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Abstract Imbalance in data distribution hinders the learning performance of classifiers. To solve this

problem, a popular type of methods is based on sampling (including oversampling for minority class and

undersampling for majority class) so that the imbalanced data becomes relatively balanced data. However,

they usually focus on one sampling technique, oversampling or undersampling. Such strategy makes the

existing methods suffer from the large imbalance ratio (the majority instances size over the minority instances

size). In this paper, an active learning framework is proposed to deal with imbalanced data by alternative

performing important sampling (ALIS), which consists of selecting important majority-class instances and

generating informative minority-class instances. In ALIS, two important sampling strategies affect each

other so that the selected majority-class instances provide much clearer information in the next oversampling

process, meanwhile the generated minority-class instances provide much more sufficient information for the

next undersampling procedure. Extensive experiments have been conducted on real world datasets with a

large range of imbalance ratio to verify ALIS. The experimental results demonstrate the superiority of ALIS

in terms of several well-known evaluation metrics by comparing with the state-of-the-art methods.

Keywords imbalance classification, important sampling, active learning, oversampling, undersampling

Citation Wang X Y, Liu B, Cao S Y, et al. Important sampling based active learning for imbalance classification.

Sci China Inf Sci, 2020, 63(8): 182104, https://doi.org/10.1007/s11432-019-2771-0

1 Introduction

The imbalanced data is ubiquitous and inevitable, which has been a critical issue in community of machine

learning. Taking binary classification into consideration, imbalance means one class (majority or negative

class) outnumbers the other class (minority or positive class). The imbalance ratio between classes may

range from ten to hundred or even larger in real applications. In extreme multi-label learning [1], each

tail class only covers few instances while head class contains a large amount of instances. In dense object

detection, background samples extremely outnumber foreground (object) samples [2]. Such imbalanced

data brings two challenges for classification task: lack of minority class instances and noisy information in

majority class. The former is a terrible issue because the learning model cannot be sufficiently trained to

determine the hidden pattern for minority class. The second issue will result in a decision boundary far

away from the ideal one owing to the effect of noisy data. Thus, it is necessary to leverage the minority

class and remove redundant instances from the majority class.

To date, sampling-based technique has been a direct and simple way to relieve the imbalance problem

with the aid of increasing the minority class instances (oversampling) or decreasing the majority class
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instances (undersampling). To boost the generalization ability for imbalance classification, the joint

methods are proposed by taking advantage of both undersampling and oversampling [3, 4]. Although

hybrid sampling methods utilize these two sampling strategies simultaneously, they still suffer from more

or less drawbacks of these two sampling strategies, which are performed separately. Active learning is

an alternative strategy to handle the imbalance classification task. Its main idea is to add informative

instances during active learning process [5, 6]. Ensemble learning and cost-sensitive learning have also

been utilized to improve the performance of imbalanced data classifier. Even though these methods obtain

promising results on imbalance classification, ensemble methods suffer from how to generate the accurate

ensemble components and design proper fusion function to combine the weak classifiers. Similarly, it is

expensive to manually tune the cost parameter for cost-sensitive learning methods even with the aid of

domain knowledge [7].

Motivated by the above-mentioned observations, we propose a new active learning framework by alter-

native performing important sampling (ALIS) for imbalance classification. Its main idea is to iteratively

select important majority-class instances and generate informative minority-class instances. The other

important point is that the proposed active learning’s querying strategy has ability to yield a balanced

training set in each learning stage. For the important undersampling in ALIS, a new active selection

criterion is proposed which captures the first- and second-statistics of the selected majority class set. In

this case, diverse and informative majority class instances will be added to the training set. For the

important oversampling in ALIS, a new generator is proposed which captures the distribution of infor-

mative sampling seeds in the minority class. In this case, each seed is considered as a center and the

corresponding bandwidth can be adaptively determined which has ability to introduce data perturbation

for robust learning. Following this distribution, we can make sure the synthetic samples are more diverse

than random replication and linear interpolation. More specially, all minority-class instances and partial

majority-class instances (with similar size of minority class) are taken as the input of active learning

to build the classifier in each iteration. Based on the current boundary, the important majority-class

instances will be selected from the pool if the proposed active selection criterion is satisfied. With the

increasing of the selected majority-class instances in each iteration of active learning, the synthetic and

informative minority-class instances will be simultaneously generated by estimating the density distribu-

tion of the minority-class instances around the current boundary. Thus, the proposed ALIS is definitely

from the existing methods which apply sampling (oversampling minority class or undersampling majority

class) once and build the classifier.

The main contributions of our work can be summarized as follows.

• To the best of our knowledge, this is the first imbalance classification work with simultaneously

undersampling on majority class and oversampling on minority class under the active learning framework.

• A new undersampling strategy is proposed according to the distribution of boundary majority-class

instances, which has ability to select important majority-class from pool for the subsequent learning

process.

• A new oversampling strategy is proposed to select the borderline minority-class instance as sampling

seeds and adaptively generate informative minority-class instances, which make sure the training set is

balanced in each learning stage.

• A series of experiments have been conducted on real-world datasets with large range of imbalance

ratio to demonstrate the superiority of ALIS by comparing with the state-of-the-art methods.

The rest of paper is organized as follows. Section 2 provides the related work. The proposed ALIS

framework is described in Section 3. Section 4 reports the experiments in detail and discusses the

experimental results. Finally, a brief conclusion is drawn in Section 5.

