
SCIENCE CHINA
Information Sciences

July 2020, Vol. 63 172001:1–172001:19

https://doi.org/10.1007/s11432-020-2917-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. RESEARCH PAPER .
From CAS & CAE Members

Unifying logic rules and machine learning for entity

enhancing

Wenfei FAN1,2,3, Ping LU3* & Chao TIAN4

1School of Informatics, University of Edinburgh, Edinburgh EHA 9AB, UK;
2Shenzhen Institute of Computing Sciences, Shenzhen University, Shenzhen 518000, China;

3Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China;
4Alibaba Group, Hangzhou 311121, China

Received 1 April 2020/Accepted 16 April 2020/Published online 8 June 2020

Abstract This paper proposes a notion of entity enhancing, which unifies entity resolution and conflict

resolution, to identify tuples that refer to the same real-world entity and at the same time, correct semantic

inconsistencies. We propose to unify rule-based and machine learning (ML) methods for entity enhancing, by

embedding ML classifiers as predicates in logic rules. We model entity enhancing by extending the chase. We

show that the chase warrants correctness justification and the Church-Rosser property. Moreover, we settle

fundamental problems associated with entity enhancing, including the enhancing, consistency, satisfiability,

and implication problems, ranging from NP-complete and coNP-complete to Πp

2-complete. Taken together,

these provide a new theoretical framework for unifying entity resolution and conflict resolution.

Keywords logic rules, machine learning, entity enhancing, entity resolution, conflict resolution

Citation Fan W F, Lu P, Tian C. Unifying logic rules and machine learning for entity enhancing. Sci China Inf

Sci, 2020, 63(7): 172001, https://doi.org/10.1007/s11432-020-2917-1

1 Introduction

Big data is often characterized by its volume, variety, velocity, and veracity. Among these, veracity

concerns the trustworthiness of data in terms of quality and accuracy, and is often considered the most

challenging issue among the 4V’s (4V: volume, velocity, variety, and veracity). We cannot get away from

it no matter whether we like it or not. For instance, poor data quality costs the US economy $3.1 trillion

a year [1], and is too costly to ignore.

There are two active research topics about data quality: (1) entity resolution (ER), to identify tuples

that refer to the same real-world entity, and (2) conflict resolution (CR), to resolve (semantic) consisten-

cies pertaining to an entity. There has been a large body of work on ER [2–7] and CR [8–12]. To develop

effective tools for ER and CR, however, several issues remain to be resolved.

(1) Logic or machine learning (ML)? Both logic rules and ML methods have been studied for ER and

CR, and none is superb overall. A survey [13] shows that for information extraction in industry, 67% of

systems are rule-based, 17% are ML-based, while 16% are hybrids of the two. Is it possible to develop a

framework that unifies logic rules and ML classifiers, and takes advantages of both methods?

(2) ER or CR ? There has been a host of work on ER and CR, treating them as separate issues.

However, it has long been recognized that ER and CR interact with each other and work the best when

the two are taken together [14–16]. Is there a uniform framework to conduct ER and CR at the same

time?

*Corresponding author (email: luping@buaa.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-2917-1&domain=pdf&date_stamp=2020-6-8
https://doi.org/10.1007/s11432-020-2917-1
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-2917-1
https://doi.org/10.1007/s11432-020-2917-1

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:2

Table 1 Relation D1 of schema product

tid id seller∗ description∗ weight type∗ price online year∗

t1 p1 s1 MacBook Air 13′′, mid 2019, 1.6 GH Intel i5, 128 GB SSD 1.3 kg computer 8.3K 2019

t2 p2 s1 MacBook MVFK2CH/A, 128 GB 1.3 kg∗ computer 8.3K∗ 2019

t3 p3 s2 MacbookAir8,1, i5, 8 GB SDRAM, 128 GB SSD 9.5 kg computer 7.3K 2018

t4 p4 s1 MacBook MREE2CH/A, Intel i5, 8 GB LPDDR3, 128 GB 1.3 kg∗ computer 9.6K 2018

t5 p5 s2 iMac MRQY2CH/A 27′′, 1 TB 9.5 kg computer 12.9K 2019

Table 2 Relation D2 of schema shop

tid id name date created∗ on sale product∗

t6 s1 Apple official 2015/1/1 p1

t7 s2 Apple 2015/1/1 p2

Table 3 Relation D3 of schema delivery

tid id item∗ quantity∗ city∗ fee

t8 d1 p3 5K Beijing 1K∗

t9 d2 p5 5K Beijing 3K

(3) Heuristic or certain? Prior methods for ER and CR are typically heuristic: they update data to fix

errors but offer no correctness guarantees. That is, the changes may not fix the target errors and worse

yet, may introduce new errors. Is it possible to justify fixes with correctness guarantee?

