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Abstract A multi-objective parametric design method that based on the robust observer is proposed for

the attitude control of satellites with super flexible netted antennas. First, a parametric observer-based

controller is obtained based on the eigen-structure assignment theory. The closed-loop poles are assigned to

desired positions or regions, and full degrees of freedom of the design, which are characterized by a set of

parameters, are preserved under the proposed control law. Second, the obtained parameters are comprehen-

sively optimized to make the closed-loop system have lower eigenvalue sensitivity, a smaller control gain, and

stronger tolerance to high-order unmodeled dynamics and external disturbances. Finally, comparative simu-

lations are carried out based on practical engineering parameters of a satellite in order to verify the effect of

the proposed method, and also to show their superiority over the traditional proportional-integral-derivative

(PID) controller with filters and the traditional dynamic compensators.
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1 Introduction

Flexible structures (such as solar panels and satellite antennas) are widely common in modern spacecraft.

The flexible structure may cause elastic vibration of the attitude of the spacecraft, thereby they impair

the accuracy of the attitude control and even destroy the stability of the closed-loop system. For example,

in 1958 the satellite named “Explorer-1” caused the energy dissipation in the system owing to the flexible

vibration of the four whip antennas that eventually led to the attitude roll [1]. Therefore, vibration

suppression and attitude control of spacecraft with large flexible attachments is a critical problem and it

has received lots of attention [2–21]. Sliding mode control (SMC) and backstepping control are commonly

used control methods in order to solve this problem. As representative results, Refs. [2, 5] investigated

the problem of attitude tracking control of flexible spacecraft, and developed a fault-tolerant control

approach based on SMC and an adaptive backstepping SMC scheme, respectively. In [3], an approach

was presented in order to reduce vibration of flexible spacecraft during attitude maneuver. In [4], a

robust control algorithm was proposed for stabilization of a three-axis stabilized flexible spacecraft in the

presence of parametric uncertainty, external disturbances and control input nonlinearity/dead-zone. For

more up-to-date results about applications of SMC and backstepping methods in flexible satellite attitude

control, readers can refer to [6–8]. Robust H∞ control is another effective control method for flexible

spacecraft control. In [9, 10], robust H∞ controllers are designed for the multi-objective attitude control

*Corresponding author (email: g.r.duan@hit.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-2916-8&domain=pdf&date_stamp=2020-6-10
https://doi.org/10.1007/s11432-020-2916-8
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-2916-8
https://doi.org/10.1007/s11432-020-2916-8


Duan G-R, et al. Sci China Inf Sci July 2020 Vol. 63 172002:2

Table 1 Symbols

Symbol Meaning

diag (s1, s2, . . . , sn) Diagonal matrix with s1, s2, . . . , sn as diagonal elements

λi (M) The i-th eigenvalue of a matrix M

trace (M) Sum of diagonal elements of a matrix M

Blockdiag (M1,M2, . . . ,Mn) Block diagonal matrix with M1,M2, . . . ,Mn as diagonal elements

vec([ η1 η2 · · · ηn ]) [ ηT1 ηT2 · · · ηTn ]T

unvec([ ηT1 ηT2 · · · ηTn ]T) [ η1 η2 · · · ηn ]

A⊗ B Kronecker product of A and B

problem of a flexible spacecraft in the presence of disturbances, parameter uncertainties and actuator

saturation based on LMI approach. The problems of robust H∞ controller design with input constraints

are considered in [11,12]. In addition to SMC, backstepping, and robust H∞ control, many other control

methods are also applied to the vibration suppression and attitude control of flexible satellites, such as

disturbance observer-based control [13–15], adaptive control [16–20], and finite-time control [16, 18, 21].

Many of the current control methods are proposed for a single control target (e.g., [2–8, 11–21]) to

provide flexible spacecraft control. However, in actual engineering, we need to consider the accuracy,

rapidity, smoothness, the influences of parameter perturbations, and high-order unmodeled dynamics at

the same time. Therefore, the control of flexible spacecraft is a typical multi-objective design problem.

Although there are a few multi-objective design methods available, most of them have strict requirements

on the form of indices and parameter constraints (such as the LMI method in [9,10]), which greatly limits

the scope of application of the method. According to this consideration, Ref. [22] proposed a dynamic

compensator-based robust parametric multi-objective design method. A multi-objective comprehensive

optimization of the free parameter vectors is performed in [22], which makes the control system with

better robustness, stronger disturbance suppression ability and a smaller control gain that is based on

the complete parametric form of the dynamic compensator.

The parametric control system design is a powerful tool to solve multi-objective design problems [23–

30]. Different from the traditional control methods, the parametric method first establishes a fully

parametric representation of the control law, and then comprehensively optimizes the free parameters

in the control law to achieve the multi-objective design requirements of the control system, such as

minimum eigenvalue sensitivity design [26,30], disturbance attenuating or decoupling design [25,27], and

gain scheduling design [28,29]. Therefore, when it is compared with the other conventional multi-objective

design methods (such as LMI method), the parametric design method is more convenient, and it has a

wider range of applications.

Inspired by the idea of parametric control system design in [22], in this paper, a new parametric

multi-objective design method based on the robust observer for large flexible spacecraft attitude control

systems is proposed. Different from the dynamic compensator method in [22], the proposed method

allows us to design the observer and controller separately. This reduces the difficulty of the design and

it provides the application of the method to practical systems. According to the control law that is used

for system design in this paper, the closed-loop system has the following characteristics: (1) closed-loop

poles which are assigned to the desired positions or regions; (2) lower eigenvalue sensitivities; (3) stronger

tolerance to high-order unmodeled dynamics; (4) a smaller control gain. The simulation result proves

that the proposed controller outperforms the traditional proportional-integral-derivative (PID) controller

and dynamic compensators [22] in dynamic response, tolerance to high-order unmodeled dynamics, and

the peak of control torques.

The remainder of this paper is organized as follows. In Section 2, the model of the system is given

and the statement of the problem to be solved is presented. In Section 3, complete parameterized

expressions of the observer-based controller are obtained. Then, the free parameters obtained in Section 3

are comprehensively optimized in Section 4 to realize the multi-objective design. Finally, comparative

simulations are carried out in Section 5 that is based on practical engineering parameters, and after this

there is a brief conclusion. Symbols that are used in this paper are shown in Table 1.
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2 Problem formulation

2.1 The model

This subsection briefly reviews the dynamic model of a spacecraft with a large flexible antenna, that is

obtained in [22]. According to [22], the attitude system can be separated into three subsystems, namely a

pitch subsystem, a roll subsystem, and a yaw subsystem. Because the three subsystems are approximately

independent of each other, it is reasonable to design the control system separately. The models of the

three subsystems are exactly the same, except for the specific values of the parameters. Therefore, only

the control system design of the pitch attitude subsystem is dealt in this paper.

