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Movie narrating can enable the capture of not only
the subject matter but also the emotive essence of
the subject. For example, “having a good time”
or “feeling exhausted”, which relates to the narra-
tive of “holding a birthday party”. Movie narrat-
ing converts the human-like expressivity in movie
shots (i.e., sets of film frames) into a cohesive and
coherent narrative (i.e., sentences that tell a log-
ical story). Besides being essential for a human-
like understanding of images, movie narrating can
realize numerous new applications such as the au-
tomatic emotive narrating of photograph albums
on social media, automatic logical summary of
trips, or diary generation of events. Moreover,
as an interdisciplinary field spanning computer
vision, natural language processing, and philoso-
phy, movie narrating can potentially elevate arti-
ficial intelligence from basic understanding toward
human-like understanding.

Movie narrating methods have not been pro-
posed previously as they must overcome the
formidable challenges of latent relatedness, weak
consistency, and emotive state conflicts between
the frames and underlying narrative [1]. To over-
come these challenges, we propose a recursive
narrative alignment framework to generate movie
narratives. As illustrated in Figure 1, the pro-
posed framework adaptively aligns visual cues with
keywords using a semantic-attention mechanism,
thereby improving the frame-narrative coherence.
Furthermore, it recursively applies the contex-
tual expression in previous frames into the current

frame to improve the narrative cohesion. Finally,
the emotive conflict between frame and story is re-
solved by our newly designed regularizer that min-
imizes the style-manifold distance.

Visual cue alignment. The visual cue alignment
module improves the context relatedness among
descriptions of subsequent events. As an atten-
tion model, it projects the combined global and
local features into a latent space. In particular, let
V G
t (xt) and V L

t (xt) represent the high-level global
and local information in the current frame xt, re-
spectively, among a sequence of frames Xi. The
global features V G

t = VGG16(xt) are extracted
using the last convolutional layer of a VGG16 [2]
convolutional neural network after global pool-
ing. The local features V L

t = FasterRCNN(xt)
are computed from the region proposals detected
by faster RCNN [3]. The V L

t are the highest-
dimensional outputs of the fully-connected layer
of the top K region proposals after non-maximum
suppression. The dimensions of the global and lo-

cal features are R
1×D

G

and R
K×D

L

, respectively.
To ensure that each word in the current frame’s
description contains both global and local infor-
mation, the global V G

t and local features V L
t are

projected with dimensions of R
1×D and R

K×D,
respectively, onto a common feature space. On
this space, the features are summed together with
broadcasting as follows:

V GL

t = f(WGV G

t + bG) + f(WLV L

t + bL), (1)

where f(·) is a nonlinear activation function. WG
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Figure 1 (Color online) Our recursive narrative alignment framework comprises three modules: visual cue alignment,
story context alignment, and emotive style alignment. The framework recursively generates sentences to span the movie
narrative in a film shot of unlimited size.

and WL denote the weights of the global and local
features, respectively. bG and bL are the biases of
the global and local features, respectively. After
the projection, the dimension of V GL is RK×D.

The next task aligns the global-local features
V GL with the word-embedding space of the pre-
vious frame description. Therefore, an adaptive
alignment function is designed as the following se-
mantic process:

CV

t =

K∑

k=1

αtV
GL

tk
, CT

t =

K∑

k=1

αtH(t−1)k , (2)

where CV represents the visual cues of dimension
R

1×D, and CT is the story context of dimension
R

1×D. The adaptive attention coefficient α for
aligning the visual cues with story context is se-
mantically computed as follows:

αt =
exp(ztk)∑K

k=1 exp(ztk)
, ∀t ∈ (1, . . . , T ). (3)

In this expression,

ztk = W z tanh(WV V GL

tk
+WHH(t−1)k), (4)

where K is the number of words in the previous
frame description andHt−1 is the hidden feature of
the word embedding in the previous frame descrip-
tion. The visual features and text descriptions are
weighted by WV and WH , respectively.

Story context alignment. To model the contex-
tual correlation of a movie narrative, the story
context alignment module uses two long short-
term memory (LSTM)-based recurrent neural net-
works (RNNs): an encoder LSTM for the previous
story context and a decoder LSTM for inferring
the current story context. The encoder LSTM
transforms a source sentence into a sequence of
vectors, each representing one token in the source

sentence. Considering a list of hidden vectors and
global-local frame features and after the visual cue
alignment, the decoder LSTM uses the story and
frame contexts to produce a coherent description
of the current frame, one token at a time.

