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Dear editor,
Most of the spectrum sensing techniques are de-
signed for Gaussian noise. These techniques do not
consider the environment with the non-Gaussian
(impulsive or heavy-tailed) noise. In a wireless
communication system, impulsive noise frequently
occurs and originates from numerous sources, for
instance, switching transients in power lines, ve-
hicle ignition, microwave ovens and devices with
electromechanical switches. Under those circum-
stances, sensing techniques designed for Gaussian
noise may be highly susceptible to severe degrada-
tion of performance.

Some existing detectors are designed to address
the problem of spectrum sensing in impulsive noise
environments. A brief literature review has been
done in [1].

In this study, we propose a new spectrum
sensing method to deal with the problem of
non-Gaussian noise environment under unknown
statistics. The new method applies robust estima-
tors of the covariance matrix to eigenvalue-based
spectrum sensing [2]. The eigenvalue-based spec-
trum sensing method detects signals by exploiting
the fact that the largest eigenvalue of the popu-
lation covariance matrix of the received signal is
greater than it is in the case of pure noise when the
signal appears. Then the task is simplified to esti-
mate the population covariance matrix or its eigen-
values. Towards this goal, one natural approach
consists in using sample covariance matrix (SCM),
which has very bad performance in the impulsive

noise environment. To improve the performance,
we can use M-estimators [3] instead of SCM. Speci-
ficly, we recommend to use Tyler’s M-estimator.
When the detector uses Tyler’s M-estimator, it
becomes totally blind because it requires no in-
formation about signals or noise. It should be
emphasized that this detector is distribution-free,
which means the detector will not need to know the
type of noise distributions. The M-estimator has
‘good’ performance in many noise environments,
especially in complex elliptical symmetric (CES)
distributed noise [4] environment even though it is
not optimal in general.

M-estimators. M-estimator of the covariance
matrix is a generalization of the maximum likeli-
hood estimator of the covariance matrix. In many
cases, this estimator only gives an estimation of
the shape of the covariance matrix which is known
as the scatter matrix. The scatter matrix is suffi-
cient in spectrum sensing application. A compre-
hensive introduction can be found in [3].

The M-estimator Σ̂ based on the data set
x1, . . . ,xn ∈ Cp is a solution to the following equa-
tion:

Σ̂ =
1

n

n
∑

i=1

u(xH
i Σ̂

−1
xi)xix

H
i , (1)

where u is a real valued function with certain re-
quirements. The existence and uniqueness of Σ̂

are stated [5] for complex data. The M-estimators
can be interpreted as a weighted version of SCM
whose weight is assigned by the u function.

Tyler’s M-estimator. Tyler’s M-estimator is the
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solution to (1) with

u(d) =
p

d
.

This estimator is the maximum likelihood estimate
of scatter for the complex angular central Gaussian
distribution. If n > p and xi 6= 0 for all i, given
an initial positive definite hermitian estimate Σ0,
which can be chosen to be the identity matrix,
this estimator can be computed by the iterations
as follows:

Σ̂m+1 ←
p

n

n
∑

i=1

xix
H
i

xH
i Σ̂

−1
m xi

, (2)

Σ̂m+1 ←
αΣ̂m+1

Σ̂m+1

, (3)

where α is a constant used to eliminate the scaling
ambiguity and commonly set to either 1 or p.

Robust eigenvalue-based spectrum sensing. The
spectrum sensing with single source in the cogni-
tive networks is considered, where each secondary
user equipped with p antennas and the test statis-
tics is computed based on n time samples. We do
not consider the cooperative spectrum sensing.

The simplest version of the spectrum sensing is
the detection of a signal from a noisy environment.
This task can be formulated as a hypothesis test,
whose null hypothesis is that a signal does not ex-
ist, and the alternative hypothesis is that a signal
exists. The received signal samples under two hy-
potheses are given by

x(i) =

{

z(i), H0 : signal does not exist,

s(i)h+ z(i), H1 : signal exists,

(4)
where x(i) ∈ Cp is the received sample vector at
instant i of one SU, h ∈ Cp represents the fad-
ing channel, s(i) ∈ C is the transmitted symbol
modeled as a complex Gaussian random variable
with zero mean and unit variance, and z(i) ∈ Cp

is the received noise vector which is assumed to be
i.i.d in time, with mean zero, covariance σ

2
I and

not necessarily Gaussian distributed. We assume
the channel h being constant during i = 1, . . . , n
transmissions. Under H0, the received sample is
pure noise whose population covariance matrix is
E[x(i)x(i)H] = σ

2
I and the largest eigenvalue of

the population covariance is σ2. Under H1, the
received sample is the noise plus signal, whose
population covariance matrix is E[x(i)x(i)H] =
hh

H + σ2
I and the largest eigenvalue of the pop-

ulation covariance is ‖h‖2 + σ2. Also we define
the signal to noise ratio (SNR) at the receiver as,

ρ = E‖hs(i)‖2

E‖z(i)‖2 = E‖h‖2

pσ2 .