The pitch channel attitude dynamics model of the flexible spacecraft to be investigated is described by

Iy θ̈ + by q̈y = u, (1)

where θ is the pitch angle, u is the control torque in the direction of the pitch axis generated by the

thruster and the momentum wheel, qy is the flexible modal component associated with the pitch axis, Iy
is the moment of inertia in the pitch direction, and by is the mode coefficient.

Strictly speaking, the dynamics of the flexural modality should be described by a distributed parameter

system. Here we rationally use the following second-order lumped parameter model for approximate

description:

q̈y + 2ξΛyq̇y + Λ2
yqy + byθ̈ = d, (2)

where d is the dynamic term of higher order mode, ξ is the damping coefficient, and Λy is the modal

frequency.

Let

x =
[

θ qy θ̇ q̇y

]T

,

and then, Eqs. (1) and (2) can be transformed into the following state-space model:

ẋ = Ax+Bu+Dd, (3)

where

A =













0 0 1 0

0 0 0 1

0 −bya1 0 −bya2

0 Iya1 0 Iya2













, B =













0

0

−γ

γby













, D =













0

0

γby

−γIy













(4)

with γ, a1 and a2 being given by

γ = − (Iy − by)
−1

, a1 = γΛ2
y, a2 = 2γξΛy. (5)

It is known from the physical background that θ and θ̇ can be directly measured, which leads to the

following output equation:

y = Cx, C =

[

1 0 0 0

0 0 1 0

]

. (6)

Suppose that the perturbations only exist in the modal frequency and damping coefficients [22]. It

follows from (5) that only a1 and a2 have perturbations. Thus we can define

a1 = a10 +∆a1, a2 = a20 +∆a2, (7)

where a10 and a20 represent the nominal parameters, and ∆a1 and ∆a2 are the perturbations of a1 and

a2, respectively. Then, the matrix A given in (4) can be rewritten in the form of

A = A0 +A1∆a1 +A2∆a2, (8)
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where

A0 =













0 0 1 0

0 0 0 1

0 −bya10 0 −bya20

0 Iya10 0 Iya20













, A1 =













0 0 0 0

0 0 0 0

0 −by 0 0

0 Iy 0 0













, A2 =













0 0 0 0

0 0 0 0

0 0 0 −by

0 0 0 Iy













. (9)

2.2 Statement of the problem

In this paper, an observer-based state feedback control method is applied to the system (3)–(9). The

specific control law to be designed takes the form of

{ .

x̂ = Ax̂+Bu− L (y − Cx̂) ,

u = Kx̂,
(10)

where x̂ ∈ R4 is the state variable of the observer, and K ∈ R1×4 and L ∈ R4×2 are the gain matrices to

be determined. Letting

z =
[

xT x̂T
]T

,

we can obtain the closed-loop system as

{

ż = Azz +Dzd,

y = Czz,
(11)

where

Az =

[

A BK

−LC A+BK + LC

]

, Cz =
[

C 0
]

, Dz =

[

D

0

]

. (12)

With the above preparations, the problem to be solved in this paper can be stated as follows.

Problem MOD. For given system (3)–(9), find gain matrices K and L in the observer-based control

law (10), such that

(1) The poles of the closed-loop system (11), that is, the eigenvalues of Az, are assigned to the desired

positions or regions, and are as insensitive as possible to parameter perturbations ∆a1 and ∆a2;

(2) The effect of high-order unmodeled modality d on the output y is as small as possible;

(3) The F-norm of the gain matrix K is, at the same time, as small as possible.

3 Parametric design for observer-based controller

Problem MOD can be solved in two steps. The first step is the parameterization of the control law, that

is, to establish a complete parametric form of the proposed control law. The second step is parameter

optimization, that is, to optimize the obtained parameters to meet the proposed multi-objective design

requirements. This section treats the first step, that is, to find complete parametric forms of the gain

matrices K and L in the control law (10), such that the closed-loop poles, that is, the eigenvalues of Az,

are assigned to the desired positions or regions.

As we know from the well-known separation principle for observer-based control system design, the

poles of the closed-loop system (11) are composed of

Ac = A+BK and Ao = A+ LC. (13)

This allows us to investigate the nondefective eigenstructure assignment in Ac and Ao, respectively.

The eigenstructure assignment result in [23] performs an important role in solving this problem.
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3.1 Nondefective eigenstructure assignment for A + BK

Let us first give a result in [22].

Lemma 1. The system (3)–(6) is controllable (or observable) if and only if

a1 6= 0, by 6= 0. (14)

With the help of Theorem 2 in [23] and Lemma 1, a parametric expression of the gain matrix K can

be obtained immediately. Before giving the result, let us introduce the following notations:

ζc1 (j) = −a2b
2
yαj − a1b

2
y − α2

j + Iya2αj + Iya1, (15)

ζc2 = γα2(a2b
2
y + 2α1 − Iya2), (16)

ζc3 = f1α1 − f2α2, ζc4 = f1α2 + f2α1, (17)

ζc5 (j, k) = fjα
3
1 + (−1)

k+1
· 3fkα

2
1α2 − 3fjα1α

2
2 + (−1)

k
· fkα

3
2, (18)

ζc6 (j, k) = −byfjγ(α
2
1 − α2

2) + (−1)
k
· 2byfkγα1α2, (19)

ζc7 = f1(α
2
1 − α2

2)− 2f2α1α2, ζc8 = f2(α
2
1 − α2

2) + 2f1α1α2, (20)

ζc9 (j) = −α2
j + Iya2αj + Iya1, ζc10 = 2α1α2 − Iya2α2, (21)

where fi, αi ∈ R, i = 1, 2, 3, 4, are parameters to be optimized later. With the above preparations, the

result can be stated as follows.

Theorem 1. Suppose that the system (3)–(6) satisfies condition (14). Let s1,2 = α1±α2i, α1 < 0, α2 6=

0, and si = αi < 0, i = 3, 4. Then, all the matrix K which makes si, i = 1, 2, 3, 4, be the eigenvalues of

Ac is given by














K = W0V
−1
0 ,

V0 = [ v1 v2 v3 v4 ],

W0 = [w1 w2 w3 w4 ],

(22)

and the corresponding eigenvector matrix V is given by

V =
[

v1 + v2i v1 − v2i v3 v4

]

, (23)

where

v1 =













−f1γ(ζ
c
1 (1) + α2

2)− f2ζ
c
2

ζc6 (1, 2)

−γζc3(ζ
c
1 (1) + α2

2)− ζc4ζ
c
2

−byγζ
c
5 (1, 2)













, v3 =













−f3γζ
c
1 (3)

−byf3γα
2
3

−f3γα3ζ
c
1 (3)

−byf3γα
3
3













, (24)

v2 =













−f2γ(ζ
c
1 (1) + α2

2) + f1ζ
c
2

ζc6 (2, 1)

−γζc4(ζ
c
1 (1) + α2

2) + ζc3ζ
c
2

−byγζ
c
5 (2, 1)













, v4 =













−f4γζ
c
1 (4)

−byf4γα
2
4

−f4γα4ζ
c
1 (4)

−byf4γα
3
4













, (25)

and

w1 = ζc7(ζ
c
9 (1) + α2

2) + ζc10ζ
c
8 , w3 = f3α

2
3ζ

c
9 (3) , (26)

w2 = ζc8(ζ
c
9 (1) + α2

2)− ζc10ζ
c
7 , w4 = f4α

2
4ζ

c
9 (3) . (27)

In Theorem 1, αi, fi ∈ R, i = 1, 2, 3, 4 are parameters satisfying the following constraint.