(4) Collective or separated ? It is known that to accurately identify entities, ER should be conducted

collectively across multiple tables [4]. However, most of the existing ER rules are defined on a single

relation [8,11] or at most two relations [2,3]; similarly for ML methods [6]. Is it possible to develop logic

rules for collective ER and CR, while striking a balance between the expressive power and complexity?

Example 1. To illustrate the challenges, consider three (simplified) relationsD1−D3 shown in Tables 1–

3 (tid for tuple id). E-commerce platforms often use such tables to collect information of products, online

shops and deliveries (for ordered goods), respectively. They also want to identify products and shops,

and resolve conflicts between various attributes values, e.g., price; these are nontrivial.

(1) A pure rule-based method may check value equality between the seller (id), description, and year

for online sale of products to decide whether they refer to the same real-world entity. Among these, the

descriptions are usually long texts and contain various terminologies. It is more reasonable to check the

semantic similarity for descriptions by ML models, e.g., the descriptions of t1 and t2 refer to the same

laptop and the two products should be identified. But how can we integrate ML into logic rules?

(2) It is a common sense that if a shop sells two computers of the same series, then the older version

(with earlier year for online sale) should be cheaper. However, t1 and t4 are both of the MacBook Air

13′′ series, while the older t4 is more expensive. To fix this inconsistency (CR), ML models are needed

again to identify the series of the computers t1 and t4 based on their descriptions (ER).

(3) The need for fixing conflicts with correctness guarantees is evident, especially when maintaining

vital attributes, like the delivery fee for e-commerce platforms. In relation D3, deliveries t8 and t9 are

both sent to Beijing, and the corresponding ordered goods are of the same type, total weight and shop.

However, they differ in the fee. Simply changing t1.fee to 3K may even lose the original correct value.

(4) Entity resolution often goes across multiple relations. For instance, tuples t6 and t7 in D2 can be

matched if t1 and t2 in D1 are identified, since t6 and t7 are created on the same date and have the same

product on sale. Similarly, products t3 and t4 in D1 are matched if so are the shops t6 and t7 in D2. 2

Contributions & challenges. This paper proposes a framework to tackle these challenges.

(1) A uniform framework (Section 2). We propose an entity enhancing framework to unity ER and CR.

The framework is based on a class of rules, referred to as entity enhancing rules and denoted by REEs. As

opposed to traditional data quality rules, REEs (a) may carry ML classifiers as predicates, (b) subsume

matching dependencies (MDs) for ER [2] and conditional dependencies (CFDs) for CR [8] as special cases,

and (c) extend MDs and CFDs across multiple relations. In light of these, REEs unify rule-based and

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:3

Table 4 Complexity for entity enhancing and reasoning about REEs

Entity enhancing Consistency Satisfiability Implication

NP-complete (Theorem 2) coNP-complete (Theorem 3) NP-complete (Theorem 4) Πp

2-complete (Theorem 5)

ML-based methods, to improve the accuracy of data quality rules and provide logic interpretation of ML

classifications. Moreover, REEs support collective ER and CR across multiple relations.

(2) Entity enhancing (Section 3). We model entity enhancing by extending the chase [17]. Given a

set Σ of REEs and a set E0 of entities picked by users, it deduces fixes pertaining to E0, i.e., matches

and corrections related to entities in E0. As opposed to the classical chase, it applies an REE only

if its precondition is satisfied by a collection Γ of “ground truth”, i.e., data validated by master data,

crowdsourcing or user inspection. The fixes are logical consequences of Σ and Γ; hence as long as the REEs

and ground truth are correct, so are the fixes. That is, the chase guarantees the correctness of the fixes.

