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Abstract Software-defined networking (SDN) is a revolutionary technology that facilitates network man-

agement and enables programmatically efficient network configuration, thereby improving network perfor-

mance and flexibility. However, as the application programming interfaces (APIs) of SDN are low-level or

functionality-restricted, SDN programmers cannot easily keep pace with the ever-changing devices, topolo-

gies, and demands of SDN. By deriving motivation from industry practice, we define a novel network algo-

rithm programming language (NAPL) that enhances the SDN framework with a rapid programming flow

from topology-based network models to C++ implementations, thus bridging the gap between the limited

capability of existing SDN APIs and the reality of practical network management. In contrast to sev-

eral state-of-the-art languages, NAPL provides a range of critical high-level network programming features:

(1) topology-based network modeling and visualization; (2) fast abstraction and expansion of network de-

vices and constraints; (3) a declarative paradigm for the fast design of forwarding policies; (4) a built-in

library for complex algorithm implementation; (5) full compatibility with C++ programming; and (6) user-

friendly debugging support when compiling NAPL into highly readable C++ codes. The expressiveness and

performance of NAPL are demonstrated in various industrial scenarios originating from practical network

management.
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1 Introduction

The Internet has rapidly grown over the last few decades. Because of increasingly sophisticated policies

and the proliferation of heterogeneous devices, underlying networks have faced a wide range of manage-

ment challenges. Meanwhile, the distributive infrastructure of traditional networks statically combines

the control and data flow, compelling network administrators to express their policies through compli-

cated and frustrating interfaces. To alleviate such difficulties, researchers have developed software-defined

networking (SDN) [1, 2], an emerging network architecture that decouples the routing process (control

plane) logic from the forwarding process of network packets (data plane). The SDN architecture cen-

tralizes the control of data path elements independently of the network technologies used to connect
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these devices that can originate from different vendors. The centralized control embeds all the intelli-

gence and maintains a network-wide view of the data path elements and their connecting links. This

centralized up-to-date view makes the controller competent to perform network management functions

while allowing easy modifications to the networking functions through the centralized control plane. On

this centralized controller, administrators can implement various standard network algorithms such as

shortest-path routing and traffic monitoring, along with more sophisticated algorithms such as load bal-

ancing and maximum flow algorithms. For comprehensive surveys on SDN, readers are referred to [3–5]

and references therein.

Although SDN has greatly enhanced network programmability1), a wide gap persists between the

limited capability of SDN application programming interfaces (APIs) and the reality of practical network

management. As observed in [6–8], existing SDN APIs are either low-level or limited in functionality,

significantly increasing the cost of pre-development and implementation processes. Following the SDN

programmers’ urgent quests to reduce the efforts involved in implementing network algorithms, several

SDN programming languages, such as NetCore [6], Frenetic [7], Flog [9], and Merlin [10], have emerged in

recent years. These programming languages offer convenient programming interfaces and can be readily

implemented in the prevalent SDN architecture.

The aforementioned problems can be solved by using most of the available SDN programming lan-

guages, but a challenging problem remains: both the requirements specified by network operators and

properties of network devices vary frequently. Accordingly, the existing SDN programming languages

cannot fulfill practical demands such as adding new properties of devices. Therefore, they cannot readily

adapt to the rapid emergence of (or changes in) devices, topologies, and demands in the underlying net-

work. For example, suppose the network operator intends to add a fresh attribute named “affinity” (a

measure of fitness to perform potential services) to every existing router in the network. To incorporate

this attribute, developers usually modify the language itself rather than the code of the routing algo-

rithms, owing to a lack of abstraction and expansion mechanisms. In the aforementioned programming

languages, although a device with emerging properties can be abstracted as a new class inherited from an

existing class, abstracting multiple ever-emerging network devices often complicates the inheritance rela-

tionship in the network program, that is, when these new classes are used in different network algorithm

modules, the code loses cohesion, hampering maintainability and reusability, as argued in [11].

In this paper, we present a network algorithm programming language (NAPL), a novel SDN program-

ming language dedicated to fast abstraction and expansion of network devices and constraints. NAPL

adopts the mechanism commonly used in the design of dynamic programming languages such as Python;

that is, the attributes encoding the properties of network objects can be added, removed, or modified by

simple statements during runtime. This mechanism frees the programmers from the complex inheritance

relationships among classes and consequently enhances the maintainability and reusability of the code.

In addition, because the grammar of NAPL follows the declarative programming paradigm, the program-

mer can focus on the logic of the network routing policies while ignoring the underlying implementation

details. This facilitates the fast design and prototyping of network routing policies. For usability in

industrial scenarios, we complete NAPL by providing a rapid programming flow from topology-based

network models to maintainable C++ implementations. In brief, NAPL provides the following collection

of critical high-level network programming features: (1) topology-based network modeling and visualiza-

tion; (2) fast abstraction and expansion of network devices and constraints; (3) a declarative paradigm

for fast forwarding-policy design; (4) a built-in library for complex algorithm implementation; (5) easy

embedding of C++ libraries and code fragments (ensuring full compatibility with existing C++ imple-

mentations that are extensively deployed in the network); and (6) user-friendly debugging support during

compilation into highly readable C++ codes. These features are not achievable by SDN switches (APIs)

alone, or by existing SDN programming languages. NAPL also supports additional functionalities such

as memory management.