The received sample matrix generated by the
system is a p× n matrix consisting of all the sam-
ple vectors from p antennas, denoted as X. The
SCM S is

S =
1

n
XX

H. (5)

The Tyler’s M-estimator Σ̂TY is

Σ̂TY =
p

n

n
∑

i=1

xix
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. (6)

Let λS
1 > · · · > λS

p and λTY
1 > · · · > λTY

p be the

eigenvalues of S and Σ̂TY, respectively.
In general, let T be the test statistic employed

by the detector to distinguish between H0 and H1.
The detector makes the decision by comparing the
test statistics T computed from the data with a
pre-determined threshold t: if T > t it decides that
H1 is true, otherwise H0 is true. The performance
of spectrum sensing can be primarily determined
based on two metrics: the probability of detection
(POD) and the probability of false alarm (POF).
POD is defined as Pd = Pr(T > t|H1), and POF
is defined as Pfa = Pr(T > t|H0).

When the noise vector is Gaussian distributed,
there are two nearly optimal test statistics, i.e.,
Roy’s largest root test (RLRT) and a generalized
likelihood ratio test (GLRT) [5]. The RLRT re-
quires the knowledge of noise power while GLRT
does not require such knowledge. The RLRT
asymptotically determines the Neyman-Pearson
(NP) likelihood ratio which gives the most pow-
erful test in the case of a simple hypothesis test.
The RLRT statistics is defined as

T S
RLRT =

λS
1

σ2
. (7)

When the noise power is unknown, the hypothesis
test becomes a composite hypothesis test, and the
NP likelihood ratio is not available. A common
procedure is the generalized likelihood ratio test
which in our model is [5]

T S
GLRT =

λS
1

1
p
(S)

. (8)

Those test statistics derived from the SCM pre-
serves certain optimality when the noise vector is
Gaussian. When the noise vector is distributed
with heavy tails, those test statistics will lose their
optimality and have very high variance, i.e., with
high probability the statistics are far away from
their population counterparts. The SCM based
detectors tends to confuse signal transmitted by
primary users and the effect of impulsive effect,
which leads to a high POF given a fixed POD. To
deal with the deficiency of SCM, we use analogues
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of these two statistics derived from Σ̂TY. The pro-
posed test statistics are

TTY
RLRT =

λTY
1

σ2
, (9)

and

TTY
GLRT =

λTY
1

1
p
(Σ̂TY)

. (10)

Similar to SCM based detectors, the detector us-
ing the latter statistics requires no knowledge of
noise power, but in reality they have the same
performance under CES distributed noise. These
two statistics can also be derived from other M-
estimators by choosing different u functions. How-
ever many of those choices have free parameters to
adjust according to the noise distribution, which
requires certain amount of data samples to learn
the noise first but in cognitive radio applications
the time slot to sensing the spectrum is limited.

There are several reasons to use Tyler’s M-
estimator other than other M-estimators when the
noise is CES distributed. The CES distribution
is a very general class of multivariate distribu-
tions, which encompass many heavily tailed dis-
tributions [4]. Firstly, this estimator cancels out
the effect of the texture parameter of CES distri-
butions, which means the behavior of the estima-
tor and functions of the estimator do not depend
on the exact noise distribution if the data is CES
distributed. Thus, the statistics derived from the
Tyler’s M-estimator have a constant POF under
CES distributions with respect to a given thresh-
old t. In addition, TTY

GLRT and TTY
RLRT have the same

performance. This can be explained by the fact
that the ratio of these two statistics, σ

(Σ̂TY)
= σ

α
,

is a constant under any hypothesis and realizations
according to (3). However, the ratio derived from
the SCM is not the same in different realizations,
thus they have different performance. Secondly,
the performances of those tests are better than
those derived from the SCM under heavy-tailed
data. Last but not least, this estimator does not
need to know the exact distribution in order to
optimize its performance within limited time.

Simulation and numerical result. In Figure 1,
we have the receiver’s operation curves for differ-
ent test statistics under impulsive noise. Each sim-
ulation is repeated 100000 times for n = 50, p = 5
and ρ = 0 dB. The simulation results compare
the performance of different tests under Gener-
alized Gaussian noise with s = 0.1 [4]. As ref-
erence, we also have TML

RLRT and TML
GLRT derived

from the maximum likelihood estimator for Gen-
eralized Gaussian distribution with s = 0.1, which

is (1) with u(d) = s
b
ds−1 and b = [pΓ(p

s
)/Γ(p+1

s
)]s.

Those test statistics have the best performance
but require exact knowledge of the noise distri-
bution, which is usually unavailable in practice.
The performance of TTY

RLRT and TTY
GLRT are exactly

the same and outperform both T S
RLRT and T S

GLRT

in the impulsive noise environment. The gap be-
tween the detectors using Σ̂TY and the detectors
using ML-estimator is not significant. The gap can
be interpreted as the price paid for the robustness
we gained from using Σ̂TY. The robustness here
means the proposed detector works well in other
CES environment, and the Gaussian case is shown
in [1]. T S

RLRT with knowledge of the noise power
outperforms T S

GLRT as expected.
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Figure 1 (Color online) Performance of the proposed de-
tector under generalized Gaussian noise.

Conclusion. A blind robust eigenvalue-based
detection has been proposed in this study, which is
insensitive to CES distributions and noise power.
The robustness of this detector has been shown nu-
merically under generalized Gaussian noise. More
details of this study can be found in [1].
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