(3) Theoretical results (Section 4). We settle the fundamental problems associated with entity enhanc-

ing. The complexity bounds are shown in Table 4, annotated with corresponding theorems.

(a) The entity enhancing process is Church-Rosser, i.e., it guarantees to converge at the same fixes no

matter what REEs in Σ are used and in what order the rules are applied.

(b) It is NP-complete to deduce a fix by chasing with REEs.

(c) It is coNP-complete to check whether Σ (REEs) and Γ (ground truth) have no conflicts themselves.

(d) The satisfiability and implication problems for REEs are NP-complete and Πp
2-complete, to check

whether REEs are “dirty” themselves and whether an REE is entailed by other REEs, respectively.

Taken together, these provide a uniform framework for collective CR and ER, and propose a simple

strategy to take advantage of both rule-based and ML-based methods. It warrants to find correct fixes

when provided with correct REEs Σ and ground truth Γ. Better yet, the fundamental problems for entity

enhancing with REEs retain the same complexity as their counterparts for CR alone with CFDs [8,10], ex-

cept the implication problem unless P= NP; the extra complexity of the implication problem is introduced

by “collective” REEs. Hence the price is not very high compared to the increased expressivity of REEs.

Related work. A number of rule-based methods have been developed for ER. For instance, a class

of MDs and relative candidate keys for matching records are introduced in [2]; ERBlox employs MDs

as blocking keys and ML models for entity classification [18]. Collective entity resolution improves the

accuracy of ER by determining co-occurring entities together [4]. Datalog-like rules are proposed for

collective ER across multiple tables [5]. In addition, Ref. [19] presents a framework that allows us to plug

in existing ER algorithms for joint ER on multiple datasets. There has also been work on ER based on

crowdsourcing, e.g., Ref. [20] combines pairwise tasks and multi-item tasks in crowd ER, and Ref. [21]

studies how to maximize progressive recall in online ER by using an oracle. Moreover, a host of ML

techniques have been studied for ER, e.g., deep learning [6, 22], active learning [7, 23], and unsupervised

learning [24].

There has also been a large body of work on CR, notably by employing CFDs [8, 10] and denial

constraints (DCs) [11,12]. User interaction is a common practice in CR [25–27], e.g., Ref. [25] incorporates

user feedback in data repairing. Two data cleaning systems, namely, Falcon and DANCE, are presented

in [26] and [27], respectively. Falcon uses SQL update queries and user interaction to repair data, and

DANCE helps domain experts fix violations of integrity constraints. The need for unifying ER and CR

was advocated in [14–16], where Ref. [14] studies the interaction between record matching (ER) and

data repairing (CR), Ref. [15] identifies and enriches different references in complex information spaces,

and Ref. [16] removes data inconsistencies during the ER process by using negative rules. Moreover,

both uniqueness constraints and erroneous values are considered for ER in [28]. A notion of certain

fixes was introduced in [29] by employing an extension of CFDs as data quality rules. Certain fixes were

recently studied for graphs [30]. Moreover, machine learning has also been used to clean databases (CR),

e.g., [31].

This study differs from the prior work in the following. (1) This study provides a framework to unify ER

and CR in the same process. It also makes a first effort to unify logic and ML by plugging ML classifiers in

logic rules to leverage well-trained ML models, and provide logic interpretation to certain ML predictions.

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:4

Moreover, our framework does not separate the process into logical and ML stages as opposed to [18].

(2) As opposed to CFDs, MDs, and DCs, REEs can be defined across multiple relations for collective

entity enhancing. (3) This study also makes a first effort to provide correctness guarantees for unified

CR and ER on relations. (4) We settle the complexity of fundamental problems for entity enhancing, in

the presence of ML classifiers and across multiple relations, in contrast to CFDs, MDs, and DCs.

2 Logic rules with machine learning models

In this section, we introduce REEs, to support collective entity resolution and conflict resolution across

multiple relations, and to unify logic-based and ML-based methods.

We will define REEs over a database schema R = (R1, . . . , Rm), where each Ri is a relation schema

with a fixed set of attributes, and each attribute A has an atomic type, e.g., integer, string, and Boolean.

