
SCIENCE CHINA
Information Sciences

July 2020, Vol. 63 172101:1–172101:23

https://doi.org/10.1007/s11432-019-9948-6

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .

Online traffic-aware linked VM placement in cloud

data centers

Liwei LIN1, David S. L. WEI2, Ruhui MA1, Jian LI1* & Haibing GUAN1

1Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai 200240, China;
2Department of Computer & Information Sciences, Fordham University, New York NY 10458, USA

Received 27 February 2019/Revised 19 May 2019/Accepted 16 June 2019/Published online 18 May 2020

Abstract In cloud computing, virtual machine (VM) placement plays a crucial role in data center (DC)

management, as different ways of VM placement may require different system resources. As Cisco research

reveals that virtualization of DC increases traffic within the DC and causes network bandwidth to become

scarce resource, recent researches have been focusing on traffic-aware VM placement. However, previous

traffic-aware VM placement schemes treat the VM placement as a static process in that they do not take

into account the impact of the current placement decision on the subsequent placement. In this paper,

we thus propose a novel online traffic-aware VM placement scheme. Our scheme views VM placement as

a context-sensitive dynamic process in that the decision of every step of the placement is made aiming at

helping the subsequent steps of placement to reduce the required network bandwidth in the long run. In

our scheme, we consider not only inter-VM traffic but also the bandwidth constraint of a physical machine

(PM) when making a VM placement decision. To realize our objective, we put those VMs with close end

time in the same or close proximity PMs so that when the VMs are terminated, one can make enough room

for the future arrivals so as to not only minimize the number of active PMs but also reduce networking

costs. We conduct extensive simulations to verify the superiority of our scheme in terms of networking costs

and energy consumption. Simulation results show that our scheme outperforms improved-best-fit-decreasing

(IBFD) scheme, a revised best-fit version that takes inter-VM traffic into account, by 30%–40% on network

cost under various scenarios. Our scheme also promises 10%–25% power savings compared with IBFD.

Keywords linked VMs, traffic-aware, online VM placement, cloud data center, energy efficient

Citation Lin L W, Wei D S L, Ma R H, et al. Online traffic-aware linked VM placement in cloud data centers.

Sci China Inf Sci, 2020, 63(7): 172101, https://doi.org/10.1007/s11432-019-9948-6

1 Introduction

Virtualization is the key technology that enables cloud users to share the physical resources in cloud

data centers (DCs) in a cost-effective way and can provide high availability service [1]. In a virtualized

DC, virtual machines (VMs) are created according to users’ demands, and users run their applications

on their VMs that are indeed running on physical machines (PMs). To optimize resource allocation,

how those users’ VMs are placed in those PMs plays crucial role, as different ways of VM consolidation

and placement may require different computational resources (CPU time, memory space) and network

resources (switches, network bandwidth). However, traditional VM consolidation schemes have focused

on minizing the usage of CPU, memory [2–5], and the VM consolidation problem has been formulated

as bin packing problem or its variant before it is solved [6].

Though virtualization provides a flexible way to support various large scale applications or systems,

such as multi-tier web application [7], MapReduce [8, 9], and network function virtualization (NFV) [10,

*Corresponding author (email: li-jian@sjtu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-9948-6&domain=pdf&date_stamp=2020-5-20
https://doi.org/10.1007/s11432-019-9948-6
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-9948-6
https://doi.org/10.1007/s11432-019-9948-6

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:2

VM1 VM2

VM3 VM4 VM3
VM1 VM4

VM3

VM5

VM6

VM2

Map to

PM

Rack

VM slot

Datacenter

VM5

VM1 VM3

VM2 VM5

VM4 VM6

Rack1 Rack2 Rack3 Rack4
4

12

Place scheme A Place scheme B

Figure 1 (Color online) The placement of linked VMs in data center.

11], such a large scale task may need to run on more than one VM. For example, a typical multi-tier web

application consists of three tiers: presentation layer (web tier), business logic layer (app tier), and data

access layer (DB tier) [7]. Different layers usually run on different VMs and have different memory access

patterns. These VMs cooperate with each other to support the web application. Therefore, we consider

that a user’s request is a set of linked VMs in which some VMs cooperate with each other via message

passing.

Considering a real situation in a cloud DC in which users’ requests (represented by a set of linked VMs)

arrive online, and the placement decisions need to be made in real-time without any prior knowledge of

other users’ future requests, and the fact that the off-line version of VM consolidation has been shown

to be NP-hard [12, 13], the problem of online VM consolidation is extremely challenging in reality and

may need to be solved in a heuristic way. Besides, researches in [14–16] show that a DC’s internal traffic,

including inter-VM traffic, contribute up to about 80% of the whole traffic of the DC. Thus, in a DC

network, network bandwidth is quite limited at both the PM level and the rack level and thus need

to be used frugally. Thence, traffic-aware VM placement becomes a critical issue in DC management.

Consolidating VMs with the objective of minimizing network resource, e.g., network bandwidth, has been

receiving attention recently [12, 17–19].

As shown in Figure 1, the VM placement problem that we will tackle is different from those solved

by existing algorithms in that the VMs to be placed in our algorithm are linked VMs. There are several

racks in the DC, and a rack consists of several PMs, and a PM can accommodate several VMs. The

distance between two PMs is counted as the number of switches along their shortest path. The set of

linked VMs of a user1) will be mapped to the PMs in the racks in a way of minimizing the network

bandwidth required by the set of VMs for completing its application. In Figure 1, a user’s request, which

is a set of six linked VMs, is to be served. The red arrows represent the communication needs for the

pair of VMs. For simplicity, we temporarily assume that the amount of traffic between VMs are equal2).

The figure shows two different placement schemes that consume different network costs and energy. In

scheme A, 6 VMs are placed in Rack1, and the needed network traffic is 2 which is the traffic between

the two PMs that accommodate the VMs. In scheme B, 4 VMs are placed in Rack3 and two VMs are

placed in Rack4. The needed network traffic between Rack3 and Rack4 is 4, and the needed network

traffic between the two PMs in Rack3 is 1. It is not hard to see that scheme A is with lower network

cost and is more efficient than scheme B in terms of required bandwidth. Also, scheme A consumes less

energy than scheme B, since scheme A uses only 2 active PMs, but scheme B uses 3 active PMs.

1) Only the VMs belonging to the same user may need the communications among VMs.
2) In our simulations, we indeed assume that the inter VM traffic follows normal distribution.

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:3

Also, in Section 5, we show that end time is another important factor that needs to be taken into account

when devising an online VM placement scheme. In a virtualized DC, the creation and destruction of VMs

is an important operation of VM management. A VM is created and destructed based on its start time

and end time. Therefore, in VM management, information such as the end time of each VM is recorded

such that the VM will be destructed at the right time. For example, in cloud systems, one needs to

define the VM’s end time [20]3), and some other studies also state that it is required to preset VMs’

end time [21–23]. By considering the end time, our VM consolidation scheme not only guarantees the

minimized usage of the number of PMs, but also minimizes the required network bandwidth.

We summarize the contributions and novel ideas of our work as follows:

(1) We take the VMs’ end time into consideration when making the placement decision for the arriving

VMs. The VMs with the closer end time, if placed in the slots of close proximity, will free these slots

together with higher probability and likely benefits future arriving VMs.

(2) Unlike previous schemes, our traffic-aware VM consolidation scheme considers the VMs to be placed

as a set of linked VMs in which the weight associated with a link represents the required traffic between

the two VMs. We also prove that this problem is NP-hard. Our greedy algorithm, with best efforts,

places the pair of VMs with heavy communication needs in the same PM so that the network bandwidth

is absorbed, thereby reducing the usage of network bandwidth.

(3) As link overflow has negative impact on the system’s performance, our placement scheme also takes

the risk of PM link overflow into consideration.

(4) Our scheme produces less free slot fragmentation in active PMs and thus activate as few as possible

sleeping PMs, thereby reducing energy consumption.

2 Related work

Ref. [24] performs an overview of VM placement problems in DC as well as their current solutions. So

far, the VM placement problem has been studied in different aspects.

In the previous researches on virtualized DC, the VMs to be placed are assumed to be independent

from each other. Their resource requirements are mainly CPU and memory. So these studies mainly

focused on the CPU and memory resource allocation [25], and the communication needs among VMs

were not considered.

Due to multiple physical constraints and different optimization objectives in DC, researchers have

focused on different targets in devising their VM placement strategies. They thus study this problem from

various aspects, namely energy efficiency [26,27], scalability [12,28], availability [29,30], reliability [31,32],

survivability [19], and network traffic [12, 17–19]. In general, VM placement can be classified into two

categories, namely energy consumption concern strategy and QoS concern strategy [33]. Most of the

placement strategies are either minimizing the utilities of physical resources or saving energy consumption

by shutting down the unused physical devices [17]. Although VMs can be re-mapped to PMs via VM

migration [34], migration can still increase the network burden.