Constraint C1. ∆c 6= 0, where

∆c = −a21b
2
yf3f4γ

2

j<k
∏

j,k=1,...,4

(sj − sk) (f
2
1 + f2

2 ). (28)

For a proof of Theorem 1, please refer to Appendix A.
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3.2 Nondefective eigenstructure assignment for A + LC

Similarly, based on Theorem 2 in [23] and Lemma 1, a parametric expression of the gain matrix L can

also be obtained, which needs the following notations:

ζo1 (j) = −α̃2
j + Iya2α̃j + Iya1, ζo2 (j) = gj2(2α̃1α̃2 − Iya2α̃2), (29)

ζo3 (j, k) = bygj2(a1 + a2α̃1) + (−1)
j
a2bygk2α̃2, (30)

ζo4 = α̃2(α̃
2
1 − α̃2

2) + 2α̃2
1α̃2 − Iya1α̃2 − 2Iya2α̃1α̃2, (31)

ζo5 = −α̃1(α̃
2
1 − α̃2

2) + 2α̃1α̃
2
2 + Iya1α̃1 + Iya2(α̃

2
1 − α̃2

2), (32)

ζo6 (j) = gj2(−α̃3
j + Iya2α̃

2
j + Iya1α̃j)− gj1, (33)

where gij , α̃i ∈ R, i = 1, 2, 3, 4, j = 1, 2, are parameters to be optimized later.

Theorem 2. Suppose that the system (3)–(6) satisfies condition (14). Let s̃1,2 = α̃1±α̃2i, α̃1 < 0, α̃2 6=

0, and s̃i = α̃i < 0, i = 3, 4. Then, all the matrix L which makes s̃i, i = 1, 2, 3, 4, be the eigenvalues of

Ao is given by














L = T−T
0 ZT

0 ,

T0 = [ t1 t2 t3 t4 ],

Z0 = [ z1 z2 z3 z4 ],

(34)

and the corresponding left eigenvector matrix T is given by

T =
[

t1 + t2i t1 − t2i t3 t4

]

, (35)

where

t1 =













g11

a1by(g12α̃1 − g22α̃2)

g12(ζ
o
1 (1) + α̃2

2) + ζo2 (2)

ζo3 (1, 2)













, t3 =













g31

a1byg32α̃3

g32ζ
o
1 (3)

byg32(a1 + a2α̃3)













, (36)

t2 =













g21

a1by(g12α̃2 + g22α̃1)

g22(ζ
o
1 (1) + α̃2

2)− ζo2 (1)

ζo3 (2, 1)













, t4 =













g41

a1byg42α̃4

g42ζ
o
1 (4)

byg42(a1 + a2α̃4)













, (37)

and

z1 =

[

g11α̃1 − g21α̃2

g22ζ
o
4 − g11 + g12ζ

o
5

]

, z3 =

[

g31α̃3

ζo6 (3)

]

, (38)

z2 =

[

g11α̃2 + g21α̃1

g22ζ
o
5 − g21 − g12ζ

o
4

]

, z4 =

[

g41α̃4

ζo6 (4)

]

. (39)

In Theorem 2, gjk ∈ R, j = 1, 2, 3, 4, k = 1, 2 are parameters satisfying the following constraint.

Constraint C2. ∆o 6= 0, where

∆o = −a21b
2
y

(

g31g42
(

g212 + g222
)

(δ12 + δ41 + δ24)

+g32g41
(

g212 + g222
)

(δ21 + δ13 + δ32)

+g32g42 (g11g12 + g21g22) (δ31 + δ14 + δ23 + δ42)

+ig32g42 (g11g22 − g12g21) (δ31 + δ14 + δ32 + δ24 + 2δ43)
)

, (40)

with δjk, j, k = 1, 2, 3, 4, being defined by

δjk = s̃j s̃k (s̃k − s̃j) . (41)
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For a proof of Theorem 2, please refer to Appendix B.

Remark 1. It is noted that the degrees of freedom are not only composed of the parameters fi, gjk ∈

R, j = 1, 2, 3, 4, k = 1, 2, but also the desired eigenvalues si, s̃i, i = 1, 2, 3, 4. The desired eigenvalues can

be set partially (or entirely) undetermined, and sought together with the other parameters to achieve

additional design requirements in applications.

4 Multi-objective design

At the beginning of Section 3, we mentioned two steps to solve Problem MOD. This section further

investigates the second step, that is, to optimize the obtained parameters to meet the proposed multi-

objective design requirements.

4.1 Closed-loop eigenvalue sensitivities

Without loss of generality, we assume that

λi (Az) = λi (Ac) , λ4+i (Az) = λi (Ao) , i = 1, 2, 3, 4. (42)

Then, according to the separation principle for robust pole assignment (see Theorem 3.1 in [31]), we

only need to consider the closed-loop eigenvalue sensitivities of Ac and Ao instead of those of Az . The

well-known Hellman-Feynman theorem (see Lemma 1 in [26]) shows that in order to obtain the eigenvalue

sensitivities ofAc and Ao, explicit expressions of V
−1 and T−1 are needed. Before giving these expressions,

let us introduce two sets of notations. The first set of symbols is defined based on si and fi, i = 1, 2, 3, 4:

ε1 (j) = f3f4

(

f1 + (−1)
j
f2i

)

, ε2 (j) = fj
(

f2
1 + f2

2

)

, (43)

̥
c
1 (j, k, l) = a1b

2
yγ

2sjsksl

m<n
∏

m,n=j,k,l

(sm − sn) , (44)

̥
c
2 (j, k, l) = byγ

2
[

− γ−1a21 (sk + sl + sj)− γ−1a1a2 (sjsk + sjsl + sksl)

+
(

a1 − γ−1a22
)

sjsksl
]

m<n
∏

m,n=j,k,l

(sm − sn) , (45)

̥
c
3 (j, k, l) = b2yγ

2(a1sjsk + a1sjsl + a1sksl + a2sjsksl)

m<n
∏

m,n=j,k,l

(sm − sn) , (46)

̥
c
4 (j, k, l) = byγ

2
[

− γ−1a21 + a1 (sjsk + sjsl + sksl) + a2sjsksl
]

m<n
∏

m,n=j,k,l

(sm − sn) , (47)

while the second set of symbols is defined based on s̃i and gij , i = 1, 2, 3, 4, j = 1, 2:

̥
o
1 (j) = a21b

2
yg32g42(g12 − (−1)

j
g22i)

k<l
∏

k,l=j,3,4

(s̃k − s̃l) , (48)

̥
o
2 (j) = a21b

2
ygj2(g

2
12 + g222)

k<l
∏

k,l=1,2,j

(s̃k − s̃l) , (49)

̥
o
3 (j, k) = (−1)

k
by
[

(a1 (s̃j + s̃4) + a2s̃j s̃4) gk2g31g42 (s̃4 − s̃j)

+ (a1 (s̃3 + s̃j) + a2s̃j s̃3) gk2g32g41 (s̃j − s̃3)

+ (a1 (s̃4 + s̃3) + a2s̃3s̃4) gk1g32g42 (s̃3 − s̃4)
]

, (50)
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̥
o
4 (j) = by

[ (

g212 + g222
)

gj1 (s̃1 − s̃2) (a1 (s̃1 + s̃2) + s̃1s̃2a2)

+ (g11g12 + g21g22) a1gj2
(

s̃22 − s̃21
)

+i (g12g21 − g11g22) a1gj2
(

s̃21 + s̃22
)

+2i (g11g22 − g12g21) a1gj2s̃
2
j

+a2gj2 (g11g12 + g21g22) (δ1j + δj2)

+ia2gj2 (g11g22 − g12g21) (δ1j + δ2j)
]

, (51)

̥
o
5 (j, k) = (−1)

k
a21b

2
y

[

gk2g31g42 (s̃4 − s̃j)

+gk2g32g41 (s̃j − s̃3) + gk1g32g42 (s̃3 − s̃4)
]

, (52)

̥
o
6 (j) = a21b

2
y

[ (

gj1
(

g212 + g222
)

− gj2 (g11g12 + g21g22)
)

(s̃1 − s̃2)

+igj2 (g11g22 − g12g21) (2s̃j − s̃1 − s̃2)
]

, (53)

̥
o
7 (j, k) = (−1)

k
a1by

[

gk2g32g41 (s̃j − s̃3) (s̃j s̃3 + Iya1)

+gk2g31g42 (s̃4 − s̃j) (s̃j s̃4 + Iya1)

+gk1g32g42 (s̃3 − s̃4) (s̃3s̃4 + Iya1)
]

, (54)

̥
o
8 (j) = a1by

[ (

g212 + g222
)

gj1 (s̃2 − s̃1) (s̃1s̃2 + Iya1)

+ (g11 (g12 + ig22) + g21 (g22 − ig12)) gj2δj1

+(g11 (g12 − ig22) + g21 (g22 + ig12)) gj2δ2j

+Iya1gj2((g11g12 + g21g22) (s̃1 − s̃2)

+i (g11g22 − g12g21) (s̃1 + s̃2 − 2s̃j))
]

, (55)

where δjk, j, k = 1, 2, 3, 4, are also given by (41).

With the above preparations, the explicit expressions of V −1 and T−1 can be obtained by the following

lemma.

Lemma 2. Let V and T be matrices given by (23) and (35), respectively. Let Constraints C1 and C2

hold. Then,

V −1 =
1

∆c

[

vadj1 vadj2 vadj3 vadj4

]T

, T−1 =
1

∆o

[

tadj1 tadj2 tadj3 tadj4

]T

, (56)

where

vadj1 = ε1 (1)













̥c
1 (2, 3, 4)

̥c
2 (2, 3, 4)

−̥c
3 (2, 3, 4)

−̥c
4 (2, 3, 4)













, vadj2 = ε1 (2)













−̥c
1 (1, 3, 4)

−̥c
2 (1, 3, 4)

̥c
3 (1, 3, 4)

̥c
4 (1, 3, 4)













, (57)

vadj3 = ε2 (4)













̥c
1 (1, 2, 4)

̥c
2 (1, 2, 4)

−̥c
3 (1, 2, 4)

−̥c
4 (1, 2, 4)













, vadj4 = ε2 (3)













−̥c
1 (1, 2, 3)

−̥c
2 (1, 2, 3)

̥c
3 (1, 2, 3)

̥c
4 (1, 2, 3)













(58)

tadj1 =













̥o
1 (2)

− (̥o
3 (2, 1) + i̥o

3 (2, 2))

−(̥o
5 (2, 1) + i̥o

5 (2, 2))

̥o
7 (2, 1) + i̥o

7(2, 2)













, tadj2 =













−̥o
1 (1)

̥o
3 (1, 1)− i̥o

3 (1, 2)

̥o
5 (1, 1)− i̥o

5 (1, 2)

−̥o
7 (1, 1)− i̥o

7 (1, 2)













, (59)
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tadj3 =













̥o
2 (4)

̥o
4 (4)

̥o
6 (4)

̥o
8 (4)













, tadj4 =













−̥o
2 (3)

−̥o
4 (3)

−̥o
6 (3)

−̥o
8 (3)













. (60)

Proof. The results can be directly deduced from (23) and (35).

Based on Lemma 1 in [26] and Lemma 2, the following result can be obtained.

Theorem 3. Suppose that Ac and Ao are given by (13), where A depends on perturbations ∆a1
and ∆a2, as described in (8) and (9). Let the relation (42) hold, and Constraints C1 and C2 be met. If

Ac and Ao do not have common eigenvalues, then the eigenvalue sensitivities of system (11) to variations

∆a1 and ∆a2 are given by

∂λi (Ac)

∂∆aj
=

1

∆c

(

vadji

)T

Ajvi,
∂λi (Ao)

∂∆aj
=

1

∆o

tTi Ajt
adj
i , i = 1, 2, 3, 4, j = 1, 2, (61)

where vi and ti, i = 1, 2, 3, 4, are given by (23) and (35), respectively, and vadji , tadji , i = 1, 2, 3, 4, are given

by (56).

See Appendix C for a proof.

It is seen from Theorem 3.1 in [31] that the control gain matrix K and the observer gain matrix L can

be designed separately to realize pole assignment with lower sensitivities. Thus, according to Theorem 3,

the indeces to be optimized related to the matrices K and L are given by

Jc
r (si, fi, i = 1, 2, 3, 4) =

4
∑

i=1

2
∑

j=1

(

1

∆c

(

vadji

)T

Ajvi

)2

, (62)

and

Jo
r (s̃i, gij , i = 1, 2, 3, 4, j = 1, 2) =

4
∑

i=1

2
∑

j=1

(

1

∆o

tTi Ajt
adj
i

)2

, (63)

respectively.

4.2 Disturbance attenuation index

It can be seen that the response of y (t) in the frequency domain is given by

y (s) = Gc (s) d (s) , Gc (s) = Cz (sI −Az)
−1

Dz, (64)

where Az , Cz and Dz are given by (12). In order to suppress the influence of high-order unmodeled

dynamics d (s) on the output y (s), ‖Gc (s)‖2 needs to be minimized. The following theorem is obtained,

aiming at giving an explicit expression of ‖Gc (s)‖2 .