There is an increasing interest in imbalanced data classification task. Till now, lots of methods have

been proposed, which can be roughly divided into three main categories: cost sensitive-based, sampling-

based and active learning-based methods. Among them, cost sensitive-based methods [8–11] are designed

by introducing class-dependent or example-dependent cost to a traditional classification model. But it is

hard to predefine the proper values for the cost variables.
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2 Related work

2.1 Sampling-based methods

The main goal of sampling-based methods is to make the imbalanced data become balanced via over-

sampling or undersampling techniques, and then traditional classification approaches can be applied.

More specifically, oversampling aims at increasing minority-class instances, while undersampling tries to

decrease the number of majority-class instances.

The popular oversampling strategies mainly contain replicating the existing minority-class instances

and generating new instances for minority class. In the former strategy, each minority-class instance

may be replicated several times, which may cause overlapping and further destroy the classification

performance. Thus, most researchers focused on the latter strategy and proposed a series of methods to

create the synthetic minority-class instances. The typical one, SMOTE [12], adopts linear interpolation

to generate new points between the selected minority-class instances which are called as sampling seeds.

The main factor affecting the performance of SMOTE-type oversampling methods is sampling seeds

selection. To identify the informative sampling seeds, the k-nearest neighbor technique is widely used

to weigh the minority-class instances and detect the proper seeds according to their importance [13, 14].

Meanwhile, the data distribution around the sampling seeds is used to determine the amount of new

generated instances [15]. To consider the effect of majority class, Barua et al. [16] presented a majority

weighted minority oversampling technique (MWMOTE) to determine informative minority sampling

seeds, and generate new instances by considering the closeness and density of each seed.

Although oversampling methods obtain promising result in imbalanced data classification, they usually

suffer from overfitting problem and noisy information. To remove noisy samples, an undersampling

technique is introduced to handle majority class, where they make use of clustering, cleaning strategy,

etc. [17,18]. However, it is hard to distinguish noisy instances from the whole dataset, which may result in

discarding useful information. Therefore, researchers take advantage of undersampling and oversampling

together via ensemble learning or active learning.

In ensemble learning-based imbalanced classification, bagging and boosting are the popular techniques.

Bagging methods fuse several weak classifiers with equal weights, where each classifier is built on a subset

of training data [3, 4, 19]. Boosting methods incrementally build a stronger classifier by enforcing a

heavy penalty on the instances that the previous classifier mis-predicted [20, 21]. Unfortunately, there

are still some open problems in ensemble learning, such as how to guarantee the diversity and accuracy

for ensemble components, how to make sure that the sampling results keep the structure information of

original data.

2.2 Active learning-based methods

Active learning involves designing a selection strategy to select informative instances and ask an oracle

to label them, which helps reduce labeling effort in classification problems [22–25]. Recently, it has

been introduced in imbalanced classification, which is leveraged to obtain the informative instances when

there are sufficient labeled data [5, 26]. Its main idea is to incrementally add instances during learning

process, which makes classification performance better by adding informative instances from both classes

or avoids the imbalance ratio becoming larger by adding minority class instances. The key issue of active

learning-based imbalanced classification is designing the criterion to select proper instances from the pool.

In imbalance classification, the separating hyperplane is skewed towards the minority class, which

would finally yield a suboptimal model [27]. To adjust learning model by informative instances, the

active selection criteria are designed by taking the character of the model into consideration, which has

been integrated with as support vector machine (SVM) [26], Bayes classifier [28] and so on. Thus, in the

case of applying SVM to deal with imbalance classification under active learning, the instances closest

to the current hyperplane are selected to update the model in the next round of training process. For

naive Bayes based active learning method, the training data set is expended by the examples that can

maximize information gain of the Bayes classifier before and after adding them. However, this type of
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Table 1 Notations in ALIS framework

Notation Description

P Original positive class set

n+ The number of positive instances

N Original negative class set

n− The number of negative instances

D Original training set and D = P ∪ N

n The number of training instances and n = n+ + n−

P
j

active Generated synthetic positive class set in the jth iteration

N
j

active Selected negative class set in the jth iteration

Npool Remaining negative class set after active selection

Pactive Generated synthetic positive class set, Pactive =
⋃

j P
j

active

Nactive Selected negative class set, Nactive =
⋃

j N
j

active

ω A linear predictor

f A linear model

λ1 The trade-off parameter for controlling the margin variance

λ2 The trade-off parameter for controlling the margin mean

criteria may be not effective to make up for the imbalance between classes. Thus, to reduce the imbalance

ratio by adding more minority class instances, the specialist criteria are usually incorporated a preference

for selecting minority class instances [29, 30].

Active learning aims at employing informative training instances iteratively, which has been widely

used in imbalance learning [5]. But, the active selection procedure usually fails to expand training set

with important instances as well as balance the unequal distribution between classes. Thus, it is essential

to generalize existing active learning strategy for imbalance classification problem.

3 Important sampling based active learning

Let D = {(xi, yi) |xi ∈ R
m, yi ∈ {+1,−1}, i = 1, . . . n} denote an imbalanced binary training set with

n points. In D, xi indicates the ith instance vector in m-dimension space, yi is its target value, where

yi = +1 means the instance belongs to the positive class, otherwise it belongs to the negative class.

Conveniently, majority (negative) class and minority (positive) class are marked as N and P respectively,

and n+ and n− are the amount of N and P respectively, thus D = P∪N and n = n++n−. The notations

used in this study are listed in Table 1.

3.1 ALIS framework

The main goal of classifier is to determine the boundary between minority class and majority class by

analyzing the training data. The instances closest to the hyperplane are more informative than the ones

far from the decision boundary. To reach this goal, we propose an ALIS. It contains two main parts, one

for important undersampling to select the important majority instances by considering the distribution of

majority class, and the other for important oversampling to generate new important minority instances

by estimating the distribution of boundary minority instances.