We assume a countably infinite set U from which elements populating databases are drawn; the set U is

further partitioned into domains of the atomic types. A tuple t of Ri consists a value for each attribute

of Ri from its corresponding domain. A relation of Ri is a set of tuples of Ri. A database D of R is

(D1, . . . , Dm), where Di is a relation of Ri for i ∈ [1,m] (see [32] for details). In particular, we assume a

designated attribute id for Ri, such that a tuple of Ri represents an entity with identity id.

Predicates. Following tuple relational calculus [32], we define atomic formulas over R as follows:

p ::= R(t) | t.A⊗ c | t.A⊗ s.B,

where ⊗ is a comparison operator =, 6=, <,6, >,>, and c is a constant in U . Here (a) R(t) says that t

is a tuple of R; it is well defined if R ∈ R; (b) t.A denotes an attribute of t; it is well-defined if R(t) is

specified and A is an attribute of R; (c) t.A ⊗ c is well-defined if t.A is well-defined, ⊗ is defined in the

domain of A, and c is a value of the type of A in R; and (d) t.A⊗ s.B is well defined if t.A and s.B are

compatible, i.e., R(t) and R′(s) are specified, and A ∈ R and B ∈ R′ have the same type. In particular,

t.id = s.id (resp. t.id 6= s.id) denotes that the entities represented by t and s match (resp. do not match).

We refer to R(t) as a relation atom over R, and to t as a tuple variable bounded by R(t).

REEs. An REE ϕ over R is a first-order logic formula of the form:

X → Y,

where X and Y are conjunctions of predicates over R. Here a predicate is either a well-defined atomic

formula over R, or an ML predicate M(x̄, ȳ), where M is an ML classifier for CR or ER, e.g., [6, 7, 23,

33,34], and x̄ and ȳ are vectors of pairwise compatible attributes pertaining to two tuple variables t and

s that appear in X , respectively. All tuple variables that appear in ϕ are bounded in X .

We refer to X as the precondition of ϕ and Y as the consequence of ϕ.

Example 2. We use the following four REEs to carry out ER and CR discussed in Example 1, where

the three relation schemas are denoted as product, shop, and delivery, respectively.

(1) ϕ1: product(ta) ∧ product(tb) ∧ ta.online year = tb.online year ∧ M1(ta.description, tb.description) ∧

X1 → ta.id = tb.id ∧ ta.weight = tb.weight. Here X1 is shop(t′a) ∧ shop(t′b) ∧ ta.seller = t′a.id ∧ tb.seller =

t′b.id ∧ t′a.id = t′b.id. It says that if ta and tb have the same year for online purchase and “similar”

descriptions, and their selling shops are identified by X1, then they refer to the same product and hence

have the same weight. It uses ML model M1 to check description similarity. As opposed to DCs, CFDs,

and MDs, this rule is defined on multiple relations and can conduct collective entity resolution together

with ϕ2 below.

(2) ϕ2: shop(ta) ∧ shop(tb) ∧ ta.date created = tb.date created ∧ X2 → ta.id = tb.id. Here X2 is

product(t′a)∧product(t′b)∧ ta.on sale product = t′a.id∧ tb.on sale product = t′b.id∧ t′a.id = t′b.id. It identifies

two shops if they have the same creation date and product on sale (by X2). It is also collective on multiple

relations.

(3) ϕ3: product(ta) ∧ product(tb) ∧ X1 ∧ M2(ta.description, tb.description) ∧ ta.type = “computer” ∧

tb.type = “computer” ∧ ta.online year < tb.online year → ta.price < tb.price. It states that the price of ta

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:5

is lower than that of tb if both ta and tb are computers of the same series and sold by the same shop,

and moreover, the year for online purchase of ta is earlier than that of tb. Here another ML model M2

is adopted to check whether ta and tb belong to the same series. Note that ϕ3 detects errors based on

the timeliness of prices.

(4) ϕ4: delivery(t
′′
a)∧delivery(t

′′
b)∧product(ta)∧product(tb)∧t

′′
a .city = t′′b .city∧t

′′
a .quantity = t′′b .quantity∧

t′′a.item = ta.id ∧ t′′b .item = tb.id ∧ ta.weight = tb.weight ∧ ta.type = tb.type ∧X1 → t′′a.fee = t′′b .fee. It says

that the delivery fee of t′′a and t′′b must be the same if they are sent to the same city and there are equal

amount of goods of the same type and weight ordered from the same shop in t′′a and t′′b . This rule is

defined collectively across three distinct relations to fix the vital attribute fee of delivery.

