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Dear editor,
Sliding mode control (SMC) is an effective con-
trol strategy that has been widely studied dur-
ing the past decades. Compared with other con-
trol methods, SMC has strong robustness for ex-
ternal disturbances and plant uncertainties [1].
In general, conventional SMC is only sensitive
to matched disturbances and cannot attenuate
mismatched disturbances in an effective manner.
To solve this problem, a quasi-continuous higher-
order sliding mode control method was designed
for systems with mismatched perturbations based
on the backstepping techniques in [2]. Ref. [3]
proposed an SMC approach for systems with mis-
matched uncertainties. Nevertheless, the condi-
tion limt→∞ ḋ(t) = 0 must be satisfied to enforce
an asymptotical stability of the closed-loop sys-
tem. To overcome the problem of mismatched dis-
turbances, Ref. [4] investigated the SMC for a mis-
matched uncertain high-order system using an ex-
tended disturbance observer, and adaptive neural
network dynamic surface control was discussed by
introducing radial basis function neural networks
in [5]. However, both control methods can ensure
the convergence of tracking errors to a small resid-
ual set.

Because there are many uncertainties in all
channels of the control model in practice, a dis-
turbance observer is introduced to compensate the
performance of a closed-loop system. Ref. [4] stud-
ied an extended disturbance observer that can es-
timate both the matched and mismatched distur-

bances. Moreover, to achieve global stability of the
system, an adaptive control method with a back-
stepping approach was derived in [6]. In this study,
we propose a new adaptive sliding mode control
(ASMC) method with a disturbance observer for a
high-order system with mismatched disturbances.
The main contributions of this study are as fol-
lows:

• A new adaptive sliding surface for a high-
order system is proposed to attenuate mismatched
disturbances in sliding mode.

• The global asymptotic stability of a high-
order system can be guaranteed, and the chatter-
ing problem of sliding mode can be eliminated.

Generalized plant. An n-th order system is given
by [4]

ẋ1 = x2 + d1(x, t),

ẋ2 = x3 + d2(x, t),

· · ·

ẋn−1 = xn + dn−1(x, t),

ẋn = a(x) + b(x)u+ dn(x, t),

y = x1,

(1)

where x = [x1, x2, . . . , xn]
T ∈ R

n is the state vec-
tor, u ∈ R and y ∈ R are the control and out-
put signals, respectively, and a(x) and b(x) are
smooth nominal functions. In addition, di(x, t)
(i = 1, . . . , n−1) and dn(x, t) are mismatched and
matched disturbances consisting of external non-
measurable and state-dependent disturbances, un-
certainties, and nonlinearities, respectively.
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The main objective of this study is to design a
control law such that the output of a high-order
system is not affected by any disturbances.

Assumption 1. The disturbances di(x, t) are
continuous and satisfy
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for i = 1, 2, . . . , n and j = 0, 1, . . . , r, where µi is a
positive number.

Novel sliding surface. The sliding surface can
be defined as follows:

σn−1 = xn + τ(σn−2, cn−1, kn−1)

+
n−1
∑

i=1

d̂
(n−i−1)
i ,

(3)

where d̂i is an estimator of the disturbances, and
the sliding surface σi can be obtained as

σi = xi+1 + τ(σi−1, ci, ki) +

i
∑

j=1

d̂
(i−j)
j , (4)

where τ(σi−1, ci, ki) = ciσi−1

|σi−1|+k2

i
δ
, σ0 = x1, k̇i =

− ciγi|σi−1|kiδ

|σi−1|+k2

i
δ
, ki(0) > 0, ci > 0, γi > 0, i =

1, 2, . . . , n−1. It was easily determined that σ̇i and
τ̇ (σi−1, ci, ki) are bounded; i.e., τ̇(σi−1, ci, ki) 6 η,
where η > 0, if γ∗ > 0 and k∗ > 0 exist such that

ciγ
∗

∫ ∞

0

|σi| dt 6
k2i (0)

2
−

(k∗)2

2
. (5)

Disturbance observer. The extension of the dis-
turbance observer is defined as [4]

d̂
(j−1)
i = pij + lijxi,

ṗij = −lij(xi+1 + d̂i) + d̂
(j)
i ,

ṗir = −lir(xi+1 + d̂i),

d̂(j−1)
n = pnj + lnjxn,

ṗnj = −lnj(a(x) + b(x)u + d̂n) + d̂(j)n ,

ṗnr = −lnr(a(x) + b(x)u + d̂n),

(6)

where i = 1, 2, . . . , n− 1 and j = 1, . . . , r − 1.