Theorem 4. Suppose that the system (3)–(6) satisfies condition (14) and Az, Cz and Dz are given by

(12). Let

(1) s1,2 = α1 ± α2i, α1 < 0, α2 6= 0, and si = αi < 0, i = 3, 4;

(2) s̃1,2 = α̃1 ± α̃2i, α̃1 < 0, α̃2 6= 0, and s̃i = α̃i < 0, i = 3, 4;

(3) si 6= s̃j , i, j = 1, 2, 3, 4.

Then, when K and L are taken as (22) and (34), respectively, and Constraints C1 and C2 hold, we have

‖Gc (s)‖2 =
(

trace
(

Θ1P
∗
1Θ

T
1

))
1

2 =
(

trace
(

Θ2P
∗
2Θ

T
2

))
1

2 , (65)

where






































P ∗
1 = unvec2n,2n

[

−Ψ−1vec
(

ΘT
2 Θ2

)]

,

P ∗
2 = unvec2n,2n

[

−Ψ−1vec
(

ΘT
1 Θ1

)]

,

Θ1 =
[

CV −CV Q∗

]

,

Θ2 =
[

DTV −T −DTTQT
∗ −DTT

]

,

Q∗ = unvecn,n
[

Φ−1vec
(

V −1BKT−T
)]

,

(66)
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with V and T being given by (23) and (35), respectively, and

{

Ψ = (I2n ⊗ Λz) + (Λz ⊗ I2n) ,

Φ = (Λo ⊗ In)− (In ⊗ Λc) ,
(67)

with














Λz = Blockdiag (Λc, Λo) ,

Λc = diag (si, i = 1, 2, 3, 4) ,

Λo = diag (s̃i, i = 1, 2, 3, 4) .

(68)

See Appendix D for a proof.

According to the above theorem, the corresponding optimization index can be taken as

Jd (si, fi, s̃i, gij , i = 1, 2, 3, 4, j = 1, 2) = trace
(

Θ1P
∗
1Θ

T
1

)

. (69)

4.3 Control gain magnitude

In order to reduce the control torque as much as possible, we wish to minimize

Ju (si, i = 1, 2, 3, 4) = ‖K‖F , (70)

where K is the gain matrix given by (22). Toward this goal, we give an explicit expression of the gain

matrix K.

Theorem 5. Suppose the system (3)–(6) satisfies condition (14). Let s1 and s2 be a pair of self

conjugate complex numbers with nonzero imaginary part and negative real part, and s3 and s4 be two

given negative real numbers. Then, all the matrix K which makes si, i = 1, 2, 3, 4, be the eigenvalues of

Ac is given by

K =
1

a21byγ













Υ4a1byγ

−Iya
3
1 +

(

a1γ − a22
)

Υ4 − a1a2Υ3 − a21Υ2

−a1byΥ3γ − a2byΥ4γ

−a1Υ3γ − a21Iya2 − a2Υ4γ + a21Υ1













T

,

where Υi, i = 1, 2, 3, 4, are defined by























Υ1 = s1 + s2 + s3 + s4,

Υ2 = s1s2 + s1s3 + s1s4 + s2s3 + s2s4 + s3s4,

Υ3 = s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4,

Υ4 = s1s2s3s4.

Proof. The result can be directly deduced from (22) and (24)–(27).

4.4 The algorithm

With all the above preparations, a specific procedure for solving Problem MOD can now be stated as

follows.

(1) According to Theorems 1 and 2, establish a complete parametric form of the proposed observer-

based control law (10).

(2) Define an index function as

J (si, fi, s̃i, gij , i = 1, 2, 3, 4, j = 1, 2) = αo
rJ

o
r + αc

rJ
c
r + αdJd + αuJu, (71)

where Jo
r , J

c
r , Jd and Ju are given by (63), (62), (69) and (70), respectively, and αo

r, αc
r, αd, αu > 0 are

proper weighting factors.
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Table 2 Nominal values of parameters

Parameter Value Unit

Iy 20667.25 kg ·m2

b −108.88
√
kg·m

ξ 0.005 –

Λy 2π× 0.151 –

(3) Determine the ranges of the closed-loop poles:

S12 :
{

(s1, s2)| s1,2 = α1 ± α2i, α
min
i 6 αi 6 αmax

i , i = 1, 2
}

,

S34 :
{

(s3, s4)|α
min
i 6 si 6 αmax

i , i = 3, 4
}

,

S̃12 :
{

(s̃1, s̃2)| s̃1,2 = α̃1 ± α̃2i, α̃
min
i 6 α̃i 6 α̃max

i , i = 1, 2
}

,

S̃34 :
{

(s̃3, s̃4)| α̃
min
i 6 s̃i 6 α̃max

i , i = 3, 4
}

.

(4) Solve the following optimization problem:

min J (si, s̃i, gij , i = 1, 2, 3, 4, j = 1, 2)

s.t. Constraints C1 and C2,

(s1, s2) ∈ S12, (s3, s4) ∈ S34,

(s̃1, s̃2) ∈ S̃12, (s̃3, s̃4) ∈ S̃34,

(72)

and obtain a sub-optimal solution, represented by s∗i , f
∗
i , s̃

∗
i , g

∗
ij , i = 1, 2, 3, 4, j = 1, 2.

(5) Substitute the optimal solution s∗i , f
∗
i , s̃

∗
i , g

∗
ij , i = 1, 2, 3, 4, j = 1, 2, into (22) and (34) to obtain the

gain matrices K∗ and L∗. Then, by replacing K and L in (10) with K∗ and L∗, respectively, we finally

obtain the proposed observer-based state feedback control law.

Remark 2. The optimization problem (72) is a nonlinear optimization problem with constraints. It

is usually impossible to obtain a theoretical global optimal solution. However, we can always use some

numerical optimization algorithms (such as genetic algorithms and annealing algorithms) to obtain some

local optimal solutions. The optimization toolbox in MATLAB can be readily used.

Remark 3. Although the forms of Constraints C1 and C2 are complex, they can almost always be

satisfied in applications [23]. Therefore, in practical design applications, these constraints can be simply

ignored.

Remark 4. Because the system (3)–(9) is single-input, the expression of K depends only on si, i =

1, 2, 3, 4, and is independent of fi, i = 1, 2, 3, 4 (see [23]). In fact, we can also prove that the index (71) is

independent of fi, i = 1, 2, 3, 4. Therefore, these parameters can be simply set to 1.

5 Numerical simulations

In this section, we perform numerical simulations based on practical engineering parameters in

Table 2 [22]. As comparisons, simulations of other two methods presented in [22] are also carried out to

verify the effectiveness and superiority of the proposed method.