In addition, REEs allow us to interpret certain ML predictions in logic.

(5) Consider an REE ϕ5 = product(ta) ∧ product(tb) ∧ X5 → M2(ta.description, tb.description), where

M2 is the ML classifier of ϕ3, X5 is defined as
∧

As∈T ta.As = tb.As and T denotes a designated set of

attributes for technical specifications, e.g., brand, screen size and processor family (not shown in the sim-

plified schema product), whose values are extracted from the textual description of products in applying

M2. Note that X5 interprets the prediction of M2(ta.description, tb.description) in logic.

REEs also allow us to take advantage of both rule-based and ML-based methods. As another example,

consider REEs ϕ6–ϕ8 below, which are defined over relation schemas user(id, name, product preference,

purchase history) and order(id, buyer, address, time, total price, discount, final price, status). The two (simpli-

fied) relation schemas can help e-commerce platforms maintain information of user accounts and orders.

(6) ϕ6: order(t) ∧ t.discount > 0 → t.total price > t.final price. The simple pure rule-based REE says

the final price of an order t must not exceed the original total price when there is a discount. Since the

prices are exact numeric values, rule-based methods work better than ML models in this case.

(7) ϕ7: user(ta)∧user(tb)∧X7 → ta.id = tb.id, whereX7 denotes the conjunction of three ML predicates,

i.e., M3(ta.name, tb.name), M4(ta.product preference, tb.product preference), and M5(ta.purchase history,

tb.purchase history). It identifies users by employing an ML method to check the “similarity” between

their names, preferences of products and purchase history. For similarity checking and classification of

topics, the ML method work better than conventional logical approaches, especially on text fields.

(8) ϕ8: order(t′a) ∧ order(t′b) ∧ user(ta) ∧ user(tb) ∧ t′a.buyer = ta.id ∧ t′b.buyer = tb.id ∧M6(t
′
a.address,

t′b.address) ∧ M7(t
′
a.time, t′b.time) ∧ X7 ∧ t′a.status = t′b.status → t′a.id = t′b.id. It identifies two orders

if they are placed by the same user account (see ϕ7 above) at similar time and are delivered to similar

addresses (which are all determined using ML classifiers), and moreover, they have the same order status,

e.g., completed, refunded or canceled. In practice, different yet duplicated orders are likely created at the

same time by the same user account using different devices. Here the logical constraint that is enforced

on the attribute of status in ϕ8 complements pure ML methods and can reduce the false positives. 2

As opposed to existing data quality rules, REEs have the following properties.

(1) As shown in Example 2, on the one hand, an REE may plug in ML classifiers for ER or CR as

predicates, e.g., REE ϕ3 above or R1(t1)∧R2(t2)∧M(x̄1, x̄2) → t1.id = t2.id. On the other hand, one can

write X → M(x̄1, x̄2) to interpret ML predication M(x̄1, x̄2) in terms of a logic condition X , e.g., ϕ5.

(2) REEs subsume rules for ER (e.g., MDs) and CR (e.g., CFDs and DCs) as special cases. More

specifically, (a) DCs [11] are REEs defined with relation atoms R(t) of the same relation R, and atomic

formulas of the form t.A⊗ c and t.A⊗ s.B. (b) CFDs [8] are REEs defined in terms of two relation atoms

R(t1) and R(t2) of the same relation R, and equality predicates t.A = s.B and t.A = c. (c) MDs [2] can

be expressed as REEs X → Y with two relation atoms R1(t1) and R2(t2), equality atoms x.A = y.B,

M(x̄1, x̄2) that simulates similarity checking, all in X , and t1.id = t2.id in Y for tuples in R1 and R2,

respectively.

(3) REEs support collective entity enhancing. Indeed, an REE may carry multiple relation atoms Ri(t)

for distinct relations Ri in R, e.g., ϕ1–ϕ4, beyond CFDs, DCs, and MDs. Moreover, REEs may carry

atomic formulas with comparison predicates =, 6=, <,6, >,>, which are not supported by CFDs and

MDs.

