, McKnight C, et al. The eval-
uation of WWW search engines. J Documentation,
2000, 56: 190-211

4 AliR, Beg M M S. An overview of Web search evalua-
tion methods. Comput Electr Eng, 2011, 37: 835-848

5 LiuZ W, Xing Y X, Yu H, et al. Retrieval and man-
agement technology for industrial-scale massive code
(in Chinese). J Softw, 2019, 30: 1498-1509

6 Xia X, Bao L, Lo D, et al. Measuring program com-
prehension: a large-scale field study with professionals.
IEEE Trans Softw Eng, 2018, 44: 951-976

https://doi.org/10.1145/2854146
https://doi.org/10.1108/00220410010803810
https://doi.org/10.1016/j.compeleceng.2011.10.005
https://doi.org/10.1109/TSE.2017.2734091