The proposed ALIS framework is shown in Figure 1. To sufficiently mine latent information of the

rare positive instances, all positive instances P are used at the beginning of active learning process,

i.e., P0
active = P . To avoid imbalanced data set, only partial negative instances are randomly selected

to form the initial negative set, denoted as N 0
active; especially, we set |N 0

active| = |P0
active| = |P| = n+.

Next, any traditional classifier can be trained on this balanced dataset {P0
active,N 0

active}. For the jth

iteration of active learning, ALIS expands the training set with informative negative set N j
active which are

selected from the pool N j−1
pool, where N j−1

pool is the left negative instances set after selecting the important

negative instances in the previous j − 1 rounds. Meanwhile, ALIS generates new informative positive

instance Pj
active to balance the training set. In this case, the selected representative negative instances



Wang X Y, et al. Sci China Inf Sci August 2020 Vol. 63 182104:5

Important 
undersampling 

Important 
oversampling 

  

  

Random 
undersampling 

N  
 

 

Actively 
select  

Actively 
generate 

Classi-
fier ( j)

 jPactive

Pactive
0

 jNactive

Nactive
0

Figure 1 (Color online) The schematic diagram of ALIS framework. The classifier is initially trained by all positive

instances P 0
active and equal amount of random negative instances N0

active, and is updated iteratively according to new

selected negative points or new generated positive points.

and generated informative positive instances are expected to improve the active learning performance

and build more effective classifier for this iteration.

Like any active learning method, we have to design the stopping condition (stop criterion) to terminate

the training process. Recall that our goal is to establish a stable and effective classifier, thus, we take the

predication performance of non-selected negative training instances as the criterion. Once the difference

between the performance in the T th iteration and that in the (T − 1)th iteration is smaller than a

threshold, we will stop the active learning process. In this case, the final classifier is built with the original

positive instance P , initial randomly selected negative instance N 0
active, oversampled positive set Pactive =

⋃T

j=1 P
j
active, and undersampled negative set Nactive =

⋃T

j=1 N
j
active, i.e., the {P ,Pactive,N 0

active,Nactive}.
More details will be given in Subsections 3.2–3.4.

3.2 Decision boundary detection

In our proposed ALIS framework, any decision boundary detection method (such as SVM and its ex-

tensions) can be used to separate the majority class and minority class. In this study, we apply SVM

and large distribution machine (LDM) [31] as the classifier. LDM tries to achieve a better generalization

performance by optimizing the margin distribution by the first- (margin mean) and second-order (margin

variance) statistics, which are the mean of each component and the correlations between components

respectively [32]. More detailly, f is regarded as a linear model:

f(x) = ωT
x, ω = (ω0, . . ., ωm), (1)

where ω is a linear predictor and the margin for xi is defined as

γi = yif(xi), ∀i = 1, . . . ,m. (2)

Then, the margin mean γ̄ and variance γ̂ are calculated via

γ̄ =
1

n

n
∑

i=1

yif(xi), (3)

γ̂ =
1

n2

n
∑

i=1

n
∑

j=1

(yif(xi)− yjf(xj))
2. (4)

Then, similar to soft-margin SVM, the soft-margin LDM leads to

min
ω,ξ

1

2
ωTω + λ1γ̂ − λ2γ̄ + C

m
∑

i=1

ξi (5)
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s.t. yiω
Tφ(xi) > 1− ξi, (6)

ξi > 0, i = 1, . . . ,m, (7)

where λ1 and λ2 are the parameters for trading-off the margin variance and the margin mean, respectively.

SVM is a special case of LDM with λ1 = λ2 = 0.

3.3 Important undersampling

Except for the initial step where ALIS randomly selects negative instances as N 0
active for each iteration,

ALIS tries to select the important majority instances around the boundary. To implement this, it

considers the structure information of these instances such as their first- and second- statistics. More

specifically, for a candidate set, its margin distribution is captured by

ratio =
γ̄

γ̂
, (8)

where γ̄ and γ̂ denote the average and variance of the margins of instances from the candidate set to the

current decision boundary respectively.

In each active learning stage, it will select several important majority-class instances to form N
j
active.

In practice, m instances (m is set to be 3 in experiments) closest to the current boundary are used as the

initial candidate set N j0

active, and its margin distribution ratio can be calculated via (8), denoted as ratioj
0

.

Next, we construct N j
active in an iterative way. In each iteration, t extra instances (following the active

learning strategy, t is set to be 2 in experiments) closest to the boundary are selected from pool and added

to N
jk

active. Similarly, we can compute its margin distribution ratioj
k

. With the increasing of iteration,

more majority-class instances will be added. To make sure the selected instances have better margin

distribution, this process will stop when the corresponding ratioj
k

increases. Among them, small ratioj
k

indicates small distance average and large distance variance. The former is helpful to select uncertain

instances because they are close to the boundary. The latter is helpful to select diverse instances because

they are scatter to each other. As pointed out in [33], uncertainty and diversity are two main requirements

of active learning when selecting instances from pool.

Thus, if ratioj
k+1

> ratioj
k

, the procedure of selecting informative negative points comes to an end

with N
j
active = N

jk

active. By capturing margin distribution of selected points, ALIS ensures the points used

for adjusting model are informative and representative.

3.4 Important oversampling

To avoid imbalance ratio becomes larger, ALIS applies important oversampling which generates new

boundary minority points. It first selects informative borderline instances (sampling seeds) from the

minority class. Then it designs an appropriate generator to create new minority points.