As shown in Figure 1, the programming framework of NAPL can be logically decomposed into four

1) The dynamic control, change, and management of network behavior by software implemented through open interfaces

is a tremendous advance from relying on closed boxes and proprietarily defined interfaces.
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Figure 1 (Color online) Overview of the NAPL programming framework.

layers: the modeling layer, policy layer, algorithm layer, and implementation layer. The modeling layer

equips NAPL with the abovementioned programming features; that is, with the topology-based network

model (nodes and links) stemming from dynamical abstractions of the network equipment. The policy

layer encodes a series of service-related abstractions (such as services, paths, and routing demand) on the

abstracted network topology. This layer offers a declarative programming paradigm that enables succinct

descriptions of service requirements and the fast design of forwarding policies. The algorithm layer, which

shares sufficient syntactic sugar with the policy layer, facilitates the fast development of complex network

routing algorithms, e.g., the shortest-path routing constrained by time delays and hop counts. Further,

it encapsulates an internal library of standard and practical routing algorithms, such as constrained

shortest path first (CSPF) [12] and disjoint protected constrained shortest path (CSPDP). Moreover,

NAPL supports the free embedding of C++ code fragments and third-party libraries such as Boost2)

and LEMON3). With these features, NAPL is fully compatible with the existing C++ implementations

extensively deployed in networks. The implementation layer embeds a compiler that converts NAPL

programs into highly readable C++ codes for better maintenance and a debugger that provides user-

friendly debugging of NAPL implementations.

The major contribution of this work is an NAPL with a layered structure that facilitates the fast

design and implementation of network algorithms. The proposed NAPL will tremendously accelerate

the prototyping of network-oriented software processes. Moreover, the expressiveness and performance

of NAPL extend beyond the spectrum of state-of-the-art languages. Later, these advantages will be

demonstrated in various industrial scenarios originating from practical network management.

Related work. Several network programming languages have been proposed in recent years. Based

on their network operational granularity, existing languages can be divided into two categories: languages

that control packet forwarding and those that operate on the network topology. Languages in the former

category include Frenetic [7], Pyretic [8], NetKat [13], Nettle [14], NetCore [6], Flog [9], FlowLog [15],

Maple [16], and P4 [17]. Packet-forwarding control can be applied to prevailing open-source SDN in-

terfaces such as OpenFlow [2] and NOX [18] in a simple manner. For instance, Frenetic provides a

2) https://www.boost.org/.
3) https://lemon.cs.elte.hu/.

https://www.boost.org/
https://lemon.cs.elte.hu/
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declarative query language for classifying and aggregating network traffic as well as a functional library

for describing packet-forwarding policies. Flog is an event-driven logic programming language that gener-

ates a packet-forwarding policy after the occurrence of a network event. P4 is a strawman proposal for the

future evolution of OpenFlow toward protocol independence, target independence, and reconfigurability.

Although package-based languages have variable features, they cannot easily define and implement algo-

rithms within the global framework of the underlying network topology. Moreover, programmers using

these languages cannot specify attributes or impose constraints on the network objects. This deficiency

is critically restrictive in networks with ever-changing devices, topologies, and requirements.

Topology-based network programming languages, such as FML [19] and Merlin [10], ease the design

of the routing policy. As the first SDN programming language, FML provides a rule-based idiom for

forwarding policies. FML inherits the logical programming paradigm of Datalog [20], wherein users can

specify the maximum values of latency, jitter, and bandwidth. Merlin provides a declarative language

framework for expressing high-level policies by using regular expressions and arithmetic formulas to define

forwarding paths and bandwidth constraints. Nevertheless, these languages prohibit the fast abstraction

and expansion of network constraints and objects. Furthermore, they do not support the constraints on

many frequently used network attributes, such as costs, delays, and hop counts. Because such constraints

pertain to network services, they differ from throughput constraints and other constraints imposed on

single devices. For instance, the path-selection problem in Merlin is essentially a multi-commodity flow

problem [10], which cannot solve constraints on network services. Moreover, the aforementioned languages

cannot actively modify the network topology. In real networks, network elements (e.g., devices and links)

are dynamically added and removed, especially when devices fail or the network topology changes.

The hierarchical programming framework in NAPL carries the declarative programming paradigm

in [6, 7, 10, 15], but can express more complex routing constraints than those of [10, 19]. It also possesses

exclusive features such as fast adaptation to network changes, a built-in library for complex algorithm

implementations, full compatibility with C++ programming, and user-friendly debugging support during

compilation into highly maintainable C++ codes.

Article structure. The remainder of this paper is organized as follows. Section 2 gives an overview

of the NAPL programming framework and presents an illustrative example. The overview is followed by

consecutive elaborations on the modeling layer (Section 3), policy layer (Section 4), algorithm layer (Sec-

tion 5), and implementation layer (Section 6). Section 7 presents empirical results on the expressiveness

and performance of NAPL in various industrial scenarios. The paper concludes with Section 8.

2 NAPL programming framework

The hierarchical philosophy of NAPL streamlines the software process of network management from

topology-based network models to maintainable C++ implementations. This section gives an overview of

the layered structure of NAPL and demonstrates its modeling, abstraction, programming, and compilation

techniques by an illustrative example.

2.1 Overview of NAPL

Figure 1 depicts the hierarchical framework of network algorithm development in NAPL, which consists

of four logical layers that hierarchically oversee the modeling, policy design, algorithm design, and im-

plementation. To maintain a topology-based network model, the modeling layer abstracts the underlying

network into nodes (devices such as routers, switches, and modems) and links (connections between hosts

or nodes; e.g., optical fiber cables) that constitute a directed graph. Various attributes of the network

are straightforwardly captured by being specified as properties in the graph. This layer supports both a

graphical representation (based on the Dotty module of Graphviz [21]) and a textual alternative (based

on the JSON format4)) of the graph model, which are dynamically synchronized during the alteration of

either of the two representations.