Encoder LSTM. As illustrated in Figure 1, the
encoder LSTM captures the context of the past
story events to provide continuity between the
frame descriptions. The encoder inputs a sequence
of token embeddings st−1 = w1, . . . , wK , ∀w ∈ R

E

and transforms them into a sequence of hidden rep-
resentations Ht−1 = (h1, . . . , hK), ∀hk ∈ R

D. The
transformation formula is

hk = LSTMenc(w1, . . . , wk−1). (5)

Decoder LSTM. To encourage a consistent nar-
rative in the storytelling, we generate our frame
descriptions recursively from the contextual fea-
tures in the narrative and frames. The current
frame description st = y1, . . . , yK is built token-
by-token using a modified LSTM unit, which in-
puts the story context CT , visual cues CV , and
previously generated tokens of the current frame:

p(yk) = LSTMdec(y0, y1, . . . , yk−1;C
T ;CV ). (6)

Here, y0 is a special START token and p(yk) is the
probability of the k-th word after Softmax.

Emotive style alignment. To avoid the discrep-
ancy of describing a “sad” scene with “happy” lan-
guage, we introduce a regularizer that minimizes
the emotive style differences between the frame
and text (Figure 1). Because the frame and lan-
guage share common features in an emotive rep-
resentation, we define the emotive style manifold
distance between scene xt and description st:

Lstyle = ||GV − GS ||
2, (7)
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where GV and GS denote the emotive style of the
scene and corresponding frame description, respec-
tively. The emotive style of frame xt is captured
by extracting the global-local feature V GL

t using
Eq. (1).

The emotive style of a sentence st is represented
by the hidden state Ht of the decoder LSTM. To
ensure consistency in the emotive style, we mini-
mize the difference between the Gram matrices of
the artistic style V GL and linguistic style H :

GV (V
GL) = V GL(V GL)T, GS(H) = HHT. (8)

Minimizing the high-level manifold distance im-
proves the consistency between the emotive styles
in the frame and text.

Memory efficient hybrid training strategy. The
final objective function is a hybrid loss function
that combines the text loss and emotive style dif-
ference loss. In particular, the framework is opti-
mized recursively as follows:

L(xt; st, st−1)=Ltext(xt; st−1)+φLstyle(xt; st). (9)

The recursive optimization negates the require-
ment of a fixed movie shot size during training.
This implies the high generalizability of our frame-
work because shots with an unlimited number of
frames can be used during training. Moreover, be-
cause the whole shot does not need to be loaded
into memory, our framework reduces the memory
overhead by T -fold (where T is the number frames
in a movie shot).

Experiments. We trained and validated our ap-
proach on the Movie-Book dataset [4], which con-
tains 11 annotated movies. Each movie shot (ap-
proximately six-second frames) in the movie was
manually annotated with sentences from its corre-
sponding book. We randomly selected 80% of the
shots for training, 10% for validation, and 10% for
testing. A movie narrative was generated via pro-
cessing the whole film frame-by-frame. Following
the common protocol of sequence-to-sequence de-
coding [5], we heuristically selected the best frame
description by a beam search of varying width
(B = {1, 5, 10}). Each frame description was gen-
erated by assigning an initial START token to the
decoder LSTM and allowing it to sample succes-
sive tokens until it reached a STOP token, or until
K = 32 tokens have been sampled. Our model
tokenizes each word by a word embedding of size
E = 256, and represents the frame and text con-
texts in a latent space of D = 512. To understand
the contribution of each module to the quality of
the generated story, we systematically evaluated
the effects of visual cue alignment, story context
alignment, and emotive style alignment in isola-
tion. After global pooling, the global features

V G
t (obtained by VGG16 pretrained on ImageNet)

were reduced to RD=512 and duplicated 32 times to
match the number of local features. The local fea-
tures V L

t of the region proposals were extracted by
Faster-RCNN pretrained on MS-COCO. The em-
pirical value φ = 100 yielded the most accurate
results; therefore, it was used in all tested mod-
els. All models were trained via the mini-batch
stochastic gradient descent method over 1000 iter-
ations using the Adam optimizer implemented in
Python using Keras and Tensorflow.

We computed the widely adopted automated
machine translation metrics BLEU, ROUGE-L,
METEOR, and CIDEr [6]. Recursive narrative
alignment achieved a BLEU1 of 25.82%, a BLEU2
of 10.77%, a BLEU3 of 5.30%, a BLEU4 of 3.21%,
a CIDEr of 7.63%, a METEOR of 12.54%, and a
ROUGE-L of 14.38%. These results demonstrate
that our method achieves the highest overall per-
formance among baselines.
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