Proper sampling seeds are usually found via the k-nearest neighbor-based approach because the bound-

ary minority class instances are more likely to have majority class instances among its nearest neighbors.

Let NN(xi) indicate the neighbors set for the instance xi excluding itself. The informative set of positive

class is denoted as P info, i.e.,

P info = {pi|pi ∈ P ∩ xi ∈ NN(pi) ∩ xi ∈ N}. (9)

Let ki− indicate the amount of majority points from NN(pi), i.e.,

ki− = |{xi|pi ∈ P info ∩ xi ∈ NN(pi) ∩ xi ∈ N}|. (10)

Thus, for each point xi ∈ P info, a weighted value ξi is assigned by the distribution of its k nearest

neighbors set:

ξi =
ki−

k
. (11)
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After fixing the sampling seeds and their importance, Kernel density function is adopted to capture

boundary points’ distribution and generate new boundary points.

The density distribution of informative minority class instances (xi ∈ P info) can be written by

Gi(x) =
1

(
√
2π)mhi

exp
(

− 1

2

(x− xi)
′(x− xi)

hi

)

, (12)

where hi = min dis(xi,NN(xi)), indicating the bandwith, and dis is a distance function. Then, the

estimated probability density function p(x) based on P info can be written as

p(x) =

n
+

ib
∑

i

ξiGi(x), (13)

where n+
ib is the number of instances in P info, i.e., n+

ib = |P info|. Then the PDF estimation from informative

borderline set can be interpreted as Gaussian mixture model with n+
ib components and ξi is the mixture

weight.

The oversampling strategy is similar with KernelADASYN [14]. But, they are slightly different on

calculating ξi and hi. When calculating ξi, for each selected minority-class seed, KernelADASYN finds

its k-nearest neighbor instances from the whole training set including all minority-class and majority-

class instances. ALIS is an iterative learning process. In each step, ALIS finds the nearest neighbors

of each seed from the current training set which covers all given minority-class instances, the selected

important majority-class instances and the generated informative minority-class instances. The number

of generated instances depends on the number of selected important majority-class instances, which

make sure the training data balance in each active learning stage. Another point is that KernelADASYN

predefines the bandwidth hi, and each component in (13) is assumed having the same variance, i.e.,

h = h1 = · · · = hi = · · · = hn
+

ib

. Such assumption will be violated in the complicated situation because

some components may be dense which will prefer to small variance, and some components are sparse which

prefer to large variance. Thus, hi is self-tuned in ALIS according to its nearest neighbors. ALIS tries to

select boundary instances as sampling seeds because the examples on the borderline and the ones nearby

are more uncertain, thus more apt to be misclassified than the ones far from the borderline. Then, ALIS

adaptively sets the importance of each seed and approximates the probability density function around

it by (11)–(13). In this case, each seed is considered as a center and the corresponding bandwidth is

adaptively determined, which has ability to introduce data perturbation for robust learning. Following

this distribution, we can make sure the synthetic samples are more diverse than random replication and

linear interpolation.

To give a more comprehensive understanding of proposed framework ALIS, the algorithm flowcharts

of the proposed two important sampling strategies are provided in Algorithms 1 and 2, respectively. In

addition, the graphical representation of ALIS is shown in Appendix A.

Algorithm 1 Important undersampling algorithm

Input: Classifierj , pool negative dataset Npool, batchsize.

Output: actively selected negative dataset N
j

active
.

1: Initialize times = 0; ratio1 = 1; ratio2 = 0;

N ′

pool
: order Npool by the according distance between instances and decision boundary of Classifierj ;

2: while ratio2 < ratio1 do

3: times = times + 1;

4: N1= top ♯(times × batchsize) instances in N ′

pool
;

5: N2= top ♯((times + 1)× batchsize) instances in N ′

pool
;

6: Calculate ratio1 and ratio2 of N1 and N2 according to (8) respectively;

7: end while

8: N
j

active
= N1.
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Table 2 Description of the datasets

Dataset n m n− n+ ratio (n
−

n+ )

haberman 306 3 225 81 2.8

libra 360 90 288 72 4

glass6 214 9 185 29 6.38

ecoli3 336 7 301 35 8.6

yeast0256vs3789 1004 8 905 99 9.14

Satimage 6435 36 5809 626 9.27

balance 625 4 576 49 11.8

shuttlec0vsc4 1829 9 1706 123 13.87

Letter-a 20000 16 19211 789 24.34

yeast4 1484 8 1433 51 28.1

yeast6 1484 8 1449 35 41.4

abalone19 4174 7 4142 32 129.44

Algorithm 2 Important oversampling algorithm

Input: Pactive, Nactive, k.

Output: synthetic minority dataset P
j

active.

1: Identify informative minority-class set P info via (9);

2: for xi ∈ P info do

3: Set the mixture weight ξi via (11);

4: Set the bandwidth hi = mindis(xi,NN(xi));

5: end for

6: Generate the synthetic minority instances by GMM estimation via (13).

4 Experiments and results

4.1 Data sets

The experimental binary-class data sets are from UCI data repository [34] and the KEEL data repos-

itory [35], which are commonly studied in imbalance classification [11, 13, 16, 36, 37]. Details of these

datasets are shown in Table 2. n is the number of total instances, m is the number of features describing

the data, n+ and n− are the numbers of minority and majority instances, respectively. Obviously, these

datasets have a wide range of imbalance ratio (from 2.8 to 129.44), where larger ratio will make the

learning problem more difficult. In addition, it is worth to point out that datasets with imbalance ratio

over 10 can be regarded as the highly imbalanced datasets [38].