Moreover, placing a set of linked VMs is more complex than placing a set of independent VMs. Placing

such VMs to PMs has to take the communications between VMs into consideration, and such problems

have been proven to be NP-hard [12, 13]. Therefore, inter-VM traffic is another important factor in

the placement of linked VMs, although there have been a few studies on traffic-aware VM placement in

DC [12, 17–19]. The VM placement scheme, called VMPlanner, in [17] optimizes both virtual machine

placement and traffic flow routing. The main function of the study is to turn off as many unneeded

network elements as possible for power saving. However, this study is not a pure online VM consolidation

scheme. Authors [12] traced and analyzed the traffic patterns in DC to observe the potential network

scalability benefit, and proposed an approximation algorithm, named TVMPP, to solve the VM placement

for scalability benefit. However, the states in DC are dynamic in that old VMs will be destroyed and

3) Get the list of events generated on any VM. https://portal.nutanix.com/#/page/docs/details?targetId=API Ref-

Acr v4 6:vms api getVMEvents auto r.html.

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:4

the new VMs are to be created. This indicates that the states are changing and TVMPP cannot fit

such scenario well. Ref. [18] formulated the VM consolidation problem into a stochastic bin packing

problem and proposed an approximation algorithm as a solution. The solution is aware of the bandwidth

demand, but does not take the network topology into account. Indeed, in reality, the constraints are more

complex. The solution model should be improved to suit a realistic environment. Ref. [35] processed the

VM placement by taking the traffic between VMs into consideration to reduce the network cost in DC.

But the two communication models in [35] are not general cases in practice. The solution proposed by [19]

is mainly to improve the VMs’ survivability in DC. However, the authors do not take the performance

of the applications of the VMs’ owner into consideration. In fact, in many scenarios, there is no need to

have many backup VMs as what Ref. [19] proposed. In summary, the studies of VM placement mentioned

above can be categorized as the off-line VM placement scheme in that the placement decision, whether it is

traffic-aware or not, is made only for the good of the current arriving VMs without considering those future

arrivals. Fortunately, the research of online VM placement has been conducted by some researchers [5].

However, this study focuses on minizing the usage of computing resources, CPU, memory, disk, and has

ignored the network bandwidth as an important factor in performance measurement. As we will show in

Section 5 that the end time of each VM may also affect the online placement decision and in turn affect

the system and application performance, in this paper, we propose to study traffic-aware online linked

VM placement by taking the end time of each VM into account.

3 Models and definitions

In this section, we introduce the notations and models that are needed in the description and discussion

of our VM consolidation algorithms.

3.1 The environment of linked VM placement

3.1.1 Physical DC environment

We consider that a DC consists of nr racks, and a rack can accommodate nrp physical machines (PMs).

Each PM has nps slots and each of which accommodates a VM. PMs are connected with each other

through several switches or routers. The distance between two PMs is the number of links along their

shortest path. We name the distance of two PMs as Hop, as shown in Table 1. To reduce the energy

consumption, the empty PMs (the PMs that do not accommodate any VM) will be in sleeping state.

When there are no sufficient active PMs for the VM placement, some sleeping PMs will be activated.

3.1.2 VM and linked VMs

In reality, a DC services many users, and each user leases several VMs for a period of time. From the view

point of DC manager, the VMs’ lifespan in DC is a dynamic process in that the old VMs are destroyed

at their end time, and some new VMs are created when new users’ requests arrive.

Every user requires nui(nui > 0) VMs cooperating with each other to run his/her applications. In

order to finish the tasks, these cooperative VMs need to communicate with each other, and thus induce

network cost in data center. Thus, the input to the consolidation algorithm is a set of linked VMs for

each user. An occupied slot is freed if the VM that it accommodates reaches its end time.

3.2 Linked VMs of a user and some equations

We assume that some VMs of a user may need to communicate with each other and the set of linked

VMs of a user is denoted by a graph G(VM) = (V,E), where V represents the VM set, and E represents

the set of communication links among the VMs. |V | is the number of VMs in G(VM), and |E| is the

number of links in G(VM). The notations needed for the description of our algorithms are summarized

in Table 1.

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:5

Table 1 Notations

v A VM

e(vi, vj) e(vi, vj) = 1 if there is a direct communication link between vi and vj , otherwise e(vi, vj) = 0

tr(vi, vj) Direct communication traffic between vi and vj , otherwise tr(vi, vj) = 0

e(vi, ∗) All direct communication links of vi

tr(vi, ∗) All direct communication traffic of vi

VS A VS represents a set of VMs. e.g., VSa represents the VMs to be placed in or residing in PM Pa

v
te
i vi’s end time

VSouta The whole out traffic of VSa

Bc The bandwidth constraint of a PM

NC The network cost

Hop(vi, vj) Number of physical links along the shortest path between PM Pvi and PM Pvj after vi and vj are placed

|P (fs)| Number of free slots in PM P

aPMs The set of active PM in DC

We then define some important notations for the convenience of algorithm description. Let the arriving

users follow Poisson distribution P (x = k) = e−λλk

k! , then λ represents the average number of arriving

users during a unit of period of time. We set ǫ = 0.69U
λ

, where U is a unit of time. Also, let T (vtei , vtej)

be defined as

T (vtei , vtej) =

{

1, 0 6 vtei − vtej 6 ǫ,

0, else.
(1)

Then, TClose can be calculated by

TClose(vnew user,VS) = max

∑

vj∈VS

T (vtenew user, v
te
j),

∑

vj∈VS

T (vtej , vtenew user)

. (2)

T (vtei , vtej) states if the two VMs’ end time is within the range of ǫ4), and in the equation, one of vi
and vj is the VM waiting for being placed, and the other one is the VM which has been placed in a PM.

So, TClose counts the number of VMs in VS whose end time is within the ǫ range of the end time of a

user’s VMs. This means that TClose can be used to estimate which PM has more VMs whose end time

is close to the end time of new arriving VMs. If the VMs with high TClose are placed in the same PM,

it will free more slots for later arriving VMs with higher probability.

3.3 Inter-VM traffic estimate model

Before run time, the traffic is hard to predict exactly. DC can estimate the traffic range of each link

according to the functions of VM pairs. According to the history data in DC, it can estimate the traffic

of different types of link [36].

For the convenience of performance analysis, we partition traffic flows into several ranges TR =

{tr1 , tr2 , . . . , trn}. As the link traffic can be estimated as a range which falls in a subrange in TR, in

order to reduce the risk of traffic overflow to guarantee the QoS, all VM traffic through the network

interface in PM p should obey the inequation (3). p(vm) denotes the VMs that are currently placed in p.

∑

vi∈p(vm)

tr(vi, ∗)−
∑

vi,vj∈p(vm)

tr(vi, vj) 6 Bc. (3)

When conducting the simulation, the traffic of a link can only be estimated in a range of TR. We denote

link e(vi, vj)’s estimated traffic range by etr(vi, vj). So ⌈etr(vi, vj)⌉ and ⌊etr(vi, vj)⌋ are denoted as the

upper and lower bound of this range respectively. Intuitively, ⌊etr(vi, vj)⌋ 6 tr(vi, vj) 6 ⌈etr(vi, vj)⌉. So

if the condition satisfies inequation (4), it should also satisfy inequation (3).

4) We will show how we choose this ǫ value in the section of TClose analysis.

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:6

∑

vi∈p(vm)

⌈etr(vi, ∗)⌉ −
∑

vi,vj∈p(vm)

⌊etr(vi, vj)⌋ 6 Bc. (4)

In this paper, to verify the superiority of our algorithm, in the evaluation, we assign the link weight

by estimating its traffic range so that the decision made can be more accurate.

3.4 System and runtime traffic model

In reality, with an explosive growth of DC traffic, network bandwidth constraint becomes a more and

more critical issue. Recent studies [12,37,38] show the bursty nature of DC traffic. Most of the previous

studies, except [18], assume that the inter-VM traffic is fixed, which is not the case in reality in a DC

environment. In this study, we use random variables to describe the traffic characteristic between VMs.

This can better represent such uncertainty of traffic features. So, the traffic of a VM pair is not a constant,

and we use a random variable, denoted byX , to estimate inter-VM traffic. As the study in [18], we assume

that the link traffic between two directly linked VMs follows normal distribution N(µ, σ2) approximately,

where µ represents the expect value of X , and σ represents the variance of X . As the traffic cannot be a

negative value, we set the lower bound of traffic value to be 0. Let tr(vi, vj) stand for the traffic between

VMs vi and vj . Then, tr(vi, vj) follows normal distribution with parameters µ and σ. There are actually

heavy traffic and light traffic coexisting in a DC, and traffic flows of different VM pairs are unequal.

Setting different values of µ and σ enables us to more accurately model the complex traffic demands of

various applications in real DC.