5.1 Controller design

According to practical requirements, the ranges of the desired closed-loop poles are set as























αmin
1 = −0.1383, αmax

1 = −0.1022,

αmin
2 = 0.1607, αmax

2 = 0.2175,

αmin
3 = −3.0873, αmax

3 = −2.2819,

αmin
4 = −0.0837, αmax

4 = −0.0619,
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Figure 1 Structure of classic PID controller.

and






















α̃min
1 = −0.1915, α̃max

1 = −0.1416,

α̃min
2 = 0.2226, α̃max

2 = 0.3011,

α̃min
3 = −4.2748, α̃max

3 = −3.1596,

α̃min
4 = −0.1159, α̃max

4 = −0.0857.

In view of Remarks 3 and 4, we let fi = 1, i = 1, 2, 3, 4, and ignore Constraints C1 and C2. Then, by

setting the weighting factors as

αd = 102, αu = 10−3, αo
r = αc

r = 10−8,

we obtain a set of solutions to the optimization problem (72) as follows:

s∗1,2 = −0.1354± 0.1625i, s∗3 = −2.7206, s∗4 = −0.0754,

s̃∗1,2 = −0.1637± 0.2763i, s̃∗3 = −3.5989, s̃∗4 = −0.1061,

g∗11 = −2.0049, g∗12 = −39.323, g∗21 = 138.10, g∗22 = −197.18,

g∗31 = 142.26, g∗32 = 27.254, g∗41 = −188.61, g∗42 = −130.46,

which gives the index value J∗ = 18.1305. The corresponding gain matrices are

K∗ =
[

−89.8389 90.3442 −1767.3192 −230.1825
]

, (73)

and

L∗ =













−0.060779 −12.800622

−1.186834 −79.657154

0.019383 −3.949398

3.507241 −724.800195













. (74)

Substituting (74) and (73) into (10) gives the proposed observer-based state feedback control law.

Two control laws are presented in [22] for exactly the same system. The first one is a generalized PID

controller commonly used in engineering, which takes the structure in Figure 1, with

G (s) =
60s+ 1

1.5625s2 + 3.5s+ 1
, (75)

Kp = Kd = 15, Ki = 0.03. (76)

The second one is a dynamic compensator:

{

ż = K22z +K21y,

u = K12z +K11y,
(77)

with

K11 =
[

−38.4632239 −2248.07760
]

,
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Figure 2 (Color online) The index values Jsen under the three control methods.

K12 =
[

−0.14638871 5.90877238
]

,

K21 =

[

4.84008051 488.254137

1.53071924 −126.193873

]

,

K22 =

[

−0.01325631 2.15924884

−0.18937241 −2.28904292

]

.

5.2 Simulation verification

5.2.1 Verification of closed-loop pole sensitivities

This subsection aims to verify the insensitivity of closed-loop poles to the parameter perturbations ∆a1
and ∆a2. In order to quantify the degree to which the closed-loop poles are affected by parameter

perturbations, we introduce the following index:

Jsen =
1

n

√

√

√

√

n
∑

i=1

(speri − snomi )
2
,

where snomi , i = 1, 2, . . . , n are the nominal closed-loop poles, speri i = 1, 2, . . . , n represent the closed-loop

poles when the parameters a1 and a2 are perturbed, and n is the number of closed-loop poles, which

is equal to 6, 7 and 8, corresponding to the dynamic compensator, the PID cotroller, and the proposed

method, respectively. It is obvious that the smaller the value of Jsen is, the less sensitive the closed-loop

poles are to parameter perturbations.

In order to avoid the contingency of the experimental results as much as possible, we generate 100 sets

of random parameter perturbations as follows:

{

∆a1k = GWN
(

2× 10−5k, 0
)

,

∆a2k = GWN
(

2× 10−7k, 0
)

,
k = 1, 2, . . . , 100,

where GWN
(

σ2, µ
)

denotes a Gaussian white noise with variance σ2 and mean µ. For each of these

100 cases, we calculate the index values corresponding to the three control methods, and connect the

scattered points into three curves, as shown in Figure 2, where the superscript “OB” represents the result

obtained by the proposed method, while the superscript “PID” and “DC” represent the results obtained

by the PID controller and the dynamic compensator in [22], respectively.

It can be seen from Figure 2 that JOB
sen can almost always be smaller than JDC

sen and JPID
sen , which

fully reflects the superiority of the proposed method. It should be noted that although the dynamic

compensator designed in [22] considers the eigenvalue sensitivities, it does not perform better than the
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Figure 3 (Color online) (a) Pitch angle; (b) pitch angular velocity; (c) control torque.

PID method. The reason lies in that it aims to minimize an overall sensitivity index instead of the

individual ones with respect to ∆a1 and ∆a2.

5.2.2 Simulation results

As in [22], the initial values of the attitude angle and its estimation are taken as θ0 = θ̂0 = 0.06◦, and

those of the attitude angular velocity and its estimation are ω0 = ω̂0 = −0.003 (◦/s). The initial values of

the remaining state variables are set to zero. The high-order unmodeled dynamics is set to d = 0.1q
(3)
y .

The specific values of the parameter perturbations are chosen to be

∆a1 = 2.83× 10−5, ∆a2 = −8.72× 10−7,

with the simulation step size being 0.5 s. The simulation results are shown in Figure 3. The subscript

“OB” corresponds to the proposed method, while the subscripts “PID” and “DC” correspond to the PID

controller and the dynamic compensator in [22], respectively.

It can be seen from Figures 3(a) and (b) that the proposed controller is superior to the traditional PID

controller and the dynamical compensator in [22] in terms of transition time, overshoot, and convergence

speed.

It can be seen from Figure 3(c) that among the three control methods, the one proposed in this paper

has the smallest peak of control torque (about 0.05 nm), which satisfies the 0.1 nm limit specified in the

engineering model task, while the peak of control torque of the PID controller has even exceeded 0.6 nm.

Remark 5. The proposed method has minimized the effect of the disturbances and parameter perturba-

tions, and also the magnitude of the control gain. Thus it performs better than the PID control strategy.

Our approach also performs better than the dynamical compensator design in [22] because, unlike the

dynamical compensator design, we have considered the closed-loop eigenvalue sensitivities with respect

to individual perturbed parameters ∆a1 and ∆a2 instead of the overall closed-loop matrix.

6 Conclusion

In this paper, a parametric design method is proposed for the attitude control of satellites with super

flexible attachments. The superiority of the proposed method is significant owing to the following aspects.
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(1) Different from many existing control methods that is proposed for a single objective (e.g., [2–8],

[11–21]), this paper considers multi-objective design issues, and it aims to make the closed-loop system

have simultaneously lower eigenvalue sensitivity, and also it aims a smaller control gain and a stronger

tolerance for high-order unmodeled dynamics and disturbances.

(2) The design process of the observer-based control method in this paper is simpler and more conve-

nient when it is compared with the multi-objective design method based on dynamic compensator in [22],

because the gain matrices K and L can be designed separately.

(3) Because the parameter perturbations have specific forms, the proposed approach specifically mini-

mizes an individual sensitivity index with respect to ∆a1 and ∆a2 instead of the overall one in [22], and

it has been demonstrated to be more effective.