4.2 Methodology

To verify the effectiveness of ALIS, we compare it with five popular methods which deal with imbal-

ance classification from different points of view. RoSR-L [11] is cost sensitive-based methods. Ker-

nelADASYN [14] is an oversampling method. AdaS [4] takes advantage of ensemble learning strategy

which involves both undersampling and oversampling. AQM [30] and BorS [26] make use of active un-

dersampling strategy. The proposed ALIS integrates undersampling and oversampling with the aid of

active learning strategy.

In experiment, when detecting the decision boundary, SVM and LDM are used. The trade-off pa-

rameters λ1 and λ2 in LDM and cost parameter C in both LDM and SVM are tuned. For important

oversampling, number of nearest neighbors k is tuned from the candidate set {5, 8}. All the best param-

eters are selected via 5-fold cross validation from the training data at the first random data partition

as CS-LDM [9] does. Because there are several parameters, in experiments, nested cross validation is

adopted for model evaluation; i.e., 5-fold cross-validation is used for both validation set and testing set.

Specifically, for each dataset, it is randomly divided into five equal-size folds. One by one, a fold is taken

as testing. Then, one by one, one of the left folds is used as validation and the other three folds are for
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Table 3 Comparison of ALIS and five baselines in terms of recall for minority class on twelve real-world datasets

Dataset RoSR-LL KernelADASYN AdaS AQM BorS ALISSVM ALISLDM

haberman 0.5676 ± 0.05 0.4088 ± 0.10 0.4706 ± 0.10 0.7184 ± 0.14 0.0485 ± 0.07 0.7294 ± 0.06 0.7676 ± 0.07

libra 0.7933 ± 0.06 0.0971 ± 0.06 0.6124 ± 0.20 0.3276 ± 0.29 0.3238 ± 0.19 0.5724 ± 0.16 0.8067 ± 0.14

glass6 0.9754 ± 0.01 0.8667 ± 0.22 0.8667 ± 0.22 0.9333 ± 0.09 0.8000 ± 0.30 0.9333 ± 0.09 0.9668 ± 0.06

ecoli3 0.9714 ± 0.06 0.5143 ± 0.16 0.9429 ± 0.08 0.9714 ± 0.06 0.2000 ± 0.19 0.9714 ± 0.06 0.9714 ± 0.06

yeast0256vs3789 0.7479 ± 0.08 0.5958 ± 0.17 0.6763 ± 0.12 0.8479 ± 0.05 0.1816 ± 0.16 0.6763 ± 0.15 0.9103 ± 0.07

Satimage 0.6917 0.04 0.0000 0.00 0.0000 0.00 0.9856 0.01 0.0000 0.00 0.2555 ± 0.03 0.9170 ± 0.04

balance 0.1400 ± 0.17 0.0000 ± 0.00 0.2822 ± 0.14 0.5556 ± 0.14 0.0000 ± 0.00 0.7600 ± 0.15 0.6600 ± 0.43

shuttlec0vsc4 1.0000 ± 0.00 0.6396 ± 0.13 0.1890 ± 0.13 0.4505 ± 0.20 0.0868 ± 0.12 0.4637 ± 0.16 1.0000 ± 0.00

Letter-a 0.9252 ± 0.02 0.9354 ± 0.02 0.9506 ± 0.01 0.9924 ± 0.01 0.9772 ± 0.01 0.9937 ± 0.01 0.9454 ± 0.01

yeast4 0.8600 ± 0.11 0.3327 ± 0.05 0.0982 ± 0.10 0.9400 ± 0.09 0.0000 ± 0.00 0.8218 ± 0.09 0.9400 ± 0.09

yeast6 0.8857 ± 0.12 0.6000 ± 0.16 0.0286 ± 0.06 0.8857 ± 0.12 0.0571 ± 0.08 0.9143 ± 0.13 0.9435 ± 0.08

abalone19 0.4429± 0.15 0.0000± 0.00 0.0000± 0.00 0.6714± 0.32 0.0000± 0.00 0.7286 ± 0.25 0.6286 ± 0.21

Winning times 3 0 0 3 0 4 9

training until all possible combinations have been evaluated. Finally, the training set is used to build the

learning model, the validation set is used for selecting the proper parameters, and then the testing set is

used to evaluate the model with the best parameters. The averaged results and the corresponding statis-

tics are recorded. To validate the imbalance classification performance, the mean and standard deviation

of four commonly used in imbalanced learning metrics are adopted, i.e., recall of minority class, precision

of majority class, macro-averaged F-measure (Fmacro) and AUC. The average results with standard de-

viation are recorded. For imbalance learning, because the positive class is of more interest, it is expected

that out of all the positive observations more of them are predicted as positive. In the meanwhile, with

high confidence of the probability that a predicted negative instance indeed belongs to the negative class.

So, a good model needs to return a higher recall on the positive class and higher precision on the negative

class [39]. Besides, (Fmacro) and AUC are also used to give a fair evaluation of these methods.

4.3 Comparison with baselines

Tables 3–6 show the results in terms of precision of majority class, recall of minority class, Fmacro and

AUC. Moreover, we count the total number of winning times for each method across different evaluation

metrics in each table. For each dataset, bold fonts and underline indicate the top two results respectively.

4.3.1 Performance on the minority class

Table 3 shows the performance of six methods on the minority class and high recall ensures that an

algorithm has a good prediction performance on the minority class.