Also, the communicating VMs belonging to the same user may be placed in different PMs. This will

cause different traffic to use a physical link. We assume that traffic flows of VM pairs are independent

from each other. There might be several traffic flows using the same physical link at the same time. Also,

traffic flows produced from a set of linked VMs is the sum of the flows of VM pairs, whose one VM,

namely vi, and the other VM, namely vj , are placed in different PMs. Let eN be the set of links between

VSa and VSb, we have

treN (VSa,VSb) =
∑

vi ∈ VSa

vj ∈ VSb

tr(vi, vj). (5)

Also, let fi be the traffic flow of the ith link in eN , we have F = {f1, f2, . . . , f|eN |}, fi ∼ N(µi, σi
2), i ∈

1, 2, . . . , |eN |. F is the combination of all VM pair flows, and it is the joint distribution of f1, f2, . . . , f|eN |.

Based on the assumption that each VM pair flow follows the normal distribution and they are independent

of each other, F is a joint normal distribution, and follows the N(µF , σ
2
F).

µF =

|eN |
∑

i=1

µi, (6)

σ2
F =

|eN |
∑

i=1

σ2
i . (7)

So the combined traffic treN (VSa,VSb) between VSa and VSb follows normal distribution N(µeN , σ2
eN

),

where

µeN =
∑

vi ∈ VSa

vj ∈ VSb

e(vi, vj) · µ
5), and σeN =

√

√

√

√

√

∑

vi ∈ VSa

vj ∈ VSb

e(vi, vj) · σ
2.

Then, VSa’s out traffic is defined as

VSouta =
∑

vi∈VSa

tr(vi, ∗)−
∑

vi,vj∈VSa

tr(vi, vj). (8)

5) e(vi, vj) = 1 if e(vi, vj) ∈ E of G(VM). Otherwise, e(vi, vj) = 0.

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:7

Follows the normal distribution N(µout
eN

, σout
eN

2
), µout

eN
=

∑

vi∈VSa

e(vi, ∗) · µ−
∑

vi,vj∈VSa

e(vi, vj) · µ, and

σout
eN

=

√

∑

vi∈VSa

e(vi, ∗) · σ2 −
∑

vi,vj∈VSa

e(vi, vj) · σ2.

As the purpose of our scheme is traffic aware VM placement, we should reduce the out traffic of each

grouped VMs, i.e., VSa, by some means. In other words, we should increase
∑

vi,vj∈VSa
e(vi, vj). The

more inter-VM traffic absorbed by a PM, the less out traffic will be for the PM and thus will consume

less physical network resource.

In normal distribution X ∼ N(µ, σ), P{X < (µ + 3× σ)} ≈ 99.87%. Since the probability of 99.87%

satisfies high QoS requirement, such as service-level agreement (SLA), in order to reduce the risk of

physical link overflow to guarantee required QoS, we choose µ + 3 × σ as a VM pair traffic weight after

the VM pair are placed in a PM. This way, the remaining physical link bandwidth can be more accurately

estimated. So the traffic of VM pairs (vi, vj) which have been placed in PM p can be calculated as follows:

tr(vi, vj) = e(vi, vj) · µ+ 3× e(vi, vj) · σ. (9)

Then the remaining bandwidth Br of p is

Br(p) = Bc −

∑

vi∈p

tr(vi, ∗)−
∑

vi,vj∈p

tr(vi, vj)

 ,

= Bc − (µout
eN

+ 3× σout
eN

). (10)

Let VSw be the set of VMs waiting to be placed in PM p, and VSp be the VMs that have been placed

in p. In order to reduce the risk of overflow to guarantee QoS, the out traffic of PM p should obey the

inequation (11). Let Br(p) be the remaining bandwidth of PM p, then we have

trout(VSw) + trout(VSp) 6 Bc

⇒ trout(VSw) 6 Bc − trout(VSp)

⇒
∑

vi∈VSw

⌈etr(vi, ∗)⌉ −
∑

vi,vj∈VSw

⌊etr(vi, vj)⌋ 6 Br(p). (11)

Also, the number of VMs to be placed in a PM should not exceed the PM’s capacity. That is

|pvm|+ |vs| 6 nps, (12)

where |pvm| represents the number of VMs that have been placed in PM p, and |vs| represents the number

of VMs to be placed in PM p.

In summary, intuitively, the objective of our online VM placement algorithm is to find a PM (or

some PMs in a rack), denoted by VSx, for those new arrivals in VSa, such that TClose(VSa,VSx) is the

maximum among those TClose values while follows the conditions of inequations (11) and (12), and to

minimize the network cost (NC) defined by (13).

3.5 Problem statement

We denote the PM set in DC as P = {p1, p2, . . . , pm}. Each PM has several free slots, whose number

range is from 0 to nps. The problem is to partition the set of linked VMs of a user into several subsets

{Gs1 , Gs2 , . . . , Gsk} such that the size of each subset is constrained by the number of free slots in each

PM. We then map these subsets into PMs, as shown in Figure 2.

In order to measure the network resource consumption, we define the network cost (NC) as the per-

formance metric of network bandwidth consumption.

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:8

1 5

6

7

8

2

3 4

9

1 2 6

3 4

5 7 8 9

VM

Free slots in PM

Existing VMs in PM

(b)

1 5

6

7

8

2

3 4

9

(a)

(d)(c)

1

2

3

1

2

3

Partition the VM graph to fit the current

PMs’ free slots

Placing the VMs into PMs

After placement

20

10

30

25

5

10

15

10

15

20 20

10

30

5

25
10

10

15 20

15

10

10

Figure 2 (Color online) Example of linked VM partition and placement. (a) Arriving VM graph of a user; (b) VM

sub-graphs after partition; (c) PM states before VM placement; (d) PM states after VM placement.

Definition 1 (Network cost (NC)). NCmeasures the bandwidth consumed by the traffic of all VM pairs.

The bandwidth consumed by VM pair (vi, vj) is determined by the number of hops along the shortest

path of the two PMs Pvi and Pvj that accommodate vi and vj , respectively. NC can be calculated by

NC =
∑

pvi
6=pvj

[tr(pvi , pvj)×Hop(pvi , pvj)]. (13)

The objective of VM placement algorithm is to minimize the network cost (NC). As shown in Table 1,

Hop(vi, vj) represents the distance (the number of hops) between the residing location of VM vi and the

residing location of VM vj .

When measuring NC, the real DC network topology should also be taken into account. Our objective

is to develop an ideal VM consolidation scheme such that for each placement of a set of linked VMs, NC

is minimized.

In our design, the placement problem is divided into two phases: (1) partition the set of linked VMs

according to the number of free slots in PMs; (2) map the partitions to the right PMs, as shown in

Figure 2. There are two major concerns that need to be addressed in the two-phase placement scheme:

(1) The partition scheme can directly influence NC. The purpose of partition is to minimize the total

traffic of inter-partitions. (2) The other concern is the free slot fragmentation/concentration. The less

free slot fragmentation in a PM is, the more traffic will be absorbed by the PM, and thus the NC will be

reduced.

In Sections 4 and 5, we will address these two aspects, and propose our solution for the linked VM

placement problem.

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:9

4 Partition of linked VMs

Due to the constraint of free slots in PMs, the set of linked VMs needs to be divided into several subsets

before the VMs are placed in PMs. As introduced before, the traffic flows of different VM pairs are not

equal, inappropriate partition schemes will induce higher inter-partition traffic and will in turn result in

heavier physical link load and thus higher NC.

As shown in Figure 2(a) and (b), each partition will be placed in a PM. The inter-partition traffic will

bring traffic to inter PMs and consume DC network resource. So min-cut between partitions is essential

for bandwidth saving. Designing an optimal (or near optimal) partition is critical for the DC manager

to reduce the network cost.

As mentioned before, in this phase, a set of linked VMs is partitioned into several subsets of different

sizes according to the available free slots in PMs. Also, the number of partions is determined by the

number of available PMs. In order to save the energy consumption, we select minimum number of PMs

to accommodate these partitions. The selection of PMs should subject to the following objectives:

(1) Satisfy with the bandwidth constraint of (11) to reduce the risk of traffic overflow;

(2) Minimize the number of active PMs;

(3) Reduce the physical network bandwidth usage.

The problem is described as follows.

There are n linked VMs that form a graph G = (V,E). V = {v1, v2, . . . , vn} denotes the VM set, and

E denotes the link set. There are m available PMs P = {p1, p2, . . . , pm} that have enough free slots for

VM placement. We are to partition graph G into ns sub graphs Gs = {G1, G2, . . . , Gns} according to

the available free slots in P .

Objective: to minimize

(1)
∑

Gi ∈ Gs

Gj ∈ Gs

i 6= j

tr(Gi, Gj);

(2) ‖aPMs‖, the number of active PMs, while subject to (11) and (12).

Our VM placement is affected by the set of PMs who have enough free slots. There are two factors

that affect the network cost.

(1) The distance (number of hops) between the selected PMs.

(2) The free slot concentration of PMs.

Basically, the more concentrated the free slots is, the better for bandwidth saving would be. Let PMset

be the active PMs with free slots, the degree of free slot concentration δ can be measured by

δ =

∑

pi∈PMset |pi(fs)|

|PMset|
, (14)

where |pi(fs)| represents the number of free slots in pi. δ indicates the degree of free slots concentration.

The higher the δ is, the more concentrated free slots would be.