Semantics. An REE ϕ = X → Y is interpreted along the same lines as tuple relational calculus (see,

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:6

e.g., [32]). Consider a database D of R. A valuation h of tuple variables of ϕ in D, or simply a valuation

of ϕ, is a mapping that instantiates t in each relation atom R(t) of ϕ with a tuple in the relation of R in D.

We say that h satisfies a predicate l over R, written as h |= l, if the following conditions are satisfied.

(1) If l is an atomic formula R(t), t.A⊗ c or t.A⊗ s.B (including t.id = s.id and t.id 6= s.id), then h |= l

is interpreted as in tuple relational calculus following the standard semantics of first order logic (see,

e.g., [32]). (2) If l is M(x̄1, x̄2), then h |= l if the ML classifier M predicts true when provided with

(h(x̄1), h(x̄2)), where h(x̄1) substitutes h(t).A for each t.A in x̄1; similarly for h(x̄2).

For a conjunction X of predicates over R, we write h |= X if h |= l for all predicates l in X .

A database D of R satisfies ϕ, denoted by D |= ϕ, if for all valuations h of tuple variables of ϕ in D, if

h |= X , then h |= Y . We say that D satisfies a set Σ of REEs, denoted by D |= Σ, if for all ϕ ∈ Σ, D |= ϕ.

Example 3. Let D be database (D1, D2, D3) of Example 1 and Σ consist of REEs ϕ1–ϕ4 of Example 2.

Then D 6|= ϕ4 as witnessed by valuation h4 that maps variable ta (resp. tb, t
′
a, t

′
b, t

′′
a, t

′′
b) to tuple t3

(resp. t5, t7, t7, t8, t9). Hence D 6|= Σ. Similarly, D 6|= ϕ3 and D 6|= ϕ1 (assuming that p1 6= p2 in D1). 2

3 Entity enhancing with extended chase

In this section, we show how to conduct entity enhancing with REEs. Consider a database D of schema

R, a set Σ of REEs over R and a set Γ of ground truth (validated data, see below). Users can iteratively

pick a small set E0 of entities of interest, e.g., tuples to be identified and corrected. Given E0, we deduce

a set of fixes pertaining to E0, by chasing D with Σ and Γ, i.e., by applying the rules of Σ to data

validated by Γ. Here a fix either identifies entities or updates an attribute value. The fixes are justified

as logical consequences of Σ and Γ, such that if Σ and Γ are correct, then so are the fixes.

We first extend the chase (Subsection 3.1). We then show how to enhance entities by the chase

(Subsection 3.2).

3.1 Extending the chase

We first specify fixes and ground truth. We then extend the chase.

Fixes. We enhance entities pertaining to E0 by deducing fixes. We keep track of such fixes in Ū(D,E0)

= (E=, E 6=, E<, E6, E>, E>), denoted by Ū when (D, E0) is clear from the context, where each E⊗ is a

relation. More specifically, for each tuple in D with tuple id tid, (a) a set [tid]= (resp. [tid] 6=) is in E=
(resp. E 6=), including the ids of tuples that are validated to be the same as tid (resp. distinct from tid).

(b) For each A-attribute of tid, a set [tid.A]⊗ is in E⊗, where ⊗ ranges over =, 6=, <,6, >,>. Here [tid.A]⊗
includes attributes tid1.B (resp. constants c) such that tid.A⊗ tid1.B (resp. tid.A⊗ c) is validated.

Observe the following: (a) E= is reflexive, symmetric and transitive; (b) E 6= is symmetric and “semi-

transitive”, e.g., from z∈[y]= and y∈[x] 6=, it follows that z∈[x] 6=; (c) When ⊗ is 6 or >, E⊗ is reflexive

and transitive; (d) If ⊗ is < or >, E⊗ is transitive. We deduce fixes with E⊗. For instance, if c ∈ [tid.A]=
and tid1.B ∈ [tid.A]=, then c is also in [tid1.B]=; and if c ∈ [tid.A]6 ∩ [tid.A]>, then c is in [tid.A]=.

For each x ∈ [y]=, we refer to (x, y) as a fix.

Intuitively, fixes tell us what entities should be identified and what value an attribute should take.

A fix is enforced on D as follows. If the fix is tid1 ∈ [tid]=, then the ids of the two tuples are identified.