RoSR-LL and AQM perform better among five comparative methods while the others fail to recognize

the minority class instances in certain data sets. Except the dataset Letter-a, KernelADASYN, AdaS

and BorS degrade when the dataset with higher imbalance ratio. In real-world application, the minority

class is usually of more interest. Recall for minority class shows the fraction of the total amount of

relevant instances that actually belong to minority class. Here, zero recall (on minority class) indicates

that KernelADASYN, AdaS and BorS incorrectly assign all minority-class instances to majority class for

datasets with higher imbalanced ratio. The main reasons are as follows. KernelADASYN makes up for

the imbalance problem via generating new positive points. When the imbalance ratio is high, however,

insufficient boundary information cannot guarantee a good choice for sampling seeds. In this case, we

cannot make sure to generate informative minority-class instances, which will degrade the classification

performance. The main idea of AdaS is to generate several subsets of majority-class instances and

oversample minority-class instances for each subset. One weak classifier will be built for each subset,

however, it is hard to build a high-quality weak classifier for each subset owing to the limitation of

training data. BorS first constructs an initial SVM classifier under a subset of the original imbalanced

data and then expends the training set by adding the borderline instances. Owing to the imbalance

between the majority class and minority class, the majority-class instances will be selected with high

probability, which will deteriorate the subsequent learning process. In ALIS, though we do not have
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Table 4 Comparison of ALIS and five baselines in terms of precision for majority class on twelve real-world datasets

Dataset RoSR-LL KernelADASYN AdaS AQM BorS ALISSVM ALISLDM

haberman 0.8185 ± 0.02 0.7879 ± 0.04 0.7812 ± 0.04 0.7614 ± 0.12 0.7311 ± 0.01 0.8190 ± 0.05 0.8856 ± 0.04

libra 0.9349 ± 0.02 0.8145 ± 0.01 0.8932 ± 0.03 0.8286 ± 0.05 0.8560 ± 0.04 0.8555 ± 0.06 0.9457 ± 0.03

glass6 0.9963 ± 0.00 0.9797 ± 0.03 0.9796 ± 0.03 0.9884 ± 0.02 0.9702 ± 0.04 0.9895 ± 0.01 0.9947 ± 0.01

ecoli3 0.9918 ± 0.01 0.9446 ± 0.02 0.9919 ± 0.01 0.9960 ± 0.01 0.9148 ± 0.02 0.9959 ± 0.01 0.9964 ± 0.01

yeast0256vs3789 0.9674 ± 0.01 0.9559 ± 0.02 0.9633 ± 0.01 0.9591 ± 0.02 0.9174 ± 0.01 0.9638 ± 0.02 0.9764 ± 0.01

Satimage 0.9558 ± 0.00 0.9027 ± 0.00 0.9027 ± 0.00 0.0000 ± 0.00 0.9027 ± 0.00 0.9252 ± 0.00 0.9831 ± 0.01

balance 0.9186 ± 0.01 0.8980 ± 0.01 0.9295 ± 0.01 0.9463 ± 0.02 0.9213 ± 0.00 0.9663 ± 0.02 0.9700 ± 0.03

shuttlec0vsc4 1.0000 ± 0.00 0.9857 ± 0.01 0.9691 ± 0.01 0.9786 ± 0.01 0.9653 ± 0.00 0.9791 ± 0.01 1.0000 ± 0.00

Letter-a 0.9965 ± 0.00 0.9973 ± 0.00 0.9980 ± 0.00 0.9997 ± 0.00 0.9991 ± 0.00 0.9997 ± 0.00 0.9979 ± 0.00

yeast4 0.9941 ± 0.00 0.9763 ± 0.00 0.9688 ± 0.00 0.9957 ± 0.01 0.9656 ± 0.00 0.9924 ± 0.00 0.9963 ± 0.00

yeast6 0.9967 ± 0.00 0.9903 ± 0.00 0.9770 ± 0.00 0.9958 ± 0.00 0.9777 ± 0.00 0.9974 ± 0.00 0.9973 ± 0.00

abalone19 0.9949 ± 0.00 0.9922 ± 0.00 0.9923 ± 0.00 0.9933 ± 0.01 0.9923 ± 0.00 0.9964 ± 0.00 0.9965 ± 0.00

Winning times 2 0 0 1 0 2 10

access to enough positive instances, important positive points are generated during training process. By

creating a more specific boundary, prediction for the minority class instances is promoted. These results

further demonstrate that the proposed informative sampling is helpful to handle imbalanced data.

4.3.2 Performance on the majority class

Table 4 shows the performance of six methods on the majority class and higher precision ensures that

an algorithm is more reliable if it predicts a candidate as the majority class. From the table, all the

comparative methods have displayed a rather excellent performance on the majority. But the proposed

method ALIS still improves the precision for the majority class for all the datasets. Though the imbalance

ratio covers a wide range, ALIS performs quite well.

In important undersampling module in ALIS framework, negative instances will be discarded if the

classification algorithm has a stable and good prediction accuracy on those instances. So, for ALIS, if

the user-defined criterion is satisfied, the learner almost reaches an ideal state. ALIS picks up important

instances and then gives away those redundant negative samples after testing them. More importantly,

by comparing baselines and ALIS from Tables 3 and 4, ALIS has ability to improve the prediction

performance for the minority class without losing confidence of predictive results on the majority class.

4.3.3 Overall performance

The algorithm performance on those two classes has been evaluated separately. To assess the overall

classification performance, Fmacro and AUC are adopted here and they are good indicators of classification

performance in imbalance learning. As shown in Tables 5 and 6, the proposed ALIS achieves competitive

even better classification performance in terms of AUC. Because AdaS uses majority vote to integrate

weaker classifiers’ outputs, it is meaningless to integrate scores given by all the weaker classifiers; and the

model for KernelADASYN does not get such a probability score, so they are not included in Table 6.