Theorem 1. The optimal partition of G, the set of linked VMs, is an NP-hard problem.

Proof. As discussed previously, the problem of VM set partition is to partition the graph G(V,E) into

k sub-graphs of specific size with minimum cuts. If we set k = 2, the problem is reduced to partition G

into 2 sub-graphs, G1(V1, E1) and G2(V2, E2). By setting |V1| = |V2|, this problem becomes the minimum

bisection problem (MBP), which is the special case of our problem. MBP has been proven to be NP-hard

in [39, 40]. Thus, the problem that we are tackling is also an NP-hard problem.

5 Practical situation consideration

In this section, we will illustrate how VM’s end time affect the system’s performance.

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:10

t

t3=30+
Stage3

t2=30−

Stage2
t1=20
Stage1

a a c d

a b c e

a b c d

Scenario A

a b c e

a a a a

c c c c

b b a d

Scenario B

b e e d

Current time: 20

Current time: 30−

(before placement)
f1 f2

f3

f4

New arrival
VM graph

a a c d

a b c e

a b c d

Scenario A

a b c e

a a a a

c c c c

b b a d

Scenario B

b e e d

a a c f1

a b c f2

a b c f3

Scenario A

a b c f4

a a a a

c c c c

b b a f1

Scenario B

b f2 f3 f4

Current time: 30+
(after placement)

(a)

(c)

(b)

(d)

Figure 3 (Color online) An example of VM placement by taking end time into account (the VMs with the same label

belong to the same user). (a) The time axis of each VM placement stage. (b) t1: current time is 20. VMs’ end time are

(a: 56; b: 69; c: 47; d: 25; e: 24). (c) t2: current time is 30. 4 new VMs (f1, f2, f3, f4) arrive. 4 VMs labeled by d or e are

freed. (d) t3: current time is 30. After the 4 new VMs are placed.

We observe that in reality, most of the times, some slots of some PMs are occupied by the VMs.

Unfortunately, previous researches of VM consolidation have actually considered only the static status in

that their algorithms are designed only for dealing with a single wave of arrivals without considering the

future arrivals. Since each PM has nps slots and because the VMs’ end time may be different, once the

old VMs terminated, their occupied slots will be freed for the newly arriving VMs. This could somehow

produce low free slot concentration if VMs’ end time is not considered when making a placement decision.

Our research aims at online VM placement. By considering the VMs’ end time in the placement decision,

since there will be less slot fragmentation, new arrivals get better chance to be put in the close proximity,

thereby minimizing the bandwidth demand.

Since energy consumption is also an important issue in DC, and in order to save the energy and improve

resource utilization, when devising our placement algorithm, we also aim at using as few number of PMs

as possible.

Naturally, the placement algorithm has to locate the free slots for the newly arriving VMs. The ideal

case is that when the new user’s VMs are arriving, they were placed to be as close to each other as

possible. Intutively, the free slots in close proximity could benefit those future arrivals. We then use an

example, as the two scenarios shown in Figure 3, to show how the end time affect network cost in VM

consolidation.

In Figure 3, the VMs with the same label belong to the same user. So they have the same end time. The

VMs belonging to the same user will be freed at the same time. To simplify the discussion, we temporarily

set the weight of each link in the graph to be 1. We introduced the graph model in Subsection 3.2. As

introduced in Section 3, the Hop (the number of hops) between any two PMs using the same router in

Figure 3 is 2 because the communications between the two PMs need to cross 2 physical links. The Hop

of VMs in the same PM is 0 because they do not need to cross any physical link.

The placement scheme maps the graph to the PMs in a way that the physical network cost is minimized.

Scenario A is the scheme that ignores the VMs’ end time, where Scenario B is the scheme that takes the

VMs’ end time into consideration. Figure 3(a) shows each stage time of the three VM placement stages.

Figure 3(b) shows that 16 VMs are placed into 4 PMs. Current time is 20, and all the 4 PMs are full now.

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:11

The VMs with the same label are the ones with the same end time. Then, in Figure 3(c), the current time

is 30, and the VMs labeled by d and e have been freed. The 4 new VMs, f1, f2, f3, and f4, arrive and can

be placed in the 4 free slots. Figure 3(d) shows the scenarios of two possible placements. In the figure,

the arrowed arcs represent needed communications between the two PMs. From Figure 3(d), one can see

that the NC in Scenario A is (1 + 1+ 1+ 1)× 2 = 8, and the NC in Scenario B is (1+ 0+ 0+ 0)× 2 = 2.

Thus, we can see that Scenario A requires much higher network cost than Scenario B.

This example also tells us that the placement scheme to be devised should be a traffic-aware one. Based

on the location of those free slots, intuitively, if the VM pairs with high inter-VM traffic are placed to be

close to each other, it will not only reduce the network cost, but also leave more network resources for

the VMs that will arrive later. In addition, the link overflow can also degrade the system performance.

So, for each placement decision, we also need to control the total out-traffic of each PM and each rack to

avoid the out-link overflow.

6 Algorithm

Based on the above discussions, in this section, we describe our traffic-aware algorithm that takes both

graph6) partition and VM’s end time7) into consideration. Our VM placement scheme can be divided

into two important phases:

(1) Select the appropriate set of PMs to accommodate the VMs. Meanwhile, VMs’ end time is taken

into consideration.

(2) Partition the graph and map the partitioned subgraphs to the selected PMs. When partitioning

the graph, reducing inter-subgraphs traffic is the main concern.

Definition 2. Let PMset be the set of PMs selected to accommodate the VMs of the new arriving user.

We define Vset(t1, t2,PMset) as the set of VMs currently residing in PMset and will be freed during time

range [t1, t2].

We then use δF (t1, t2) to define the degree of slot concentration in PMset during the time range [t1, t2].

Let G(V,E) be the set of linked VMs of the new arriving user. Then, we have

δF (t1, t2) =
|Vset(t1, t2,PMset)|+ |V |

|PMset|
, (15)

Bef[e(va, vb),VSS] =

⌊etr(va, vb)⌋+
∑

vi∈VSS

⌊etr(va, vi)⌋+
∑

vi∈VSS

⌊etr(vb, vi)⌋, va /∈ VSS , vb /∈ VSS ,

⌊etr(va, vb)⌋+
∑

vi∈VSS

⌊etr(vb, vi)⌋, va ∈ VSS , vb /∈ VSS ,

⌊etr(va, vb)⌋+
∑

vi∈VSS

⌊etr(va, vi)⌋, va /∈ VSS , vb ∈ VSS .

(16)

Assume that te is the end time of G(V,E). To measure the future benefit of new arriving user’s VM

placement, we assume that G(V,E) is to be placed in the selected PMset. We set t1 = te−ǫ or t2 = te+ǫ,

which means that the VMs in PMset are satisfied with the TClose with G(V,E). So δF (te − ǫ, te) or

δF (te, te+ ǫ) can measure the concentration degree of the free slots freed by G(V,E) and the TClose VMs

in the PMset. Higher δF indicates that there would be better concentrated free slots for the future user’s

VMs.

Let n be the number of VMs to be placed. Algorithm 1 is developed for selecting the best PM set

for accommodating the VMs of new user. Lines 1–3 process the case with insufficient free slots for the

current VM placement. Lines 4–6 describe the scenario that active PMs are insufficient to accommodate

6) For the convenience of algorithm description and discussion, from now on, the set of linked VMs to be placed is viewed

and treated as a graph.
7) Note that VMs in the same graph, i.e., the set of VMs belonging to the same user, always have the same end time.

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:12

Algorithm 1 PMSelection & VMMapping(G) //Select suitable set of PMs to accommodate the partitions of G

Input: The VM group graph G(V, E);

Output: The placement result of G;

1: if
∑

Pi∈DC
|Pi(fs)| < n then

2: return false;

3: end if

4: if
∑

Pi∈aPMs
|Pi(fs)| < n then

5: Activate minimum number of sleeping PMs s.t.
∑

Pi∈aPMs
|Pi(fs)| > n;

6: end if

7: if ∃ rack, such that ∑

Pi ∈ rack

Pi ∈ aPMs

|Pi(fs)| > n

then

8: for each such rack do

9: Order the aPMs in the rack in descend order according to PMs’ free slot numbers;

10: Select PM set PMa s.t.
∑

Pi∈PMa
|Pi(fs)| > n;

11: Calculate δ using (14);

12: end for

13: Set δ1 = max{δ}, and let the corresponding set of PMs be PM1;

14: for each such rack do

15: Order the aPMs in the rack in descend order according to PMs’ TClose calculated by (2) with G;

16: Select PM set PMb s.t.
∑

Pi∈PMb
|Pi(fs)| > n;

17: Calculate δF using (15);

18: end for

19: Set δ2 = max{δF }, and let the corresponding set of PMs be PM2;

20: if δ1 > δ2 then

21: PMset = PM1;

22: else

23: PMset = PM2;

24: end if

25: Partitions = Partition(G,PMset);

26: Map Partitions to the selected PMset;

27: else

28: Cut G into two sub-graphs, sG1 and sG2, with mini-cut;

29: PMSelection & VMMapping(sG1);

30: PMSelection & VMMapping(sG2);

31: end if

the VMs, and the DC manager will activate right number of sleeping PMs for the placement. This way,

it can keep the number of active PMs to be as small as possible, thereby saving energy for DC.