4) https://www.json.org/.

https://www.json.org/
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Graphical model

{

  "Node": {

    "Id": "R1",

    "Properties": {

       "Delay": 5.0,

       "HopCount": 2,

       "NodeType": "ip",

       "Availability": true

      } }

}, […]

{

  "Link": {

    "Id": "L1",

    "Source": "R1",

    "Target": "R2",

    "Properties": {

       "Bandwidth": 1000,

       "Cost": 1,

"Delay": 5.2,

       "LinkType": "ip",

       "Availability": true

      } }

}, […]

Textual model (JSON) 

# find path from R1 to R3

import graph_reader

import cspf

Graph g = 

graph_reader.read("md.js")

Path p = find_path <R1 to R3 

where Delay < 20 and Load == 600> in 

g->NodeType == "ip" with cspf

if not p {

  p = find_path <R1 to R3 where 

Delay < 20 and Load == 600> in g with 

cspf

}

NAPL program

// find path from R1 to R3

#include <memory>

#include "utils.h"

#include "graph_reader.h"

#include "cspf.h"

int main(){

  std::shared_ptr<graph> g = graph_ 

reader->read(std::string("md.js"));

  std::shared_ptr<path> p = cspf(g-

>filter(std::shared_ptr<Constraints>

(new Constraints([…])),R1,R3, 

std::shared_ptr<Constraints>(new 

Constraints(std::map<std::string, 

std::shared_ptr<constraint>>{{"Delay

",std::shared_ptr<constraint>(new 

Constraint(std::shared_ptr<Attribute

>(new Delay(20)),"<"))}, {"load", 

std::shared_ptr<constraint>(new 

constraint(std::shared_ptr<Attribute

>(new Load(600)),"=="))}})));

  if(!p){

    p = cspf(g,R1,R3,[…]);

  }

}

C++codes

Figure 2 (Color online) Routing example illustrating the programming flow in NAPL. The network model (graphical or

textual) covers an IP layer (with nodes R1–R4) and optical layer (with nodes N1–N5). The notation [. . . ] is used in the

JSON script and the C++ codes to abbreviate similar code snippets for ease of presentation. The arrow at the bottom

indicates the potential queries and alterations of the network model in future executions of the C++ program.

Based on the abstracted network topology, the language kernel (composed of the policy and algorithm

layers) is a key component of the NAPL framework. It recognizes abundant syntactic sugar for defining

general data structures and incorporates object-oriented mechanisms while supporting additional features

such as garbage collection, as those in high-level languages. In particular, the policy layer encodes a series

of service-related abstractions (service, path, routing demand, etc.) while enabling succinct descriptions of

service requirements and fast design of forwarding policies through its declarative programming paradigm.

The algorithm layer facilitates the fast development of complex network routing algorithms, such as

shortest-path routing under time delay and hop count constraints. The internal library of the algorithm

layer serves as the runtime environment of NAPL. The built-in library implements all the network objects

that facilitate abstractions in the above layers, along with various standard routing algorithms and

practical ones originating from industrial scenarios. Additional ingredients, such as a logger, utility

functions, and I/O interfacing, are provided for user-friendly interactions with programmers. Moreover,

NAPL supports the free embedding of C++ code fragments and external libraries such as Boost and

LEMON, rendering it fully compatible with the existing C++ implementations that are extensively

deployed in modern networks.

As in the implementation layer, NAPL operates a customized compiler that compiles NAPL programs

into highly maintainable C++ codes or executables and a debugger that enables user-friendly debugging

directly on the NAPL programs. To maximize the benefits of existing C++ compilers and debuggers,

GCC and GDB developed in the GNU project5) are invoked. The underlying interactions are implicit

and therefore transparent to users.

2.2 Illustrative example

Figure 2 illustrates the programming flow in NAPL. The presented example spans all the logical layers

introduced above. The network fragment covers an IP layer (with nodes R1–R4) and optical layer

(with nodes N1–N5) (see graphical model in Figure 2). In both the graphical and textural models, the

interesting attributes of the devices and links (delay, hop counts, and bandwidth) are simultaneously and

intuitively encoded as properties in JSON format (asmd.js files, for instance).

Suppose a new service is issued to run in the network. The intended path of the incoming service is

R1 to R3 with a delay tolerance up to 20 milliseconds, and the service must carry a load of 600 MB.

Moreover, the path should be preferentially searched in the IP layer, and if no such route is detected,

the underlying optical layer should be searched. This instruction is readily expressed by the following

slice of the NAPL program (which operates across the policy and algorithm layers), where the declarative

statement find path describes the routing demand in the user-provided routing algorithm cspf, which

5) https://www.gnu.org/.

https://www.gnu.org/
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can be specified in either NAPL or C++.

# Find path from R1 to R3

import graph_reader

import cspf

Graph g = graph_reader.read("md.js")

Path p = find_path <R1 to R3 where Delay < 20 and Load == 600> in g-> NodeType == "ip"

with cspf

if not p {

p = find_path <R1 to R3 where Delay < 20 and Load == 600> in g with cspf

}

By simply dropping the statements import cspf and with cspf, the user may alternatively resort to the

built-in CSPF algorithm provided in NAPL’s internal library. Moreover, an initially buggy NAPL pro-

gram can be adjusted using the NAPL debugger, then compiled to a maintainable C++ implementation

and further to an executable file that interacts with the underlying network model. In the present case,

the optimal deployment path of the incoming service was detected as R1 → R2 → N2 → N3 → N4 →

R3.