ALIS uses borderline negative instances to find more precise boundary positive instances to generate

new informative points and in return, positive points help adjust the boundary and more representative

negative points are found. Because those two processes have an influence on each other, ALIS chooses

those informative instances for training. Finally, ALIS yields an excellent performance on the majority

class and improves detection rate of the minority class. Additionally, by counting the number of winning

times, as shown in the last row of Tables 3–6, we can observe that ALIS outperforms all baselines in

terms of recall for the minority class, precision for the majority class and AUC.

4.3.4 Statistical analysis and run-time analysis

To statistically analyze the prediction results, we adopt ANOVA to test the significance of differences

between multiple classifiers’ performance. Smaller ANOVA value indicates the difference among methods

is more significant. As shown in Table 7, it shows that all means of all methods are significantly different.
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Table 5 Comparing ALIS with five baselines in terms of Fmacro on twelve real-world datasets

Dataset RoSR-LL KernelADASYN AdaS AQM BorS ALISSVM ALISLDM

haberman 0.6151 ± 0.03 0.5997 ± 0.07 0.5621 ± 0.05 0.4299 ± 0.09 0.4401 ± 0.02 0.5108 ± 0.04 0.7114 ± 0.05

libra 0.7071 ± 0.06 0.5285 ± 0.05 0.6517 ± 0.08 0.5282 ± 0.08 0.6910 ± 0.14 0.5634 ± 0.11 0.7520 ± 0.11

glass6 0.7367 ± 0.03 0.9281 ± 0.08 0.9159 ± 0.07 0.8554 ± 0.07 0.9027 ± 0.11 0.8763 ± 0.10 0.9368 ± 0.06

ecoli3 0.6894 ± 0.03 0.7505 ± 0.08 0.7015 ± 0.03 0.6922 ± 0.05 0.6151 ± 0.13 0.6904 ± 0.04 0.7554 ± 0.05

yeast0256vs3789 0.6600 ± 0.02 0.7621 ± 0.05 0.7555 ± 0.04 0.4089 ± 0.09 0.6087 ± 0.09 0.7722 ± 0.06 0.6400 ± 0.06

Satimage 0.5710 ± 0.01 0.4744 ± 0.00 0.4744 ± 0.00 0.0875 ± 0.00 0.4744 ± 0.00 0.6709 ± 0.01 0.4825 ± 0.02

balance 0.4754 ± 0.06 0.4084 ± 0.01 0.5073 ± 0.04 0.5012 ± 0.09 0.4787 ± 0.00 0.4950 ± 0.06 0.5193 ± 0.06

shuttlec0vsc4 0.8503 ± 0.02 0.7897 ± 0.04 0.6289 ± 0.09 0.7316 ± 0.08 0.5516 ± 0.07 0.7344 ± 0.07 0.8506 ± 0.03

Letter-a 0.6625 ± 0.01 0.9488 ± 0.01 0.9858 ± 0.00 0.9339 ± 0.02 0.9904 ± 0.00 0.9864 ± 0.00 0.7222 ± 0.02

yeast4 0.5767 ± 0.02 0.6584 ± 0.03 0.5620 ± 0.07 0.2302 ± 0.15 0.4913 ± 0.00 0.5620 ± 0.03 0.4980 ± 0.01

yeast6 0.5549 ± 0.01 0.7436 ± 0.06 0.5161 ± 0.05 0.3831 ± 0.14 0.5390 ± 0.06 0.5321 ± 0.02 0.6413 ± 0.07

abalone19 0.4803 ± 0.01 0.4950 ± 0.00 0.4981 ± 0.00 0.3207 ± 0.12 0.4981 ± 0.00 0.3731 ± 0.02 0.5061 ± 0.04

Winning times 0 2 0 0 1 2 7

Table 6 Comparing ALIS with three baselines in terms of AUC on twelve real-world datasets

Dataset RoSR-LL AQM BorS ALISSVM ALISLDM

haberman 0.6718 ± 0.09 0.4837 ± 0.09 0.4894 ± 0.13 0.5665 ± 0.05 0.7192 ± 0.09

libra 0.5470 ± 0.07 0.2627 ± 0.12 0.2071 ± 0.04 0.6426± 0.12 0.8313 ± 0.07

glass6 0.8214 ± 0.2445 0.0387 ± 0.0721 0.0324 ± 0.0676 0.9757 ± 0.05 0.9676 ± 0.03

ecoli3 0.4065 ± 0.0647 0.1175 ± 0.0427 0.0600 ± 0.0478 0.9152 ± 0.04 0.9289 ± 0.02

yeast0256vs3789 0.6774 ± 0.0366 0.3108 ± 0.0937 0.1558 ± 0.0376 0.8336 ± 0.05 0.8320 ± 0.03

Satimage 0.1809 ± 0.03 0.9990 ± 0.00 0.2580 ± 0.34 0.9092 ± 0.01 0.7283 ± 0.02

balance 0.5822 ± 0.0640 0.2819 ± 0.1144 0.2395 ± 0.0331 0.7056 ± 0.09 0.5184 ± 0.06

shuttlec0vsc4 0.9053 ± 0.0851 0.0303 ± 0.0238 0.0687 ± 0.0315 0.9848 ± 0.00 0.9858 ± 0.00