If it is c ∈ [tid.A]=, then tid.A takes value c. If it is tid1.B ∈ [tid.A]=, then tid1.B and tid.A are equalized,

taking value c if some constant c ∈ [tid.A]=, or a special value # otherwise indicating a value yet to be

determined. Enforcing the fixes of Ū on D yields an enhanced database of R, denoted by D(Ū).

Validity. We say that Ū is valid if there exist no tuple tid and attribute A such that one of the following

happens: (1) [tid.A]= includes distinct constants c and d; i.e., an attribute should carry a unique value;

(2) [tid]= ∩ [tid] 6= 6= ∅, [tid.A]= ∩ [tid.A] 6= 6= ∅; [tid.A]> ∩ [tid.A]= 6=∅, [tid.A]< ∩ [tid.A]= 6=∅, [tid.A]> ∩

[tid.A]< 6=∅. (3) [tid.A]> 6⊆ [tid.A]> and [tid.A]< 6⊆ [tid.A]6. Obviously, if Ū is valid, then D(Ū) is well

defined.

Ground truth. To justify the correctness of fixes, we employ a block Γ of validated data. Block Γ

is initialized by means of (a) master data, “a single repository of high-quality data” for “core business

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:7

entities” [35], which is typically maintained by an enterprise, and (b) high-quality knowledge bases. Block

Γ is expanded with (i) data validated during entity enhancing via user interaction (see Subsection 3.2),

and (ii) crowdsourcing [20, 21]. It is periodically checked by domain experts. Block Γ is enclosed in E=.

The chase. Given a small set E0 of tuples, the chase deduces fixes pertaining to E0 by chasing D

with REEs in Σ and ground truth in Γ. It uses a set E to keep track of entities pertaining to E0, and

stores fixes and changes in Ū . More specifically, a chase step of D by Σ at (Ū , E) is

(Ū , E) ⇒(ϕ,h) (Ū
′, E′).

Here ϕ = X → Y is an REE in Σ, and h is a valuation of ϕ in D(Ū) pertaining to E, i.e., h maps at least

one tuple variable of ϕ to a tuple in E. Moreover, the conditions below are satisfied.

(1) All predicates l in the precondition X are validated. If l is t.A⊗ c, then c ∈ [tid.A]⊗; similarly for

t.A ⊗ s.B. If l is M(x̄1, x̄2), then either (a) each x ∈ x̄i is validated in the corresponding [tidi.Bj]= for

i ∈ [1, 2], and M(x̄1, x̄2) = true; or (b) M(x̄1, x̄2) is annotated to be true (see (2) below).

(2) A predicate l0 in Y extends Ū to Ū ′. If h maps t to tuple tid and l0 is t.A ⊗ c, then add c to

[tid.A]⊗; similarly for predicates t.A⊗ s.B. In particular, the set [tid]= (resp. [tid] 6=) is expanded with a

tuple id when l0 is t.id = s.id (resp. t.id 6= s.id). If l0 is M(x̄1, x̄2), then annotate the ML classifier with

M(x̄1, x̄2) = true. The changes are propagated, e.g., if c ∈ [tid.A]6 ∩ [tid.A]>, then add c to [tid.A]=.

(3) The set E′ extends E by including all tuples “updated” by l0, i.e., either its id is identified with an-

other or one of its attributes is modified. Intuitively, E′ is the area affected when enhancing entities in E.

Chasing. A chasing sequence ξ of D by (Σ,Γ) from E0 is

(Ū0, E0), . . . , (Ūk, Ek).

In Ū0, E= is Γ and E⊗ = ∅ for other ⊗. Moreover, for each i ∈ [1, k], there exist an REE ϕ in Σ and a

valuation h of ϕ in D(Ūi−1) such that (Ūi−1, Ei−1) ⇒(ϕ,h) (Ūi, Ei) is a valid chase step, i.e., Ūi is valid.

The chasing sequence is terminal if there exist no ϕ in Σ, valuation h of ϕ in D(Ūk) and (Ūk+1, Ek+1)

such that the step (Ūk, Ek) ⇒(ϕ,h) (Ūk+1, Ek+1) is valid.