Note that even this rather simple scenario reveals the high-level abstraction capability of NAPL, which

facilitates the fast and flexible design of network algorithms.

3 Modeling layer

The NAPL modeling language aligns the graphical representation and a textual alternative in an inter-

mediate structure called an attributed directed graph (ADG), which captures the dynamically changing

network topology and attributes of the devices and links therein.

Definition 1 (Attributed directed graph). Let Λ be a finite set of attributes. An attributed directed

graph over Λ takes the form G = 〈V,E, L〉, where V is a finite (non-empty) set of vertices, E ⊆ V × V

is a set of ordered vertex pairs called edges, and L ⊆ (V ∪ E)× 2Λ is a labeling function that associates

each vertex and edge with a set of attributes.

The finite set of attributes in a network model is formulated as Λ = {〈αk, βk〉 | k ∈ N>0}, where the

kth α denotes the exclusive name of attribute k and the kth β is its corresponding value. The values can

be (for example) natural numbers, Booleans, real numbers, or string identifiers. It is worth highlighting

that the network topology and associated attributes carried by the underlying ADG can both be easily

and arbitrarily extended or modified, enabling fast reactions and flexible adaptations to the ever-changing

network devices and requirements.

Several service-related concepts can be easily defined on top of an ADG. For example, a path is a finite

consecutive sequence of distinct vertices, p = v0v1 . . . vk, such that for all 0 6 i 6 k − 1, (vi, vi+1) ∈ E; a

demand (defined later) encodes certain routing constraints over the ADG; and a service, as an abstracted

network service (application), encloses a group of demands, priority enabling preemption, load specifying

the required bandwidth, and a set of paths on which the service is running (empty before the service is

deployed).

3.1 Textual representation

The textual representation shown in Figure 2 consists of two sections encoding the vertices and edges

as nodes and links, respectively, in the universal JSON format. Each entity in the representation has a

unique identifier Id, while each link has additional fields called source and target that expand the network

topology. All primitive attributes of the underlying devices and links are encapsulated as properties. Some

of the properties frequently used in network modeling are listed in Table 1.

3.2 Graphical representation

NAPL offers both textual and graphical representations of network models. The graphical alternative,

which is dynamically synchronized with the textual representation, enables intuitive interactions between
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Table 1 Commonly used network properties

Name Type Description

NodeType String Type of the node (“ip”/“optical”)

LinkType String Type of the link (“ip”/“optical”)

Bandwidth Float Bandwidth of the link

HopCount Integer Number of hops through the device

Cost Float Cost of the network device or link

Delay Float Delay of the network device or link

Availability Boolean Availability of the device or link

R1

R2

1000 M

R4

500 M

N1

N2

N5

R3

N4

N3

Figure 3 (Color online) Dotty graph depicting the model in Figure 2. Most of the attributes are specified implicitly.

the programmer and network model. For visualization, we selected the Dotty module of Graphviz (Fig-

ure 3) because its programmable interactive feature inherently supports on-the-fly topology alteration

and attribute update.

4 Policy layer

The policy layer of the NAPL framework provides a collection of constructs by which users can specify

the intended network behavior at a high level of abstraction. In this section, we give a comprehensive

account of the syntax and interpretation of the NAPL language, which facilitates the fast generation of

network routing policies for the network operator providing the network services.

The NAPL syntax encodes two types of grammar: the general grammar of general-purpose languages

and a network grammar dedicated to typical network algorithm statements.

4.1 General grammar

The general grammar of NAPL supports a variety of syntactic sugars (e.g., containers and assertions).

For example, the syntax for building and iterating over a list is

list <int > s = [1, 2, 3, 4]

list <int > ss = [2 * i for int i in s if i % 2 == 0].

The general grammar can also incorporate object-oriented programming features such as inheritance,

encapsulation, and polymorphism:

class A{

public int a = 0

def public getA() -> int{return this.a}

def public setA(int a){this.a = a}

}

class B:A{

def public getA() -> int{return this.a + 2}

}

A a = new B()

print(a.getA()) # The output is 2
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Upon ignoring the limitation of finite memory, NAPL is Turing-complete in the sense that its expres-

siveness equals that of any general-purpose language. Accordingly, NAPL can describe and solve a wide

range of algorithmic problems in network programming.

4.2 Network grammar

Network grammar enables the high-level abstraction of forwarding policies and complex network algo-

rithms. The syntax of a network-related statement S is inductively defined in the following Backus-Naur

form (BNF):

S ::= SG | SΛ | SP

SG ::= G ∼ objs (residual graph)

| G → cons (max. constrained subgraph)

SΛ ::= obj← 〈α, β〉 (add fresh attribute)

| obj→ α = β (update attribute)

SP ::= find path 〈dmds〉 in G [with f ]

objs ::= obj | objs, objs

obj ::= n | l | s (node, link, or service)

cons ::= con | not cons | cons ⋄ cons (⋄ ∈ {and, or})

con ::= α ⊲ β (⊲ ∈ {==, <,>,<=, >=})

dmds ::= dmd | dmds, dmds

dmd ::= n→ n [min ω] [where cons] (demand)

Here G is an ADG, 〈α, β〉 ∈ Λ is the key-value pair denoting an attribute, f represents a function

handle to a certain user-specified routing algorithm, and ω is a function handle that calculates the weight

of a given path as the objective value to be optimized over all path candidates. The optional components

in the syntax are enclosed in [·].