The proposed method shows a great potential because it is applicable and it has important advantages

over the others. This situation is proved by the theoretical information and simulation results.
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Appendix A Proof of Theorem 1

To prove this theorem, the following lemma which was presented in [22] is needed.

Lemma 3. Let the system (3)–(6) satisfy condition (14). Then the right coprime polynomial matrices N (s) and D (s)

satisfying the following right coprime factorization (RCF):

(sI −A)−1 B = N (s)D−1 (s) (A1)

are given by

N (s) =













γs2 + a2s+ a1

−byγs
2

γs3 + a2s
2 + a1s

−byγs
3













, (A2)

D (s) = −s4 + Iya2s
3 + Iya1s

2. (A3)

According to the eigenstructure assignment result in [23], when the system (3)–(6) is controllable, that is, when the

condition (14) holds, complete parametric forms of the gain matrix K and a corresponding nonsingular matrix V satisfying

(A+ BK)V = V Λc, (A4)

where Λc is shown in (68), can be given by














K = WV −1,

V = [ v̂1 v̂2 v̂3 v̂4 ],

W = [ ŵ1 ŵ2 ŵ3 ŵ4 ],

(A5)

with














v̂1 = N (α1 + α2i) (f1 + f2i) ,

v̂2 = N (α1 − α2i) (f1 − f2i) ,

v̂3 = N (α3) f3, v̂4 = N (α4) f4,

and














ŵ1 = D (α1 + α2i) (f1 + f2i) ,

ŵ2 = D (α1 − α2i) (f1 − f2i) ,

ŵ3 = D (α3) f3, ŵ4 = D (α4) f4,

where N (s) ∈ R4×1[s] and D (s) ∈ R[s] are a pair of polynomial matrices satisfying the RCF (A1), and fi, αi, i = 1, 2, 3, 4,

are parameters satisfying the following constraint:

det (V ) = ∆c 6= 0. (A6)

It is known from Lemma 3 that such N (s) and D (s) can be given by (A2) and (A3), respectively. Then, through simple

deductions, we can obtain the expression of ∆c as shown in Constraint C1.
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It is easy to see that v̂1 and v̂2 are complex conjugates to each other, so do ŵ1 and ŵ2. Therefore, assume that

v̂1 = ϑvR + ϑvI i, v̂2 = ϑvR − ϑvI i, (A7)

ŵ1 = ϑwR + ϑwI i, ŵ2 = ϑwR − ϑwI i. (A8)

In view of the first formula in (A5), we have

ŵi = Kv̂i, i = 1, 2, 3, 4. (A9)

Substituting (A7) and (A8) into (A9), we obtain the following linear equation:

W0 = KV0,

where

W0 =
[

ϑwR ϑwI ŵ3 ŵ4

]

=
[

w1 w2 w3 w4

]

, (A10)

V0 =
[

ϑvR ϑvI v̂3 v̂4

]

=
[

v1 v2 v3 v4

]

, (A11)

with vi, wi, i = 1, 2, 3, 4 being given by (24)–(27). Obviously, when Eq. (A6) holds, V0 is also nonsingular. Thus the matrix

K can be given by (22). Combining (A5), (A7) and (A11), gives the expression of V shown in (23). Then the proof is

completed.

Appendix B Proof of Theorem 2

Similarly, to prove Theorem 2, the following result obtained in [22] is needed.

Lemma 4. Let the system (3)–(6) satisfy condition (14), and then the right coprime polynomial matrices H (s) and L (s)

satisfying the following RCF:
(

sI −AT
)

−1
CT = H (s)L−1 (s) (B1)

are given by

H (s) =













1 0

0 a1bys

0 −s2 + Iya2s+ Iya1

0 a2bys+ a1by













, (B2)

L (s) =

[

s 0

−1 −s3 + Iya2s
2 + Iya1s

]

. (B3)

Based on the eigenstructure assignment theory shown in [23], when
(

AT, CT
)

is controllable, that is, when the condi-

tion (14) holds, complete parametric forms of the gain matrix L and a corresponding nonsingular matrix T satisfying

TT (A+ LC) = ΛoT
T, (B4)

where Λo is shown in (68), can be given by


















L = T−TZT,

T =
[

t̂1 t̂2 t̂3 t̂4

]

,

Z =
[

ẑ1 ẑ2 ẑ3 ẑ4

]

,

(B5)

with














t̂1 = H (α̃1 + α̃2i) (g1 + g2i) ,

t̂2 = H (α̃1 − α̃2i) (g1 − g2i) ,

t̂3 = H (α̃3) g3, t̂4 = H (α̃4) g4,

and














ẑ1 = L (α̃1 + α̃2i) (g1 + g2i) ,

ẑ2 = L (α̃1 − α̃2i) (g1 − g2i) ,

ẑ3 = L (α̃3) g3, ẑ4 = L (α̃4) g4,

where H (s) ∈ R4×2[s] and L (s) ∈ R2×2[s] are a pair of polynomial matrices satisfying the RCF (B1), and α̃i, gi =

[
gi1

gi2
], gi1, gi2 ∈ R, i = 1, 2, 3, 4 are parameters satisfying the following constraint:

det (T ) = ∆o 6= 0. (B6)

It is known from Lemma 4 that such H (s) and L (s) can be given by (B2) and (B3), respectively. Then, substituting (B2),

(B3) and (B5) into (B6), gives the expression of ∆o as shown in Constraint C2.

It is easy to see that t̂1 and t̂2 are complex conjugates to each other, so do ẑ1 and ẑ2. Therefore, assume that

t̂1 = ξtR + ξtI i, t̂2 = ξtR − ξtI i, (B7)

ẑ1 = ξzR + ξzI i, ẑ2 = ξzR − ξzI i. (B8)
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Considering the first formula in (B5), we have

ẑi = LT t̂i, i = 1, 2, 3, 4. (B9)

Substituting (B7) and (B8) into (B9), we obtain the following linear equation:

Z0 = LTT0,

where

Z0 =
[

ξzR ξzI ẑ3 ẑ4

]

=
[

z1 z2 z3 z4

]

, (B10)

T0 =
[

ξtR ξtI t̂3 t̂4

]

=
[

t1 t2 t3 t4

]

, (B11)

with ti, zi, i = 1, 2, 3, 4 being given by (36)–(39). Obviously, when Eq. (B6) holds, T0 is also nonsingular. Thus the matrix

L can be given by (34). Combining (B5), (B7) and (B11), gives the expression of T shown in (35). Then the proof is

completed.

Appendix C Proof of Theorem 3

Let

V −T =
[

ṽ1 ṽ2 ṽ3 ṽ4

]

, T−T =
[

t̃1 t̃2 t̃3 t̃4

]

.

Then, according to (56), the following relations hold:

ṽi =
1

∆c

v∗i , t̃i =
1

∆o

t∗i , i = 1, 2, 3, 4.