Since end time affects free slot concentration degree, and in turns determines NC, during the PM set

selection, we take both VM’s end time and inter-VM traffic into consideration. Lines 8–24 consider two

cases: (1) Calculate δ1 of current free slots; (2) If the VMs are placed in the rack, we calculate δ2 after the

VMs are freed in the rack. If δ1 > δ2, it means that the current free slots are better for VM placement.

Otherwise, i.e., δ1 < δ2, which means that the placement scheme will produce more concentrated free

slots in the future.

For Algorithm 2, we define Bef[e(va, vb),VSS] for the measurement in graph partition. Bef[e(va, vb),

VSS] of (16) is used to measure the traffic absorbed when e(va, vb) is included in VSS . The high

Bef[e(va, vb),VSS] indicates that link e(va, vb) is a good choice to be included in VSS . Lines 11–30

perform the main task of partition. When selecting the best VM from G to be included in S, the decision

is made based on the calculated Bef. Basically, the VM with maximum Bef will be selected. Lines 12–18

are to process the case when S can include only one more VM. In this case, Lines 13–15 are to find a

pair of VMs such that one of them has been in S, and the other is not, and select the one whose Bef is

the maximum. Note that Line 16 actually includes only one more VM, i.e., either va or vb, as either of

them has been in S. Lines 19–28 are to select link (va, vb) with maximum Bef and include both VMs, va
and vb, in S. Once lines 11–30 have been executed, the number of VMs included in S is the same as the

number of free slots in PM Ps[i].

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:13

Algorithm 2 Partition(G, Ps) //Graph partition algorithm in which the graph is linked VMs.

Input: Graph G(VM) and PMset Ps;

Output: A set of |Ps| partitioned subgraphs;

1: Order the PMs in Ps in descend order according to PMs’ free slot number;

2: Let the sorted order be Ps[i], i = 1, . . . , p;

3: Partitions = ∅;

4: for each Ps[i] in Ps in descend order do

5: let n = |Ps[i].fs|;

6: if G(VM) 6 n and obeys inequation (11) then

7: Return(Partitions = Partitions ∪G);

8: else

9: Order the links of G in descend order by weight, denoted by Link[];

10: S = ∅;

11: while |S| < n do

12: if (n− |S| = 1) then

13: for (Each e(va, vb) in Link[] in which va ∈ S or vb ∈ S) do

14: Get ei(va, vb) s.t. Bef[ei(va, vb), S] is maxmized;

15: end for

16: S = S ∪ {va, vb};

17: Delete {va, vb} and ei(va, vb) from G(VM);

18: Delete all links in S from Link[];

19: else

20: Get the first link e(va, vb) from Link[];

21: S = S ∪ {va, vb};

22: Link[] = Link[]− e(va, vb);

23: for (Each e(va, vb) in Link[]) do

24: Get ei(va, vb) s.t. Bef[ei(va, vb), S] is maxmized;

25: end for

26: S = S ∪ {va, vb};

27: Delete {va, vb} and ei(va, vb) from G(VM);

28: Delete all links in S from Link[];

29: end if

30: end while

31: if S obeys inequation (11) for the PM of Ps[i] then

32: Partitions = Partitions ∪S;

33: Delete Ps[i] from Ps;

34: else

35: Backtracking the partition until S obeys inequation (11) for a PM P (P ∈ Ps) and min(|P.fs− |S||);

36: Partitions = Partitions ∪S;

37: Delete P from Ps;

38: Reorder Ps;

39: end if

40: end if

41: end for

7 TClose analysis

How to measure the TClose is an important factor that will affect the network cost in VM placement.

The more accurate TClose measurement is, the higher benefit the online placement algorithm will gain.

In reality, there is usually a time interval between the two arriving users. So we use ǫ in inequation (17)

to measure the closeness between the end time of two VM sets.

|vtei − vtej | 6 ǫ. (17)

If VMs vi and vj satisfy inequation (17), then vi and vj can be put together so that their occupied

slots could be freed together during a time interval defined by ǫ. As mentioned previously, users’ arriving

follows Poisson distribution. In a long enough period of time, the average number of arriving users during

a unit of time approaches λ. To simplify the analysis, we assume that these λ users’ arriving times are

evenly distributed over this unit of time U .

As the users’ arriving follows Poisson distribution parameter λ, as shown in (18), we could estimate

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:14

0 0.5 1.0 1.5 2.0 2.5 3.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

←Cross point

, [t= (1/)]

P
ro

b
ab

il
it

y

P(X≤t)=1−e− t

P(X

>

t)=e

α α λ

λ

− tλ

Figure 4 (Color online) Poisson distribution.

next user’s arriving time.

P (N(t) = n) =
(λt)ne−λt

n!
. (18)

Let P (X > t) be the probability of no arriving user during next time interval t. Then, we have

P (X > t) = P (N(t) = 0) =
(λt)0e−λt

0!
= e−λt. (19)

Moreover, we denote P (X 6 t) as the probability that some user(s) arrive during next time interval t.

Then, we have

P (X 6 t) = 1− P (X > t) = 1− e−λt. (20)

The ideal case is that if different VM sets with close enough end time, they likely will finish at around

the same time, and their occupied slots would be freed together for the new arrivals. If the time interval

is too short, the ǫ is less meaningful, because the probability that the VM sets can be put together is too

low. If the time interval is too long, the ǫ is also less meaningful, because the probability that the slots

occupied by the bundled VM sets may be realeased at very different times and thus would not benefit

the new arrivals.

To determine the right time interval, we set

e−λt = 1− e−λt ⇒ λt ≈ 0.693 (21)

to obtain 0.69, which is the cross point shown in Figure 4, to help calculate the right time interval. Then,

we have ǫ = α × U
λ
= 0.69U

λ
. This means that about a user arrives per 0.69U

λ
unit time on average. We

thus set ǫ = 0.69U
λ

. If vi and vj satisfy inequation (17) and are placed in the same PM, vi and vj will be

freed together during ǫ time interval.

8 Evaluation

8.1 Simulation settings

We assume that the topology of the DC is FatTree. We set the parameter of FatTree K to be 8, i.e., there

are 8 pods in DC, and each pod has 8 racks. Each rack can accommodate 16 PMs, and each PM has nps

slots. The users’ arriving rate follows Poisson distribution. The average rate of arrivals is λ. Each user

requests several VMs to finish his/her job(s). Users’ VMs may need to cooperate and communicate with

each other to finish the job. We use the same assumption as the study and experiment settings in [41]

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:15

that the number of VMs requested by each user is exponentially distributed around a mean of 49. Also, a

user may demand many more VMs in order to be able to finish larger scale applications. For example, in

NFV, it may need hundred instances of virtual network functions (vnf) to cooperatively complete large

scale services. So the range of the number of VMs required by a user may be from several to hundreds.

In our simulation, we set the mean number of VMs that each user needs as a parameter. We set different

values of VM numbers to observe its impact on system performance.

In reality, the number of free slots (nps) in each PM is determined by the amount of resources with

which a PM is furnished and the amount of resources required by a VM. Per the study of [13,35,41] and

compared with the real Amazon EC2 VM instance, the number of free slots may range from several to

dozens. We thus also set different nps values in our simulation. In the simulation of users’ arrivals, in

Poisson distribution, we evenly divide a time unit to be 24 time intervals, which means that, on average,

there are λ arriving users during 24 hours, for example. The lifespan of each user, i.e., the lifespan of

the user’s VM, is randomly selected from the range of [0, 150]. The number of VMs per user obeys the

exponentially distribution with mean value numVM.

The bandwidth constraint Bout is set as 1 Gbps. In our simulation, since inter-VM traffic cannot be

predicted accurately before placement, we adopt a method to estimate the inter-VM traffic. In reality,

different inter-VM traffic flows are not equal, and we set the range of traffic to be in the range of [0,

300] Mbps. Then, using the analysis discussed in Subsections 3.3 and 3.4, an inter-VM traffic falls in a

subrange of [0, 30], [30, 60], . . . , [270, 300]. In the simulation, when generating a set of linked VMs for a

user, we randomly select a subrange as the inter-VM traffic for randomly selected pairs of VMs. Then,

the traffic of the VM pairs of the generated graph, the linked VMs, is dependent on µ and σ. Thus, using

(9), we randomly generate the µ and σ for each VM pair’s traffic such that µ+ 3× σ falls in a subrange

of the 10 subdivided ranges.

In our simulation, performance comparisons of the compared algorithms are carried out under the

same input, and each test result is the average of 30 runs with different random inputs. Also, for a PM

with no residing VM is put in sleeping mode so that the energy consumption can be correctly measured.

Furthermore, in order to be more convenient in showing the results in a figure, the experimental results

are min-max normalized using (22) such that the experimental results are confined in range [0, 1].