Theorem 1. Suppose that Assumption 1 and
the inequality (5) hold for the system (1). The
closed-loop system is asymptotically stable when
the control law is designed as follows:

u = −
1

b(x)
[a(x)

+
cn−1kn−1δ(kn−1σ̇n−2 − 2σn−2k̇n−1)

(|σn−2|+ k2n−1δ)
2

+
n
∑

i=1

d̂
(n−i)
i + klσn−1 + kεsat(σn−1)],

(7)

where kl > 0, kε > λn−1, and sat() is saturation
function.
Proof. Stability of ASMC. Taking the deriva-
tive of the sliding mode surface σn−1 in (3) along
system (1) leads to

σ̇n−1 = a(x) + b(x)u + dn +

n−1
∑

i=1

d̂
(n−i)
i

+
cn−1kn−1δ(kn−1σ̇n−2 − 2σn−2k̇n−1)

(|σn−2|+ k2n−1δ)
2

.

(8)

Substituting (7) into (8) gives

σ̇n−1 = −klσn−1 − kεsat(σn−1) + dn − d̂n. (9)

The candidate Lyapunov function is defined as

V (σn−1) =
σ2
n−1

2
. (10)

According to [4], ‖dn−1 − d̂n−1‖ 6 λn−1, where
λn−1 > 0. The derivative of V (σn−1) is as follows:

V̇ (σn−1)

6 −klσ
2
n−1 − kε |σn−1|+ (dn − d̂n) |σn−1|

6 −klσ
2
n−1 − (kε − λn−1) |σn−1| .

(11)

Considering kl > 0, kε > λn−1, and V̇ (σn−1) 6
0, it can be determined that the sliding mode sur-
face is σn−1 = 0 in finite time according to Lya-
punov’s stability theory.

Stability of sliding mode dynamics. When
σn−1 = 0, it can be determined that

xn = −τ(σn−2, cn−1, kn−1)−

n−1
∑

i=1

d̂
(n−1−i)
i . (12)

The derivative of σn−2 in (4) is expressed as

σ̇n−2 = ẋn−1 + τ̇ (σn−3, cn−2, kn−2)

+

n−2
∑

i=1

d̂
(n−2−i)
i .

(13)

Substituting ẋn−1 = xn + dn−1 and (12) in (13),

σ̇n−2 = −τ(σn−2, cn−1, kn−1)

+ τ̇(σn−3, cn−2, kn−2) + (dn−1 − d̂n−1),
(14)

where τ(σn−2, cn−1, kn−1) = cn−1σn−2

|σn−2|+k2

n−1
δ
. The

candidate Lyapunov function is defined as

V (σn−2, kn−1) =
σ2
n−2

2
+

k2n−1

2γn−1
. (15)
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Figure 1 (Color online) The simulation results. (a) System output; (b) system control signal.

Accordingly, the derivative of V (σn−2, kn−1) is ex-
pressed as

V̇ (σn−2,kn−1) = −
cn−1σ

2
n−2

|σn−2|+ k2n−1δ

+ (dn−1 − d̂n−1)σn−2 +
kn−1k̇n−1

γn−1

+ τ̇ (σn−3, cn−2, kn−2)σn−2.

(16)

Substituting the adaptive parameter k̇n−1 in (16)
yields

V̇ (σn−2, kn−1) 6 −(cn−1 − λn−1 − η) |σn−2| . (17)

Considering cn−1 > λn−1 + η, then V̇ (σn−2,
kn−1) 6 0. According to Barbalet’s lemma,
limt→∞ σn−2 = 0 can be obtained because σ̇n−2

is bounded and σn−2 ∈ L1.
A similar procedure is employed recursively for

σi(i = 0, 1, 2, . . . , n − 3). Finally, limt→∞ σ0 = 0,
i.e., limt→∞ y = x1 = 0 can be obtained.

Simulation. To evaluate the effectiveness of the
proposed ASMC, the example described in (1) is
given as follows. The order of the system is 3, and
a(x) = −2x1 − x2, b(x) = 1. The disturbances of
the system are defined as follows:

d1 = sin2t− sint,

d2 = sin2t− cos3t+ 0.1t,

d3 = 1/6t+ sin3t− cos2t.

(18)

The simulation results are shown in Figure 1.
“MSMC” in the legend denotes the method pro-
posed in [4]. Here, x1 is the output of the system,
and u is the control signal. The parameter set-
ting and other results are shown in Appendixes A
and B. Based on the results, it can be seen that
the state x1 of the ASMC can rapidly converge
to the desired equilibrium state after 2 s. It can
also be seen from the results of the control signal u
that the ASMC can eliminate the chattering prob-
lem. Moreover, the proposed ASMC method is

best adapted to complex disturbances in all chan-
nels of a high-order system as compared to the
MSMC.

Conclusion. In this study, a new adaptive SMC
method was proposed for a high-order system with
mismatched disturbances. The global asymptoti-
cal stability of the sliding mode is achieved under
mismatched disturbances through the use of a non-
linear adaptive term, and the chattering problem
of sliding mode is eliminated. Finally, the effec-
tiveness of the proposed control method can be
seen in the numerical simulation results.
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