It can be seen that V and V −1 are, respectively, the right and the left eigenvector matrices of Ac. Thus, according to

Lemma 1 in [26], we have

∂λi (Ac)

∂∆aj
= ṽTi

∂Ac

∂∆aj
vi = ṽTi Ajvi =

1

∆c

(v∗i )
T Ajvi,

i = 1, 2, 3, 4, j = 1, 2.

Similarly, considering that TT and T−T are, respectively, the left and the right eigenvector matrices of Ao, it can be known

from Lemma 1 in [26] that

∂λi (Ao)

∂∆aj
= tTi

∂Ao

∂∆aj
t̃i = tTi Aj t̃i =

1

∆o

tTi Ajt
∗

i ,

i = 1, 2, 3, 4, j = 1, 2,

holds. Then, the proof is completed.

Appendix D Proof of Theorem 4

At first, let us discuss the eigenstructure of Az as a preliminary. Let

TT
z =

[

V −1 −Q∗T
T Q∗T

T

−TT TT

]

, (D1)

and

Vz =

[

V −V Q∗

V T−T − V Q∗

]

, (D2)

where T and V are given by (23) and (35), respectively. It is known from Theorems 1 and 2 that, when K and L are taken

as (22) and (34), respectively, the relations (A4) and (B4) hold. Thus, in view of (D1) and (D2), we can verify that

TT
z Vz = I, (D3)

and

TT
z AzVz =

[

Λc −ΛcQ∗ +Q∗Λo + V −1BKT−T

0 Λo

]

. (D4)

According to the matrix equation theory, there exists a unique solution to the following linear matrix equation with respect

to Q:

ΛcQ−QΛo = V −1BKT−T. (D5)

With the help of matrix vectorization operations, it can be easily verified that Q∗ given by (66) is the unique solution of

the matrix equation (D5). Thus, Eq. (D4) can be simplified as

TT
z AzVz = Λz, (D6)

where Λz is given by (68).
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Then, let us discuss the explicit expression of ‖Gc (s)‖2 . Considering (D6), the function ‖Gc (s)‖2 can be transformed

into

‖Gc (s)‖2 =
∥

∥

∥
CzVz (sI − Λz)

−1 TT
z Dz

∥

∥

∥

2
.

According to Theorems 1 and 2, when K and L are taken as (22) and (34), respectively, both Ac and Ao are stable. Then,

from (D6), we know that Az is also stable. Therefore, it is known from Lemma 4.1 of the previous study1) that there exist

unique symmetric positive definite solutions P1 and P2 to the following Lyapunov matrix equations:

ΛzP1 + P1Λz = −TT
z DzD

T
z Tz , (D7)

and

ΛzP2 + P2Λz = −V T
z CT

z CzVz , (D8)

and ‖Gc (s)‖2 can be given by

∥

∥

∥
Gdyp (s)

∥

∥

∥

2
=

(

trace
(

CzVzP1V
T
z CT

z

)) 1

2
=

(

trace
(

DT
z TzP2T

T
z Dz

)) 1

2
.

In view of (D1) and (D2), with the help of matrix vectorization operations, it can be verified that P ∗

1 and P ∗

2 which are

given by (66) are the unique solutions of the matrix equations (D7) and (D8), respectively. Thus the result (65) can be

obtained. Then the proof is completed.

1) Duan G-R, Liu G P, Thompson S. Disturbance attenuation in Luenberger function observer designs—a parametric

approach. IFAC Proc Vol, 2000, 33: 41–46.
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actuator saturation nonlinearity in a unified framework is

proposed”, as quoted from a citing paper. Work on this as-

pect is also called “excellent”, “has numerical merits”, and

“greatly simplifies the expressions of our controllers and the

subsequent analysis”. Besides the above, he has also devel-

oped numerous results for parametric control of spacecraft

attitude and orbit systems (e.g., [12]).

The work of Prof. Duan has been widely and frequently

used. Among the publications which use his results, there

are more than 70 ones which apply his basic results as tech-

nical lemmas. In some of these citations, his work is re-

ferred as “Duan approach”, “Duan procedure”, and “Duan

method”. Besides the many theoretical usages, many suc-

cessful applications of his results to the designs, simula-

tions, and experiments of certain practical systems have

also appeared in certain publications, including structural

vibration, quad-rotor rotorcraft, power generation, welding

robots, and satellite attitude and orbit control. Particu-

larly, his parametric approach has been successfully applied

in the design of the attitude system of a practical satellite

with a large netted antenna. In recent years, Prof. Duan

also proposed parametric approaches for different types of

quasi-linear systems and also applied them in spacecraft

control.

Selected publications

• Duan G-R. Analysis and Design of Descriptor Linear

Systems. New York: Springer, 2010

• Duan G-R. Generalized Sylvester Equations — Unified

Parametric Solutions. Florida: CRC Press, 2015

• Duan G-R. Simple algorithm for robust pole assign-

ment in linear output-feedback. IEE Proc D Control Theor

Appl, 1992, 139: 465–469

• Duan G-R. Solution to matrix equation AV + BW =

EV F and eigenstructure assignment for descriptor systems.

Automatica, 1992, 28: 639–642

• Duan G-R. Solutions of the equation AV +BW = V F

and their application to eigenstructure assignment in linear

systems. IEEE Trans Automat Contr, 1993, 38: 276–280

• Duan G-R. Robust eigenstructure assignment via dy-

namic compensators. Automatica, 1993, 29: 469–474

• Duan G-R, Liu G P. Complete parametric approach for

eigenstructure assignment in a class of second-order linear

systems. Automatica, 2002, 38: 725–729

• Duan G-R. Parametric eigenstructure assignment in

second-order descriptor linear systems. IEEE Trans Au-

tomat Contr, 2004, 49: 1789–1794

• Duan G-R. Eigenstructure assignment and response

analysis in descriptor linear systems with state feedback

control. Int J Control, 1998, 69: 663–694

• Duan G-R. Circulation algorithm for partial eigen-

structure assignment via state feedback. Europ J Control,

2019, 50: 107–116

• Zhou B, Duan G-R, Lin Z L. A parametric Lyapunov

equation approach to the design of low gain feedback. IEEE

Trans Automat Contr, 2008, 53: 1548–1554

• Duan G-R, Yu H H, Tan F. Parametric control sys-

tems design with applications in missile control. Sci China

Ser F-Inf Sci, 2009, 52: 2190–2200


	Introduction
	Problem formulation
	The model
	Statement of the problem

	Parametric design for observer-based controller
	Nondefective eigenstructure assignment for A+BK
	Nondefective eigenstructure assignment for A+LC

	Multi-objective design
	Closed-loop eigenvalue sensitivities
	Disturbance attenuation index
	Control gain magnitude
	The algorithm

	Numerical simulations
	Controller design
	Simulation verification
	Verification of closed-loop pole sensitivities
	Simulation results


	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Profile of Guang-Ren DUAN
	Parametric control systems design
	Selected publications