NCi =
NCori

i −min{NC}

max{NC} −min{NC}
, (22)

where NC represents the set of simulation results, NCi is the result after normalized, NCori
i is the origina

simulation result, min{NC} represents the minimum one among the simulation results, and max{NC}

represents the maximum one among the simulation results.

8.2 Validation of using TClose to achieve a better performance

The analysis presented in Section 7 shows how the right value of ǫ is determined in order to achieve better

performance of our on-line VM placement. In this subsection, we verify that choosing the right value

of ǫ does help on-line VM placement to offset the disadvantages of not knowing the future arrivals. As

shown in Section 4 that on-line linked-VM placement is NP-hard, it is hard to obtain its optimal solution.

We thus compare our algorithm with an off-line algorithm, an off-line version of BFD, to show that our

on-line VM placement scheme is indeed a smart design. When an off-line algorithm is making a placement

decision, the start time, the end time, the inter-VM traffic, and the number of VMs of future arrivals

have been known, and it thus can make near optimal placement decision. As stated at the beginning

of Subsection 8.2, unlike an off-line one, an online VM placement algorithm cannot foresee or predict

the details of future arrivals. We thus use ǫ calculated using (21) to help the on-line algorithm estimate

the future arrivals for making a better decision in VM consolidation. The main difference between the

off-line algorithm and the on-line one is that δ1 used in Algorithm 1 is known to both version, and δ2
is known only to off-line version. Thus, in our design, the on-line algorithm uses ǫ to help estimate the

future arrivals. Our simulation results show that using the idea of TClose with accurately selected ǫ, the

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:16

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

Gap Offline Online

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

0

0.02

0.04

0.06

0.08

0.10

0.12

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

nps=5 nps=15 nps=30

(a)

(c)

(b)

(d)

Gap Offline Online

Gap Offline Online

Figure 5 (Color online) NC gaps between ours and off-line algorithm with respect to different nps values. (a) nps = 5;

(b) nps = 15; (c) nps = 30; (d) performance gaps with respect to different nps values.

performance of our on-line algorithm is very close to that of the off-line one in terms of network cost and

energy consumption. In one of the simulations for network cost comparisons, the simulation parameters

are set as λ = 4, numVM = 50, and U = 24 for both off-line and on-line version, and the simulations are

performed for different nps values in which nps =5, 15, 30. The simulation results are shown in Figure 5.

The results shown in the figure have been normalized using (22). The figure also shows the performance

gap between our on-line algorithm and the off-line one, and one can see that the performance of our

on-line placement scheme is very close to the performance of the off-line one, as the gap is less than 0.1

for different nps values. In another test, we let nps=15 and observe how different λ values’ impact on the

network costs would be. The simulation results are shown in Figure 6. One can see that the performance

of our on-line scheme is very close to the performance of the off-line one, as the performance gap is also

always less than 0.1 for different λ values.

We also compare the performance of our on-line scheme with the off-line one in terms of energy

consumption. To reduce the energy consumption, the empty PMs can be set in sleeping mode. This

way, the energy consumption of a DC is determined by the number of active PMs in the DC. The energy

consumption is denoted by EC and can be measured by

EC =
∑

P∈aPMs

EP × TP
run,

where P is an active PM in DC, Ep is the energy consumption per unit time by each PM, and TP
run is

the run time of P . We also denote ECr as the measurement of the ratio of the energy consumption of

our on-line scheme to the energy consumption of the off-line one, i.e.,

ECr =
ECours

ECoff
. (23)

The simulation results are shown in Figure 7. From the figure, one can see that in the time range

[0–20], ECr is almost equal to 1. In other words, the two algorithms are equally good. This is due to the

fact that in the initial stage, there are not too many users’ VMs to be freed, and the off-line algorithm

thus does not gain any superiority. However, when time goes by, ECr increases. This is because that as

time goes by, there are more and more occupied slots are freed, and on the other hand, there are also

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:17

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

Gap Offline Online

λ

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

0

0.02

0.04

0.06

0.08

0.10

0.12

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

=2 =4 =6

(a)

(c)

(b)

(d)

Gap Offline Online

Gap Offline Online λλλ

Figure 6 (Color online) NC gaps between ours and off-line algorithm with respect to different λ values. (a) λ = 2;

(b) λ = 4; (c) λ = 6; (d) performance gaps with respect to different λ values.

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

0−10 10−150 150−300 300−450 450−600 600−750 750−900 900−1050

Time range

nps=5 nps=15 nps=30

Figure 7 (Color online) ECr between ours and off-line algorithm with respect to different nps values.

some new arriving VMs. This way, the off-line algorithm gains its superiority, as the off-line algorithm

possesses complete information of the end time of all of the VMs including the current ones and the future

arrivals. However, our on-line scheme uses TClose and the right choice of ǫ to offset the inferiority of not

being able to foresee the new arrivals. Therefore, the performance gaps between our on-line scheme and

the off-line one are always confined within 0.11 for different nps values in any time range.

8.3 Compared with best fit decreasing and improved best fit decreasing

It is difficult to make a straightforward comparison of the performances of those existing VM consolidation

schemes and ours due to the following reasons. First, most of the existing VM consolidation algorithms

are off-line scheme. Second, some on-line schemes take a set of independent VMs as input without taking

the inter-VM traffic into account for making consolidation decision. Third, those on-line schemes either

evaluate their schemes’ performance using different performance metrics or in different experimental set-

tings, and those studies were conducted under different assumptions or different constraints. Meanwhile,

best fit decreasing (BFD) has been proven to be an effective greedy method for obtaining near optimal

solutions for some NP-hard problems such as bin packing problem and VM consolidation [19,42]. There-

fore, to verify that our VM consolidation scheme outperforms other on-line schemes in terms of both

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:18

network cost and energy consumption, we compare our scheme with BFD scheme and improved best

fit decreasing (IBFD) scheme. Both schemes considered are on-line version. Since the traditional BFD

takes independent VMs as input without considering the inter-VM traffic (which should be the case in

reality), we revise BFD to be the one that takes linked VMs as input and also takes inter-VM traffic into

account when making VM consolidation decisions. We name this improved version as IBFD, shown in

Algorithm 3.

Algorithm 3 IBFD(G) //Improved best fit slot-decreasing algorithm

Input: G, graph of user’s linked VMs;

Output: The placement result of G;

1: while G is not empty do

2: Order the active PMs aPM[] in non-increasing order in terms of PMs’ free slot numbers;

3: par = false;

4: n = max number of free slots in aPM[];

5: while par 6= true do

6: VS = NodeExcision(G, n); // Invoke Algorithm 4.

7: Get aPMset from aPMs whose free slot number is n;

8: if ∃aPM ∈ aPMset s.t. VMset VS can be placed in it and obeys inequation (11) then

9: Find an aPM s.t. VSout is the closest to Br(aPM);

10: Place VS in aPM;

11: par = true;

12: G = G\VS; //Delete VS from G.

13: else

14: n−−;

15: end if

16: if n = 0 then

17: Active a new PM whose free slot number is nps;

18: n = nps;

19: end if

20: end while

21: end while

Algorithm 4 NodeExcision(G, n) //Greedy algorithm for excising n nodes from G

Input: G, a graph of linked VMs;

Output: a VMset of size n;

1: VMset = ∅;

2: nG = 0;

3: Find a link e(vi, vj) with the largest weight in G;

4: VMset = VMset ∪vi ∪ vj ;

5: nG = 2;

6: while nG < n do

7: vk = max{va|
∑

vb∈VMset
e(va, vb), va /∈ VMset};

8: VMset = VMset∪vk ;

9: nG ++;

10: end while

11: return (VMset);

As our on-line scheme makes VM consolidation decisions by taking VMs’ end time and the topology

of DC architecture, including inter-PMs and inter-racks traffic, into account, we will show that our

scheme far outperforms BFD and IBFD in terms of both network cost and energy consumption. Per the

discussion in previous sections, the degree of free slot concentration during the course of VM placement

affects the network cost and also the energy consumption. Let SlotToPm =
Nfs

Nfp
, where Nfs is the total

number of free slots in DC and Nfp is the total number of PMs with free slots. Then, SlotToPm reflects

the degree of free slot concentration in DC. In the comparison of different performances of BFD, IBFD,

and our scheme, we first compare the performance of our scheme with the performances of BFD and

IBFD in terms of SlotToPm. Based on the insights we gain from our study, we believe that the higher

degree of free slot concentration is, the more inter-VM traffic will be absorbed in the placement of future

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:19

1.05

1.10

1.15

1.20

1.25

1.30

nps

Average Average

1.05

1.10

1.15

1.20

1.25

1.30

1.35

nps

(a) (b)

10 15 20 25 305 10 15 20 25 305

S
lo

tT
o
P

m
 r

at
io

S
lo

tT
o
P

m
 r

at
io

Figure 8 (Color online) SlotToPm ratios of our scheme to IBFD (a) and BFD (b), respectively, with different nps values.