Being tailored to network manipulations, the NAPL syntax exploits a declarative programming para-

digm built over highly abstracted components, including objs (a collection of network objects), cons

(Boolean combinations of attribute constraints), and dmds (a group of constrained demands optimized

with respect to a certain weight measure). These components will be demonstrated with an example

in the subsequent section. The following subsections elaborate on several important network-related

statements, which substantially facilitate the convenient design of network routing policies and deliver

prompt reactions to dynamically changing network devices and demands.

4.2.1 Attribute statements (SΛ)

The attribute statement encloses two production rules: obj ← 〈α, β〉 for adding a fresh attribute and

obj → α = β for updating an existing attribute. The former inserts an attribute 〈α, β〉 into a specified

object obj. This operation is legal only if obj does not contain an attribute α. The latter changes the

value of attribute α in obj to β only if attribute α already exists in obj.

The abstracted ADG network modeling enables straightforward NAPL operations, such as retrieving,

updating, and appending on the attributes encoded in the network objects. This capability greatly assists

practical network management, and is particularly useful in device upgrade and routing customization.

For example, the network operator can distinguish the fitness of a service on different nodes and links

by simply adding an “Affinity” attribute to all network objects and by constraining this attribute in the

find path statement.

4.2.2 Graph statements (SG)

The graph statement includes two production rules. The rule G ∼ objs obtains the residual graph after

removing objects objs from the underlying graph G. Note that when a node n in objs is removed, all

the links connected to n are removed simultaneously. The other rule, G → cons, returns the maximal

subgraph of the network components subjected to a given group of constraints cons. For instance,

the graph generated by the statement g -> NodeType == "ip" is the residual graph after removing all

network objects in g, whose NodeType attribute (if it exists) is not valued as "ip".

The graph statements tackle frequently used logical (virtual) restrictions on ADGs. In particular,

G ∼ objs removes specified network components from the underlying graph and G → cons obtains the

maximum subgraph satisfying the given constraints. In most cases, only an intended part of the network
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needs to be explored rather than the whole network. Therefore, besides improving the flexibility of the

routing procedure, these statements simplify the design of the routing algorithms. The general grammar

of NAPL also enables physical modifications of the network models. As these modifications are trivial,

they are omitted here.

4.2.3 Routing statements (SP )

The routing statement find path 〈dmds〉 in G [with f ] returns one or more paths (depending on f) in

G that fulfill dmds. The path(s) is (are) found by an optionally specified routing algorithm f .

As most network manipulations can be formulated as a path-selection problem addressed at the cen-

tralized controller, routing functionality is a core statement in almost all SDN programming languages.

The declarative find path function provided by NAPL describes a domain-specific requirement in the

form of demands, i.e., dmds, specifying the properties of the target path. This declaration frees the pro-

grammer from otherwise highly intertwined network models and implementation details while retaining

control of the routing approach by a routing algorithm f if desired and specified by the user. The de-

fault routing algorithm written in NAPL’s internal library implements CSPF using breadth-first search.

Furthermore, the find path statement competently solves the multi-service path-selection problem (see

the case study in Section 7) by allowing routing under multiple demands, each with multiple constraints

that may interfere mutually.

5 Algorithm layer

Rapidly emerging new algorithms and mutable requirements have necessitated the detailed control of

network algorithms. Unlike the policy layer, which requires a high level of abstraction for the fast design

of forwarding policies, the algorithm layer needs sufficient flexibility for the implementation of complex

algorithms. For this purpose, developers can access the built-in library and third-party libraries imported

through an external interface.

5.1 Internal library

The internal library, which serves as the runtime environment of NAPL, mainly comprises the network

object encoding, a handful of standard and practical routing algorithms, and several additional ingredients

such as a logger, utility functions, and I/O interfacing. The internal library is seamlessly linked to the

C++ codes compiled from NAPL programs, which are further compiled into executable files by the GCC.

5.1.1 Network objects

The network objects in NAPL (ADGs, demands, and services) are abstractions of the network devices,

topologies, and service-related constructs. These abstractions are naturally declared in the library as

C++ objects taken from corresponding classes with previously mentioned patterns. Obviously, such

abstractions and encapsulations allow the developer to design forwarding policies in the policy layer

without bothering about the low-level details.

5.1.2 Network algorithms

Recall that the find path statement of NAPL requests an algorithmic function definition. Without loss

of generality, consider a routing statement with a single demand between a source node A and target

node B:

find_path <A -> B min func_weight where cons > in g with func_route

that generates a function call of the form:

func_route (g, new Demand (A, B, func_weight , cons)).
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The function func route should either be predefined by the user, or called from the internal library. The

default routing algorithms in the internal library are CSPF, CSPDP, and point to multiple points (P2MP).

CSPF is a fundamental extension of the shortest-path algorithm that seeks the optimal path fulfilling a set

of network constraints. The CSPDP algorithm improves the robustness of networks, especially against

device failures. This frequently used strategy searches for an active path and a completely separate

standby path that diverts the network flow when failures occur on the main path. Meanwhile, the P2MP

algorithm is a superior option for finding multiple paths sharing the same source node while minimizing

the number of links.

5.1.3 Utility functions

The internal library also provides a family of generic algorithms and utility functions that facilitate the

NAPL programming process. The generic algorithms perform basic functions such as sorting and pattern-

based selecting over containers. The utility functions involve syntactic sugars such as len() for obtaining

the length and range() for generating an integer sequence.

