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Dear editor,
Multichannel signal detection is a basic problem in
signal processing, especially in radar systems [1–3].
In the real world, the signal steering vector is af-
fected by unadjusted array gain-phase error, ma-
neuverable flight, accelerating flight of a target,
and other factors that introduce uncertainties [4].
These uncertainties can be largely alleviated in
a subspace model. The signal steering vector
with uncertainties can be assumed to lie in certain
carefully-devised subspaces, but with unknown co-
ordinates [5].

Recently, Ref. [6] investigated the detection
problem when uncertainties simultaneously ex-
isted in temporal and spatial steering vectors of
a target. In this problem, both the spatial and
temporal steering vectors were present in certain
subspaces with unknown coordinates. This detec-
tion problem is referred to as the generalized direc-
tion detection in [6], where two adaptive detectors
were proposed according to the generalized likeli-
hood ratio test (GLRT). Additionally, Ref. [7] dis-
cussed a similar detection problem. While Ref. [6]
assumed a homogenous environment, Ref. [7] as-
sumed a partially homogeneous environment and
subsequently proposed an adaptive detector based
on the two-step GLRT.

Note that no optimum detector exists for the
generalized direction detection problem, because
coordinates of the signal and noise covariance ma-
trix are unknown. Hence, other detectors can be
reasonably designed to improve the detection per-

formance. The widely used Wald test can deliver
higher detection performance than the GLRT,
e.g., [8]. However, no Wald test has been proposed
for the generalized direction detection problem. To
address this gap, this study revisits the detection
problem in [6], and proposes an adaptive detector
for generalized direction detection using the Wald
test. In some scenarios, higher detection perfor-
mance is observed for the proposed Wald test.

Problem formulation. Generalized direction de-
tection can be formulated as the following binary
hypothesis [6]:

{

H0 : X = N , XL = NL,

H1 : X = AθαHC +N , XL = NL,
(1)

where the N ×K matrix X, is the test data ma-
trix; the N × L matrix XL, is the training data
matrix; A is an N × J full-column-rank matrix;
C is an M × K full-column-rank matrix; θ is a
J × 1 vector; α is an M × 1 vector; N and NL

are noise matrices in the test and training data,
respectively. The noise matrices share the same
covariance matrix R. In (1), A and C are known,
while θ, α, and R are unknown.

Detector design. We first construct the follow-
ing (N2 + J +M)× 1 parameter vector:

Θ = [ΘT
r ,Θ

T
s ]

T = [θT,αT, vecT(R)]T, (2)

where Θr = θ and Θs = [αT, vecT(R)]T. Subse-
quently, the Wald test is formulated as [9]

tWald = Θ̂
H

r1{[I
−1(Θ̂1)]Θr,Θr

}−1
Θ̂r1 , (3)
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where Θ̂r1 stands for the maximum likelihood es-
timation (MLE) of Θr under H1, and

{[I−1(Θ)]Θr,Θr
}−1 = IΘr,Θr

(Θ)

− IΘr,Θs

(Θ)I−1

Θs,Θs

(Θ)IΘs,Θr

(Θ). (4)

Moreover,

I(Θ) = E

[(

∂ ln f(x;Θ)

∂Θ∗

)(

∂ ln f(x;Θ)

∂ΘT

)]

(5)

is the Fisher information matrix (FIM), where (·)*
denotes conjugate. Eq. (5) is often partitioned into
the following block form:

I(Θ) = E

[

IΘr,Θr

(Θ) IΘr,Θs

(Θ)

IΘs,Θr
(Θ) IΘs,Θs

(Θ)

]

. (6)

Under H1, the joint probability density function
(PDF) of X and XL is given by

f1(X,XL) = (πN |R|)−(K+L)e−tr[R−1(S+Y Y
H)],

(7)
where Y = X−AθαHC and S = XLX

H
L . Taking

the natural logarithm of (7) and then performing
the partial derivative with respect to θ and θ

∗, we
obtain

∂ ln f1(X,XL)/θ = (αH
CY

H
R

−1
A)T, (8)

∂ ln f1(X,XL)/θ
∗ = A

H
R

−1
Y C

H
α. (9)

After substituting (8) and (9) into (5), we obtain

I(θ) = E(AH
R

−1
Y C

H
αα

H
CY

H
R

−1
A)

= α
H
CC

H
α ·AH

R
−1

A. (10)

IΘr,Θs
(Θ) and IΘs,Θr

(Θ) can be verified as zero
matrices. Hence, we have

{[I−1(Θ)]Θr,Θr
}−1 = α

H
CC

H
α·AH

R
−1

A. (11)

Substituting (11) into (3), we obtain the Wald test
for given values of α, θ, and R:

tWald
α,θ,R

= α
H
CC

H
α · θH

A
H
R

−1
Aθ. (12)

To remove the ambiguity in the MLEs of θ and
α in (7), we impose the constraint θH

ÃHÃθ = 1,

where Ã = S− 1

2A. Subsequently, the MLE of θ
is [6]

θ̂ = θmax/(θ
H
maxÃ

H
Ãθmax)

1

2 , (13)

where θmax is the eigenvector of the matrix

D
Ã,X̃

= [ÃH(IN + X̃X̃
H)

−1
Ã]−1

Ã
H
X̆P

C̆HX̆
H
Ã, (14)

corresponding to the maximum eigenvalue. In
(14), X̃ = S− 1

2X, X̆ = X̃(IK + X̃HX̃)−
1

2 , C̆ =

C(IK + X̃HX̃)−
1

2 , and P
C̆H = C̆H(C̆C̆H)−1C̆.