Letter-a 0.7689 ± 0.04 0.0004 ± 0.00 0.0001 ± 0.00 0.9999 ± 0.00 0.9845± 0.00

yeast4 0.5844 ± 0.04 0.5133 ± 0.27 0.1934 ± 0.06 0.8642 ± 0.05 0.7472 ± 0.12

yeast6 0.6766 ± 0.12 0.2309 ± 0.11 0.0848 ± 0.06 0.9179 ± 0.08 0.7912 ± 0.05

abalone19 0.2764 ± 0.05 0.4679 ± 0.25 0.4057 ± 0.13 0.7121 ± 0.09 0.7177 ± 0.11

Winning times 0 1 0 6 5

Moreover, we also perform pairwise t-test between ALIS and all other baselines for comparisons of two

classifiers over different data sets. ALIS wins the baseline if the t-test value is below 0.05. The times of

ALIS winning are indicated by the molecule in bracket. For precision-majority and recall-minority, there

are five baselines involved, and that for AUC is three, so the denominator is 5 and 3, respectively. As

expected in Table 7, ALIS makes a promising difference in comparison with other methods.

ALIS is a learning framework including informative sampling (undersampling and oversampling) and

classifier (e.g., SVM, LDM and etc.) training. Table 8 lists the averaged running time (in seconds for

each iteration) of three parts (undersampling (ALIS-Under), oversampling (ALIS-Over), and classifier

building (ALIS-Classifier)). In experiments, all methods are implemented on the server with Intel Core

i7 Processors and 8 G RAM. As expected, oversampling takes a lot because it has to generate synthetic

instances in the original feature space. Fortunately, ALIS is efficient and almost linearly scale to data

size.

4.4 Investigating ALIS

ALIS consists of three components, i.e., important undersampling, decision boundary detection and

important oversampling. Thus, to study the effect of each component individually, we replace the pro-

posed method for each part with the existing one and check the results. More details can be found in

Appendix B. As expected, ALIS outperforms over any other situation which replaces one component

with the existing method. This result further confirms that the proposed framework benefits from each

component.
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Table 7 Analysis of variance (ANOVA) test and winning times of pairwise t-test (in bracket) between ALIS and the

baseline on twelve real-world datasets

Metric haberman libra glass6 ecoli3 yeast0256vs3789 Satimage

Precision-majority 4.79E−03 (4) 1.18E−06 (4) 0.64 (0) 3.86E−10 (2) 2.48E−05 (2) 1.36E−46 (5)

Recall-minority 9.36E−10 (4) 2.38E−06 (2) 0.62 (0) 1.21E−10 (2) 7.28E−09 (4) 5.19E−31 (5)

Fmacro 2.79E−07 (5) 0.0020 (2) 0.0011 (2) 5.44E−02 (4) 1.27E−08 (3) 2.00E−36 (5)

AUC 0.033 (2) 3.45E−09 (3) 1.79E−09 (2) 5.45E−15 (3) 7.83E−09 (3) 2.59E−06 (3)

Metric balance shuttlec0vsc4 Letter-a yeast4 yeast6 abalone19

Precision-majority 8.37E−05 (4) 7.20E−12 (4) 8.70E−09 (4) 4.36E−13 (3) 1.30E−10 (3) 0.15 (3)

Recall-minority 4.53E−05 (3) 4.14E−12 (4) 1.82E−08 (4) 6.85E−17 (3) 5.23E−14 (3) 1.32E−07 (3)

Fmacro 0.0249 (1) 1.40E−07 (4) 1.79E−27 (4) 2.74E−08 (2) 3.72E−06 (2) 0.0428 (0)

AUC 2.01E−06 (2) 5.15E−17 (2) 8.43E−22 (3) 0.8846 (1) 4.07E−05 (2) 4.48E−06 (2)

Table 8 Running time of each part in ALIS framework (s)

Method haberman libra glass6 ecoli3 yeast0256vs3789 Satimage balance shuttlec0vsc4 Letter-a yeast4 yeast6 abalone19

ALIS-Under 0.0003 0.0150 0.0005 0.0006 0.0006 0.0079 0.0002 0.0005 0.0593 0.0005 0.0006 0.0010

ALIS-Over 0.0153 0.1720 0.0126 0.0138 0.0925 0.1410 0.0373 0.0716 0.1870 0.0608 0.0344 0.1100

ALIS-Classifier 0.0002 0.0121 0.0000 0.0231 0.0123 0.0230 0.0001 0.0009 0.0920 0.0094 0.0131 0.0150

As we known, a multi-class classification problem can be decomposed into several binary classification

problems, such as multi-class SVM. Thus, with the aid of two more multi-class datasets, we extend ALIS

for multi-class classification task. More details can be found in Appendix C. The overall performance in

terms of each metric shows that ALIS scales to multi-class problems via decomposition into binary-class

classification problems.

5 Conclusion

Imbalance classification has drawn a wide attention. Stressed by two key points of imbalance classification,

we propose an important sampling based ALIS in this paper. For undersampling, ALIS designs an active

selection criterion which captures distribution of the selected negative instances. For oversampling, ALIS

first selects boundary positive points. Then, after capturing the distribution of those informative points,

new informative boundary points are generated. Experimental results with several performance evaluation

metrics show the effectiveness of ALIS. The tested data sets have a large range of imbalance ratio (from

2.8 to 129.44), but ALIS performs quiet well on both precision for the negative class and recall for the

positive class. In the meanwhile, it also has a good performance in terms of AUC. One more thing is that

to directly extend ALIS for multi-class data by integrating the classifier such as neural network would be

an interesting topic.
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