5.1.4 I/O and logger

NAPL dedicates an I/O package not only to general input/output methods (such as the console and

file I/Os), but also to the I/O interfacing of textual and graphical network models. Furthermore, the

logging package exports logs at different levels, generating debugging logs, warning logs, error logs, regular

information logs, and a special log depicting the state of the underlying ADG. The I/O and logger usages

are demonstrated in the following slice of NAPL code:

GraphReader reader = new GraphReader ()

Logger logger = new Logger (" out_path ")

DottyWriter writer = new DottyWriter ("out.dot ")

Graph g = reader .read("md.js")

logger .debug(g) # Log the ADG info. for debugging

writer .write(g) # Save the ADG into a Dotty format

5.2 External interface

As mentioned previously, NAPL supports the free embedding of raw C++ code fragments and pre-

compiled libraries such as Boost2) and LEMON3). Therefore, it is fully compatible with existing C++

implementations, which are particularly common in SDN controllers. For example, the code fragment

import lemon/ list_graph

import lemon/dijkstra

# [...] NAPL definitions of g, len , src , tgt

CPP{

Dijkstra <Graph , LengthMap > dijkstra (g, len);

dijkstra .run(src);

std :: shared_ptr <std ::vector <int >> path(new std ::vector <int >());

# Store the shortest path

for (Node v=tgt; v!= src; v=dijkstra .predNode (v)){

path ->push_back (g.id(v));

}

path -> push_back (src);

}CPP

# Get the results back to NAPL

for int i in 1: path.size() + 1 {

print (path[path.size () - i]);

}

illustrates how C++ code can be intuitively embedded in NAPL using the CPP{}CPP identifiers by reusing

the existing Dijkstra’s algorithm written in LEMON, a well-known precompiled C++ library. Note that

the interaction between NAPL and C++ is indeed straightforward because the shared variables can be

used in a sequential manner.
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Figure 4 User interface for the NAPL implementation schemes.

6 Implementation layer

The implementation layer handles the fundamental techniques that support the entire NAPL hierarchy.

As depicted in Figure 4, the user interacts with the implementation schemes by composing NAPL pro-

grams for compiling and exchanging debug commands/outputs for debugging. The NAPL compiler and

debugger cooperate with GCC and GDB to produce intermediates such as maintainable C++ codes and

executable files, which are also readily accessible by the user. This section focuses on the design details

of the implementation layer, especially of the compiler and debugger.

6.1 Compiler design

The compiler is the most crucial part of the compile-edit-debug cycle. The main tasks of the NAPL

compiler are to embed the NAPL grammars and semantics and thereafter convert the NAPL program

into readable C++ codes. Instead of constructing the NAPL compiler from scratch, which is complicated

and error-prone, we employ the parser generator PLY6), which implements the lex and yacc [22] parsing

tools. PLY uses reasonably efficient LR-parsing and supports empty productions, precedence rules, error

recovery, and ambiguous grammars, making it particularly suitable for rapidly constructing compilers

dedicated to domain-specific languages. The PLY library was customized to the NAPL grammar by

introducing type inference for static strong typing, and by tailoring the exception-handling procedure for

more intuitive construction. The NAPL grammar is encoded by the customized PLY and transferred to

the NAPL compiler.

Following the high-level abstraction of network objects, the NAPL compiler produces well-structured

C++ programs while preserving almost all the names, types, and annotations of the original NAPL

program. Therefore, the generated C++ codes are easily maintainable and can be further compiled,

together with the internal library of NAPL, into executable modules by GCC. Moreover, the debugging

mode of the NAPL compiler provides adequate debugging information, primarily, the mapping relation

from the program statements of NAPL to those of the derived C++ programs.

6.2 Debugger design

The debugger in the NAPL framework is dedicated to the direct, user-friendly debugging of NAPL

programs. Unfortunately, most SDN programming languages lack this feature. Indeed, debugging the

generated C++ codes and executables is trivial, but mapping the C++ debug outputs back to the NAPL

level is difficult and burdensome. Being motivated by this problem, we tailored an NAPL debugger that

tracks the dynamic behavior of the NAPL program.

Because a debugger must understand the runtime context of the program being debugged, we incorpo-

rate GDB in a shell that maps the NAPL debug commands/outputs to the C++ debug commands/out-

6) http://www.dabeaz.com/ply/.

http://www.dabeaz.com/ply/
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puts. As shown in Figure 4, the debugger checks the validity of a debug command from the user. If the

command is valid, it is converted to the corresponding GDB command based on the debug information

fed by the compiler; otherwise, it is discarded. A GDB instance then assumes control the debug command

and returns outputs that can be fetched and converted back to the NAPL level by the debugging shell.

The user interacts only with the NAPL program without observing the underlying communications.

We have implemented several useful debug commands, including (but not limited to) list, break,

break-info, run, continue, next, and print. A registration mechanism enables convenient registration and

implementation of new debug commands in NAPL.

6.3 Additional flavors

6.3.1 Duck typing

NAPL allows arbitrary definitions of attributes over various network objects. This flexibility indicates a

dynamic feature in a strongly statically typed language. It is achieved by introducing the duck typing

idea into a nominative-type system, by which SDN programmers can concisely abstract new network

devices. In brief, one can simply define a subclass that inherits sdn object for a new network object

with default attributes and a subclass that inherits Attribute (while overriding the “getter/setter”) if a

fresh attribute is required.

6.3.2 Garbage collection

The lack of automatic memory management is a recognized barrier to the fast development of C++

codes, as programmers must manually cope with frequent memory allocation/deallocation. Therefore,

in the C++ codes compiled from NAPL, we incorporate a garbage collection technique that performs

reference-counting by a so-called smart pointer using the std::shared ptr class. This feature enables

automatically shared memory management of dynamically allocated objects.