Moreover, the MLE of α for a given θ is [6]

α̂1 =

[

C

(

IK + X̃
H
P

⊥
Ãθ

X̃

)−1

C
H

]−1

·C
(

IK + X̃
H
P

⊥
Ãθ

X̃

)−1

X̃
H
Ãθ, (15)

where P⊥
Ãθ

= IN −Ãθθ
H
ÃH/(θH

ÃHÃθ). There-

fore, substituting (13) into (15), we obtain the fi-
nal MLE of θ. Moreover, it can be shown that the
MLE of R for given values of θ and α is

R̂1 =
1

K + L
[S+(X−Aθα

H
C)(X −Aθα

H
C)H].

(16)
Thus, the MLE of R is obtained by substituting
the MLEs of θ and α into (16). Finally, substitut-
ing the MLEs of α, θ, and R into (12) yields the
final Wald test described as follows:

tWald = α̂
H
CC

H
α̂ · θ̂

H
A

H
R̂

−1
1 Aθ̂. (17)

Eq. (17) takes the form of a signal-to-noise ratio
(SNR). Hence, the Wald test in (17) is named
the SNR-based generalized direction detector
(SNRGDD). Whether the SNRGDD possesses the
constant false alarm rate (CFAR) property with
respect to the noise covariance matrix is difficult to
ascertain by rigorous proof, but can be confirmed
in Monte Carlo simulations (see Figure 1).

Numerical examples. The Monte Carlo simu-
lation is used to evaluate the performance of the
proposed adaptive detector. The (i, j)th element

of R is set to R(i, j) = σ2ρ|i−j|2 . The probabili-
ties of detection (PD) and false alarm (PFA) are
derived from 104 and 100/PFA data realizations,
respectively.

When the target’s spatial-temporal steering vec-
tor contains no uncertainties, the signal compo-

nent is H
∆
= κa0b

H
0 , where κ is the signal ampli-

tude, and a0 and b0 are the actual spatial and tem-
poral steering vectors, respectively. If no uncer-
tainty exists in the target’s spatial-temporal steer-
ing, the GLRT of the detection problem in (1) (re-
placingAθαHC with κabH) can be obtained as [6]

t0 =

∣

∣aHS−1X(IK +XHS−1X)−1b
∣

∣

2

aH(S +XXH)
−1

abH(IK +XHS−1X)
−1

b
,

(18)
which is denoted as GLRT0 for convenience.
In (18), a and b are nominal spatial and temporal
steering vectors, respectively. These vectors may
differ from a0 and b0, which are expressed as fol-
lows:

a0 = ȧ(β0)
∆
= [1, ej2πβ0, . . . , ej2π(N−1)β0]T, (19)
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and

b0 = ḃ(fd0
)

∆
= [1, ej2πfd0 , · · · , ej2π(K−1)fd0 ]T, (20)

where β0 and fd0
are the normalized spatial fre-

quency and normalized Doppler frequency of the
target, respectively. In the GLRT0, a = ȧ(β) and
b = ḃ(fd) share the same forms as (19) and (20),
respectively, but with possibly different β and fd.
The SNR is defined as

SNR = |κ|2 · bH0 b0 · a
H
0 R

−1
a0. (21)
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Figure 1 (Color online) Detection performance of the
SNRGDD. Detection threshold of the SNRGDD vs. σ2 (a)
and ρ (b). (c) Pds of the detectors. The parameters are
PFA = 10−3, L = 2N , J = 2, M = 2, K = 8, A =
[ȧ(0.15), ȧ(0.15873)], and C = [ḃ(0.34), ḃ(0.42)]T. In (a),
ρ = 0.95, in (b), σ2 = 1, and in the GLRT0 of (c),
a = ȧ(0.15) and b = ḃ(0.34).

For comparative purposes, the GLR-based gen-
eralized direction detector (GLRGDD) and the
adaptive matched generalized direction detector
(AMGDD) in [6] are also considered. In the
SNRGDD, AMGDD, and GLRGDD, the spatial
steering matrix A and temporal steering matrix C

are formulated as A = [a1,a2, . . . ,aJ ] and C =
[c1, c2, . . . , cM ]T, respectively, where ai = ȧ(βi),
i = 1, 2, . . . , J , and ci = ċ(fdk

), k = 1, 2, . . . ,K.

Figure 1 shows the detection performance of the
SNRGDD. As demonstrated in Figure 1(a) and
(b), the detection threshold of the SNRGDD is not
dramatically altered by changing σ2 or ρ, thereby
confirming that the SNRGDD has the CFAR prop-
erty. The plot in Figure 1(c) highlights that when
uncertainty exists in both the spatial and tempo-
ral steering vectors, the SNRGDD delivers the best
detection performance in the PD > 0.6 range fol-
lowed by the GLRGDD, AMGDD, and GLRT0.
The latter method is nearly invalid because its PD
is approximately zero.
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