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

sr(IBFD/ours) sr(BFD/ours) BFD IBFD Ours

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

sr(IBFD/ours) sr(BFD/ours) BFD IBFD Ours

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

sr(IBFD/ours) sr(BFD/ours) BFD IBFD Ours

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

nps=5 nps=15 nps=30

(a)

(c)

(b)

(d)

Figure 9 (Color online) Saving ratios sr of NC with respect to different nps values. (a) nps = 5; (b) nps = 15; (c) nps = 30;

(d) sr(IBFD/ours) with respect to different nps values.

arrivals, thereby reducing both the network cost and the energy consumption during the entire course

of VM consolidation. The results shown in Figure 8 are calculated by SlotToPm(ours)
SlotToPm(IBFD) and SlotToPm(ours)

SlotToPm(BFD) .

In the figure, each box plot is drawn based on 30 sets of simulation results for each nps value. As one

can see from Figure 8 that the ratio is always more than 1, which verifies that the degree of free slot

concentration of our scheme is higher than that of IBFD scheme and the concentration degree of IBFD

is in turn higher than that of BFD scheme. When nps goes larger, the ratio increases accordingly. This

is because with more free slots in a PM, there is better chance to free more slots from the same PM in

our scheme, and thus the degree of free slot concentration is higher. This phenomena also explains the

results shown in Figure 9.

In our simulations, we compute the saving ratio (sr) using

sr(IBFD/ours) =
NCIBFD −NCours

NCours
, (24)

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:20

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

sr(IBFD/ours) sr(BFD/ours) BFD IBFD Ours

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

sr(IBFD/ours) sr(BFD/ours) BFD IBFD Ours

0

0.2

0.4

0.6

0.8

1.0

1.2

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

sr(IBFD/ours) sr(BFD/ours) BFD IBFD Ours

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

7
5
0

8
0
0

8
5
0

9
0
0

9
5
0

1
0
0
0

t

numVM=60 numVM=50 numVM=40

(a)

(c)

(b)

(d)

Figure 10 (Color online) Saving ratios sr of NC with respect to different numVM values. (a) numVM = 40; (b) numVM

= 50; (c) numVM=60; (d) sr(IBFD/ours) with respect to different numVM values.

sr(BFD/ours) =
NCBFD −NCours

NCours
, (25)

where NCIBFD, NCBFD, and NCours represent the network cost of IBFD, BDF, and our scheme, respec-

tively. Thus, sr serves as an index showing the superiority of our algorithm compared with IBFD and

BFD. The higher value sr is, the more superior our algorithm will be. We conduct the experiments to

observe the network costs with respect to different nps. The simulation parameters include λ = 4 and

numVM = 50. Figure 9(a) shows that when nps = 5, in terms of network cost, our scheme outper-

forms IBFD by at least 30%, and outperforms BFD by at least 50%. Also, Figure 9(c) shows that when

nps = 30, in terms of network cost, our scheme outperforms IBFD by almost 40% for t > 600, and out-

performs BFD by 60% for t > 500. In deed, Figure 9(d) reveals that when nps increases, sr also increases

accordingly. This is because our scheme takes end time into account when making the consolidation

decision, and when there are more slots in a PM, there will be better chance to have higher degree of free

slot concentration, and then there will be better chance to host those new arriving VMs with the same

end time. This means that it can absorb more inter-VM traffic. Thus, intuitively, a PM with higher nps

in general can save more network cost if using our consolidation scheme. From Figure 9(d), one can see

that the performance gap between the test results of nps = 5 and that of nps = 30 is around 0.1 when

t > 250.

We also perform a simulation to observe the effect of different numVM on NC with nps = 15 and λ = 5

as simulation parameters. We conduct three tests for numVM = 40, 50, and 60 and compare our scheme

with IBFD and BFD. The simulation results are shown in Figure 10. In Figure 10, numVM is the mean

number of VMs that a user requests, and each dot is the average of the results of 30 runs. In order to

study how the current placement affects the subsequent placements, we set different numVM values. We

calculate sr at 10 moment times shown in the abscissas of the figure. Though the results shown in the

figure do not indicate that numVM has much effect on network cost saving, the results do show that as

time goes by, the sr increases, and after t > 600, there are more than 35% network cost saving for any

numVM values.

We also test the effect of different λ values on network cost. However, Figure 11 shows that λ values

have no significant effect on network cost. The reason is that in our scheme, when calculating TClose we

set ǫ = 0.69U
λ

, and thus tolerance time ǫ in inequation (17) adapts to different λ values. Nevertheless, with

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:21

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

3 4 5 6
λ

nps=5 nps=15 nps=30

Figure 11 (Color online) Saving ratios sr of NC with respect to different λ and nps values.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0−10 10−150 150−300 300−450 450−600 600−750 750−900 900−1050

Time range

nps=5 nps=15 nps=30

Figure 12 (Color online) ECr with different nps values.

the same λ, when nps increases, sr also increases. In summary, by taking VMs’ end time and inter-VM

traffic into account and using the idea of TClose to devise our scheme, among numVM, λ, and nps, only

nnp has significant effect on the network cost.

We also perform simulations to see how much energy savings our on-line scheme can gain compared

with IBFD. The test results shown in Figure 12 are calculated by (26) using parameters numVM =

50 and λ = 4. The figure shows the energy consumption ratio of our scheme to IBFD with respect to

different nps values. From the figure, one can see that to begin with, ECr is very close to 1. This is

because that during the initial stages, there were not too many slots released and the TClose mechanism

adopted in our scheme cannot help gain much. However, when time goes by, there are more and more

slots released and there are also more and more arriving VMs. In such scenario, TClose mechanism can

help the placement algorithm with consolidation and produce more concentrated VM placement, thereby

reducing the number of active PMs.

ECr =
ECIBFD

ECours
. (26)

Moreover, we also design a simulation environment using parameters numVM = 50 and nps = 15 to

test the effect of different λ values on energy savings. The test results are shown in Figure 13. One

can see that the influences of λ values on energy consumption are not very significant. In summary, our

scheme outperforms IBFD on energy savings by 10%–25% under various scenarios.

9 Conclusion

Network bandwidth, though is an important resource, is one of the constraints in DCs. The increas-

ing scale of cloud applications has made bandwidth increasingly becoming a bottleneck in the cloud.

Virtualization-based DC is thus facing new challenges in the use of network resources. Particularly, the

needs for users’ VMs to communicate with each other consume a lot of network bandwidth. Meanwhile,

energy consumption is another important issue in cloud computing. Fortunately, effective and efficient

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:22

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0−10 10−150 150−300 300−450 450−600 600−750 750−900 900−1050

Time range

=2 =4 =6 λλλ

Figure 13 (Color online) ECr with different λ values.

VM placement could largely reduce both network cost and energy consumption. This paper thus pro-

posed an online traffic-aware VM Placement in cloud DCs. Our scheme makes a VM placement decision

by taking not only the inter-VM traffic but also the VM end time into account. In particular, our VM

placement is treated as a context-sensitive process in the sense that the current placement decision is

made to have positive influence on the subsequent placements in terms of network cost savings and energy

savings. Our simulations verified that our scheme could save more than 35% network cost and more than

10% energy consumption compared with IBFD scheme under various scenarios.

Acknowledgements This work was supported in part by National Key Research Development Program of China (Grant

No. 2016YFB1000502), National Natural Science Foundation of China (Grant Nos. 61525204, 61732010), SJTU Overseas

Visiting Scholars Program.

References

1 Chen R, Chen H B. Asymmetric virtual machine replication for low latency and high available service. Sci China Inf

Sci, 2018, 61: 092110

2 Machida F, Kim D S, Park J S, et al. Toward optimal virtual machine placement and rejuvenation scheduling in

a virtualized data center. In: Proceedings of IEEE International Conference on Software Reliability Engineering

Workshops, 2008. 1–3

3 Kochut A. On impact of dynamic virtual machine reallocation on data center efficiency. In: Proceedings of IEEE

International Symposium on Modeling, Analysis and Simulation of Computers and Telecommunication Systems, 2008.