7 Evaluation

This section demonstrates the expressiveness and performance of NAPL in different benchmarking sce-

narios originating from practical network management at Huawei Technologies Co., Ltd. in Guangdong,

China. All experiments were performed on a 2.7-GHz Intel Core-i7-6820HQ processor with 16 GB RAM,

running 64-bit Deepin 15.5.

7.1 Expressiveness of NAPL

In three case studies, we demonstrate that NAPL can adequately express demands, implement algorithms,

and concisely handle network mutations. All these tasks are difficult to execute with state-of-the-art SDN

programming languages.

7.1.1 Multi-constrained shortest path first

Description. In network traffic engineering, CSPF is one of the most commonly used methods for

computing the optimal network route fulfilling a set of constraints. To achieve fine-grained traffic engi-

neering, multiple constraints must be simultaneously considered, including (but not limited to) constraints

on bandwidth, delay, and hop count. However, introducing multiple constraints inevitably complicates

the algorithm and renders it inextricable for the service provider (aka, the network operator). Accord-

ingly, the hierarchical framework of NAPL logically separates the policies and algorithms, meaning that

SDN developers (or equipment suppliers) can write algorithms in the algorithm layer while the service

provider designs the routing strategy concisely in the policy layer.

Specification. Consider a routing demand that seeks a path from node A to B under the following

constraints:

• The service holds a load of 600 MB;
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• The overall delay tolerance is up to 40.0;

• The overall hop count should be less than or equal to 10.

The optimization objective is to minimize the trade-off between total cost and delay with weights of

0.4 and 0.6, respectively.

NAPL implementation. The above objective can be achieved by declaring the routing demand as

import graph_reader

import obj_weight

Graph g = graph_reader.read("md.js")

Path p = find_path <A to B min obj_weight where Load == 600 and Delay < 40.0 and

HopCount <= 10> in g

and implementing a obj weight function that captures the weighted objective to be optimized (given

below).

def obj_weight (Path p)->float{

float weight = 0

for Node n in p.get_nodes (){

weight += 0.4 * n->Cost + 0.6 * n->Delay

}

for Link l in p.get_links (){

weight += 0.4 * l->Cost + 0.6 * n->Delay

}

return weight

}

This case demonstrates the cardinal scenario of NAPL network routing in the presence of multiple coex-

isting constraints and an optimization objective.

7.1.2 CSPDP with service preemption

Description. In practical network traffic engineering, demands are scheduled sequentially on a first-

come-first-serve basis, and preemption is permitted to enhance the effectiveness of the network. In the

CSPDP scenario, where the active path and standby alternative may be subjected to distinctly different

constraints under different quality of service requirements, squeezing all the constraints into a single

demand is implausible. To solve this problem, NAPL filters out (through the residual graph computation)

the deployed services that cannot be preempted ahead of routing under multiple parallel demands.

Specification. Suppose several services currently running in the network are prioritized from 1 to 3,

and we wish to schedule an active and a standby path for a freshly incoming service under the following

constraints:

• The new demand can take only the paths of services with priorities less than 2;

• The acceptable delay of the active path is up to 20.0;

• The active and standby paths of the fresh service each carry a 600-MB load.

NAPL implementation. CSPDP with service preemption in NAPL is implemented by the following

program:

import graph_reader service_reader

import cspdp

Graph g = graph_reader.read("md.js")

list <Service > services = service_reader.read("deployed_services.js")

list <Service > services = [s for s in services if s.priority >= 2]

# Rule out non - preemptible deployed services

for s in service_list{

g = g ∼ s

}

# Route multiple paths w.r.t. multiple demands

Path p = find_path <A to B where Load == 600 and Delay < 20.0, A to B where Load ==600 >

in g with cspdp

Note that the above program is simplified by the syntactic sugar embedded in NAPL for building and

iterating over lists, as previously discussed for the general grammar.
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7.1.3 Fast adaptation to attribute extensions

Description. Because of the omnipresence of rapid device changes in networks, fast abstraction and

expansion of the underlying network and algorithms is critically important. In the conventional develop-

ment flow of network algorithms, a device with emerging attributes is usually abstracted as a new class

inherited from an existing one. However, this abstraction often complicates the inheritance relationship in

the network program; consequently, when these classes are used in different network algorithm modules,

the code loses cohesion and cannot be maintained and reused, as argued in [11]. In contrast, NAPL users

can dynamically append attributes to an existing network object without altering any class definitions,

which unifies the network object abstraction and preserves the maintainability and reusability of the

code.

Specification. Assume that the CSPF routing presented in Subsection 7.1.1 has been implemented in

the network and the operator intends to specify an “Affinity” attribute to each network element. The new

attribute characterizes the fitness of each element to potential services during the CSPF-based routing.

NAPL implementation. The above specification can be trivially accomplished by assigning a binary-

valued attribute “Affinity” to all network objects, e.g., <Affinity,01> for a node and <Affinity,11>

link. The attribute can be assigned through either the SΛ statement or the model file. A clause inter-

preting an XOR gate (taken from C++) is attached over this attribute, and a binary filter is applied to

the original constraints in the find path statement. Note that this adaptation is minimal because no

class definitions or algorithmic implementations are modified; accordingly, the NAPL program retains its

maintainability and reusability despite the ever-changing attributes in the network.