1–8

4 Gao Y, Guan H, Qi Z, et al. A multi-objective ant colony system algorithm for virtual machine placement in cloud

computing. J Comput Syst Sci, 2013, 79: 1230–1242

5 Hao F, Kodialam M, Lakshman T V, et al. Online allocation of virtual machines in a distributed cloud. IEEE/ACM

Trans Netw, 2017, 25: 238–249

6 Deng W, Liu F, Jin H, et al. Reliability-aware server consolidation for balancing energy-lifetime tradeoff in virtualized

cloud datacenters. Int J Commun Syst, 2014, 27: 623–642

7 Huang D, He B, Miao C. A survey of resource management in multi-tier web applications. IEEE Commun Surv

Tutorials, 2014, 16: 1574–1590

8 Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM, 2008, 51: 107–113

9 Xu F, Liu F, Jin H. Heterogeneity and interference-aware virtual machine provisioning for predictable performance in

the cloud. IEEE Trans Comput, 2016, 65: 2470–2483

10 Xia M, Shirazipour M, Zhang Y, et al. Network function placement for NFV chaining in packet/optical datacenters.

J Lightw Technol, 2015, 33: 1565–1570

11 Cohen R, Lewin-Eytan L, Naor J S, et al. Near optimal placement of virtual network functions. In: Proceedings of

IEEE Conference on Computer Communications, 2015. 1346–1354

12 Meng X, Pappas V, Zhang L. Improving the scalability of data center networks with traffic-aware virtual machine

placement. In: Proceedings of INFOCOM, 2010. 1–9

13 Guo Y, Stolyar A L, Walid A. Shadow-routing based dynamic algorithms for virtual machine placement in a network

cloud. IEEE Trans Cloud Comput, 2018, 6: 209–220

14 Cisco. By 2014, cloud traffic will surpass traditional data center traffic. Cisco Whitepaper, 2011. http://www.

cablinginstall.com/articles/2011/12/cisco-cloud-will-surpass-traditional-data-center.html

15 Bulk of data center traffic internal: Cisco. Cisco Whitepaper, 2011. https://insights.dice.com/2012/10/23/

bulk-of-data-center-traffic-internal-cisco/

16 Guo C X, Wu H T, Tan K, et al. Dcell: a scalable and fault-tolerant network structure for data centers. SIGCOMM

Comput Commun Rev, 2008, 38: 75

https://doi.org/10.1007/s11432-017-9292-9
https://doi.org/10.1016/j.jcss.2013.02.004
https://doi.org/10.1109/TNET.2016.2575779
https://doi.org/10.1002/dac.2687
https://doi.org/10.1109/SURV.2014.010814.00060
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/TC.2015.2481403
https://doi.org/10.1109/JLT.2015.2388585
https://doi.org/10.1109/TCC.2015.2464795
http://www.cablinginstall.com/articles/2011/12/cisco-cloud-will-surpass-traditional-data-center.html
http://www.cablinginstall.com/articles/2011/12/cisco-cloud-will-surpass-traditional-data-center.html
https://insights.dice.com/2012/10/23/bulk-of-data-center-traffic-internal-cisco/
https://insights.dice.com/2012/10/23/bulk-of-data-center-traffic-internal-cisco/
https://doi.org/10.1145/1402946.1402968

Lin L W, et al. Sci China Inf Sci July 2020 Vol. 63 172101:23

17 Fang W, Liang X, Li S, et al. VMPlanner: optimizing virtual machine placement and traffic flow routing to reduce

network power costs in cloud data centers. Comput Netw, 2013, 57: 179–196

18 Wang M, Meng X Q, Zhang L. Consolidating virtual machines with dynamic bandwidth demand in data centers.

In: Proceedings of INFOCOM, 2011. 71–75

19 Xu J L, Tang J, Kwiat K, et al. Enhancing survivability in virtualized data centers: a service-aware approach. IEEE

J Sel Areas Commun, 2013, 31: 2610–2619

20 Cisco. Cisco ucs director administration guide, release 6.0, chapter: managing lifecycles. Cisco Whitepa-

per, 2011. https://www.cisco.com/c/en/us/td/docs/unified computing/ucs/ucs-director/administration-guide/6-0/b

Cisco UCSD Admin Guide Rel60/b Cisco UCSD Admin Guide Rel60 chapter 010000.html

21 Klempous R, Nikodem J. Innovative Technologies in Management and Science. Berlin: Springer, 2014. 10: 158–159

22 Quang-Hung N, Thoai N. Eminret: heuristic for energy-aware vm placement with fixed intervals and non-preemption.

In: Proceedings of IEEE International Conference on Advanced Computing and Applications, 2015. 98–105

23 Alharbi F, Tain Y C, Tang M L, et al. Profile-based static virtual machine placement for energy-efficient data center.

In: Proceedings of IEEE 18th International Conference on High Performance Computing and Communications; IEEE

14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems,

Sydney, 2016. 1045–1052

24 Usmani Z, Singh S. A survey of virtual machine placement techniques in a cloud data center. Procedia Comput Sci,

2016, 78: 491–498

25 Wang X, Xie H, Wang R, et al. Design and implementation of adaptive resource co-allocation approaches for cloud

service environments. In: Proceedings of the 3rd International Conference on Advanced Computer Theory and Engi-

neering. New York: IEEE, 2010. 2: 484–488

26 Le K, Bianchini R, Zhang J, et al. Reducing electricity cost through virtual machine placement in high performance

computing clouds. In: Proceedings of International Conference for High Performance Computing, Networking, Storage

and Analysis. New York: ACM, 2011. 22

27 Zhang X, Zhao Y, Guo S, et al. Performance-aware energy-efficient virtual machine placement in cloud data center.

In: Proceedings of IEEE International Conference on Communications. New York: IEEE, 2017. 1–7

28 Mann Z A. Multicore-aware virtual machine placement in cloud data centers. IEEE Trans Comput, 2016, 65: 3357–3369

29 Bin E, Biran O, Boni O, et al. Guaranteeing high availability goals for virtual machine placement. In: Proceedings of

the 31st International Conference on Distributed Computing Systems. New York: IEEE, 2011. 700–709

30 Yanagisawa H, Osogami T, Raymond R. Dependable virtual machine allocation. In: Proceedings of IEEE INFOCOM.

New York: IEEE, 2013. 629–637

31 Zhou A, Wang S, Cheng B, et al. Cloud service reliability enhancement via virtual machine placement optimization.

IEEE Trans Serv Comput, 2017, 10: 902–913

32 Yang S, Wieder P, Yahyapour R, et al. Reliable virtual machine placement and routing in clouds. IEEE Trans Parallel

Distrib Syst, 2017, 28: 2965–2978

33 Wang S, Zhou A, Hsu C H, et al. Provision of data-intensive services through energy- and QoS-aware virtual machine

placement in national cloud data centers. IEEE Trans Emerg Top Comput, 2016, 4: 290–300

34 Xu F, Liu F, Liu L, et al. iAware: making live migration of virtual machines interference-aware in the cloud. IEEE

Trans Comput, 2014, 63: 3012–3025

35 Li X, Wu J, Tang S, et al. Let’s stay together: towards traffic aware virtual machine placement in data centers.

In: Proceedings of IEEE Conference on Computer Communications. New York: IEEE, 2014. 1842–1850

36 Li X, Qian C. Traffic and failure aware vm placement for multi-tenant cloud computing. In: Proceedings of IEEE 23rd

International Symposium on Quality of Service. New York: IEEE, 2015. 41–50

37 Benson T, Anand A, Akella A, et al. Understanding data center traffic characteristics. In: Proceedings of the 1st

ACM Workshop on Research on Enterprise Networking. New York: ACM, 2009. 65–72

38 Kandula S, Sengupta S, Greenberg A, et al. The nature of data center traffic: measurements & analysis. In: Proceedings

of the 9th ACM SIGCOMM Conference on Internet Measurement. New York: ACM, 2009. 202–208

39 Andreev K, Racke H. Balanced graph partitioning. Theor Comput Syst, 2006, 39: 929–939

40 Garey M R, Johnson D S, Stockmeyer L. Some simplified NP-complete problems. In: Proceedings of the 6th Annual

ACM Symposium on Theory of Computing. New York: ACM, 1974. 47–63

41 Ballani H, Costa P, Karagiannis T, et al. Towards predictable datacenter networks. SIGCOMM Comput Commun

Rev, 2011, 41: 242

42 Breitgand D, Epstein A. Improving consolidation of virtual machines with risk-aware bandwidth oversubscription in

compute clouds. In: Proceedings of IEEE INFOCOM. New York: IEEE, 2012. 2861–2865

https://doi.org/10.1016/j.comnet.2012.09.008
https://doi.org/10.1109/JSAC.2013.131203
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/ucs-director/administration-guide/6-0/b_Cisco_UCSD_Admin_Guide_Rel60/b_Cisco_UCSD_Admin_Guide_Rel60_chapter_010000.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/ucs-director/administration-guide/6-0/b_Cisco_UCSD_Admin_Guide_Rel60/b_Cisco_UCSD_Admin_Guide_Rel60_chapter_010000.html
https://doi.org/10.1016/j.procs.2016.02.093
https://doi.org/10.1109/TC.2016.2529629
https://doi.org/10.1109/TSC.2016.2519898
https://doi.org/10.1109/TPDS.2017.2693273
https://doi.org/10.1109/TETC.2015.2508383
https://doi.org/10.1109/TC.2013.185
https://doi.org/10.1007/s00224-006-1350-7
https://doi.org/10.1145/2043164.2018465

	Introduction
	Related work
	Models and definitions
	The environment of linked VM placement
	Physical DC environment
	VM and linked VMs

	Linked VMs of a user and some equations
	Inter-VM traffic estimate model
	System and runtime traffic model
	Problem statement

	Partition of linked VMs
	Practical situation consideration
	Algorithm
	TClose analysis
	Evaluation
	Simulation settings
	Validation of using TClose to achieve a better performance
	Compared with best fit decreasing and improved best fit decreasing

	Conclusion