7.2 Performance of NAPL

In this subsection, we evaluate the performance of NAPL in terms of the runtime overhead and the size of

code using a set of 37 NAPL benchmark programs (cases) in five categories (Table 2): general grammar,

external interfacing, network objects, network statements, and network algorithms. As the category

names suggest, these cases cover different aspects of NAPL; for instance, the general grammar category

consists of 11 code fragments written in the general grammar of NAPL. Note that the network algorithms

category comes from real world tasks while the other categories thoroughly cover the grammatical features

of NAPL. Table 2 shows the performance evaluations of the abovementioned benchmarks. The numerical

values are explained in subsequent subsections.

7.2.1 Runtime overhead

The NAPL program is compiled in C++ prior to execution, and therefore the runtime overhead should not

far exceed that of a program encoded directly in C++. Therefore, we compared the runtimes of C++

codes converted automatically from NAPL and those written by well-trained network programmers.

Both sets of codes accomplished the same functionality. As depicted in Figure 5, although the time

consumptions largely depended on the scales of the various cases, the difference between the runtimes of

both codes was almost zero for each given case. This result confirms that NAPL programming incurs

insignificant runtime overhead, and thus its efficiency is comparable with that of C++ programming.

7.2.2 Size of code

To demonstrate that NAPL is capable of expressing complex manipulations with less code while main-

taining high readability of the generated C++ program, we compare the sizes of the NAPL program and

derived C++ program in terms of lines of code (Figure 6(a)) and number of bytes of code (Figure 6(b)),

respectively. Note that although the internal libraries and user-implemented algorithms were both im-

plemented in C++, only the sizes of the user-implemented programs were compared between NAPL and

C++, because the functions of the built-in libraries can be invoked directly in NAPL, not in C++. Both

the lines and bytes of the general grammar and external interfacing codes in NAPL were similar to those

generated in C++, confirming that the compilation preserves the structure and readability of C++ code.

However, the codes of network objects, network statements, and network algorithms were considerably
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Table 2 Performance evaluation of NAPL with a set of benchmark NAPL programs

Category ID Name
Lines of code Bytes of code Time (ms)

NAPL C++ NAPL C++ NAPL C++

1 Basic type 60 72 1357 1784 2 2

2 Complex type 94 116 2219 2763 2 2

3 Data structure 98 154 1941 3438 78 74

4 Expression 57 79 1050 1819 23 22

5 Function 60 72 872 1271 22 21

General grammar 6 I/O 24 99 830 2886 20 19

7 Statement 71 83 1448 1715 12 12

8 Class definition 42 54 753 1197 18 17

9 Polymorphism 40 52 452 914 13 12

10 Attribute 81 93 2078 2625 20 19

11 Comprehensive examples 211 331 4166 6792 2 2

12 C++ code plug-in 28 40 652 1062 2 2

13 Dynamic library calls 6 18 328 586 3 3

External interfacing 14 Third-party library calls 52 68 1594 1886 3 3

15 Boost 67 84 2555 3006 6 6

16 Lemon 67 85 1872 2161 6 6

17 Custom attributes 41 768 900 16533 14 13

18 Custom demands 24 254 548 6205 16 15

19 Graph 28 844 816 24376 26 25

Network objects
20 Link 43 817 779 17802 29 28

21 Node 42 769 704 17105 21 20

22 Path 16 1146 354 25518 21 20

23 Service 25 378 690 8635 26 24

24 Network 21 1289 508 33290 3 3

25 Network statements 67 1920 3368 62648 20 19

26 Routing statements 72 1792 3469 57172 23 22

27 Network object operations 23 1508 609 40155 28 27

Network statements 28 Others 21 1856 515 47295 12 11

29 Weight 67 1197 1409 27213 16 15

30 Statements in network algorithms 49 1997 3014 62640 4 4

31 Attributes of network objects 50 1535 1306 44032 5 5

Network algorithms

32 CSPF 14 1671 485 51745 30 29

33 CSPDP 14 2170 492 62675 65 62

34 IP + optical 19 1893 586 56709 14 13

35 Optical 111 1430 3294 39366 14 13

36 P2MP 157 2347 4404 68280 76 72

37 Recovery 22 1914 734 56277 11 10

smaller than the C++ codes, indicating the high abstraction power of NAPL. This improvement was

particularly notable in the network-related cases (ID. 17–37), in which NAPL reduced the (weighted

averaged) line numbers and byte sizes by 32 and 28 times respectively, compared with those of C++.

8 Conclusion

This paper presents the design and implementation of NAPL, which is a novel network algorithm program-

ming language that enriches the SDN framework by enabling a rapid programming flow from topology-

based network models to C++ implementations. To overcome the critical problems of programming

SDN controllers, NAPL introduces high-level abstraction, flexible service routing, and convenient built-

in libraries. With these tools, users can easily modify, maintain, and reuse existing implementations.
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Figure 5 (Color online) Runtimes of the C++ codes compiled from NAPL (TNAPL) and those written by experienced

programmers (TCPP), as well as the overhead in between (TNAPL − TCPP). The vertical lines delineate the different case

categories.
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Figure 6 (Color online) Number of lines (a) and bytes (b) in NAPL code (LNAPL) and the derived C++ (LCPP). The

blue lines highlight the differences between the two codes.

The high expressiveness, negligible overhead, and promising savings of programming efforts in NAPL are

demonstrated in industrial benchmarking scenarios.

In future studies, we plan to automate the synthesis of NAPL programs in the policy layer for a

given network model and specification, which can provide a promising correct-by-construction methodol-

ogy. We are also pursuing formal verification techniques, which will ensure that the underlying network

configuration meets the high-level requirements of the operator.
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