Example 4. Continuing with Example 3, let E0 = {t6, t8}. Assume that the ground truth Γ includes

all entity id attribute values and those marked ∗ in Tables 1–3. If an attribute is marked ∗, then all the

values in its column have been validated. From E0, we have the following chase steps of D by Σ.

(1) (Ū0, E0) ⇒(ϕ1,h1) (Ū1, E1), where Ū0 is derived from Γ as stated above; h1 maps the variables of

ϕ1 to tuples t1, t2, t6 and t7; Ū1 extends Ū0 by adding t2.id to [t1.id]= and t2.weight to [t1.weight]=; and

E1 extends E0 by including tuples t1 and t2. Intuitively, this chase step identifies t1 and t2.

(2) The chase proceeds to (a) add t7.id to [t6.id]= by applying REE ϕ2, i.e., shops t6 and t7 are identified;

(b) extend [t3.weight]= (resp. [t3.id]=) with t4.weight (resp. t4.id) by using ϕ1; and (c) add t4.price to both

[t1.price]< and [t2.price]< by applying ϕ3 twice. Note that there is no chase step with REE ϕ4. This

is because the only valuation of ϕ4 in D involves products t3 and t5 but their weights do not satisfy

precondition of ϕ4. In fact, t3.weight is fixed with the correct value from t4. 2

A chasing sequence ξ terminates in one of the following two cases.

(a) No more REEs in Σ can be applied. If so, we say that ξ is valid, with (Ek, Ūk,D(Ūk)) as its result.

(b) Either Ū0 is invalid or there exist ϕ, h, Ūk+1 and Ek+1 such that (Ūk, Ek) ⇒(ϕ,h) (Ūk+1, Ek+1) but

Ūk+1 is invalid. Such ξ is invalid, and the result of the chase is ⊥ (undefined).

For instance, the chasing sequence of Example 4 is valid. It terminates with enhanced D(Ū) in which

(a) (t1, t2), (t3, t4), and (t6, t7) are pairwise identified, and (b) t3.weight is updated to t4.weight=1.3 kg.

Church-Rosser property. Following [32], we say that chasing with REEs is Church-Rosser if for any

schema R, any instance D of R, any set Σ of REEs on R, any block Γ of ground truth and any set E0

of entities in D, all chasing sequences of D by (Σ,Γ) from E0 are terminal, and all terminal sequences

converge at the same result, no matter what REEs in Σ are used and in what order the REEs are applied.

We will show that chasing with REEs is Church-Rosser (Section 4). Hence we define the result of

chasing D by (Σ,Γ) from E0, denoted by Chase(D,Σ,Γ, E0), as the result of any such terminal chasing

sequence.

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:8

We say that (Σ,Γ) is consistent if Chase(D,Σ,Γ, E0) 6= ⊥ for any database D of R and any set E0 of

tuples in D. That is, the rules in Σ and ground truth in Γ have no conflicts.

3.2 An entity enhancing framework

Based on the chase, we present a framework for entity enhancing, in online mode or offline mode.

Online mode. A user may pick a small set E0 ⊂ D of tuples of her interest, and request to enhance

entities pertaining to E0. Upon receiving the request, the framework does the following.

(a) Compute Chase(D,Σ,Γ, E0) and enhance entities pertaining to E0 by using the deduced fixes;

expand ground truth Γ with the validated fixes. These make one round.

(b) If not all errors pertaining to E0 are fixed, e.g., if some attributes still have value # or carry

distinct values, then interact with users and invite them to validate some values, further expand Γ with

the validated data, check the consistency of REEs in Σ and the expanded Γ, and repeat steps (a) and (b).

It ends up with a set E of enhanced entities such that for each tuple t pertaining to E0 (i.e., in the set

E) and each attribute A of t, t.A carries a validated value c. That is, the process only enhances entities

pertaining to E0. It guarantees that each fix deduced is justified, as a logical consequence of the REEs in

Σ and the ground truth in Γ. The process also accumulates ground truth in Γ.

Example 5. Suppose that the e-commerce platform wants to inspect and fix all the errors related

to shop t6 and delivery t8. The user can put tuples t6 and t8 in E0, and the chase runs as shown in

Example 4. When the chase terminates, the inconsistency between the prices of t1 and t4 still exists

(Example 1). Now the user is invited to validate the price of t4, and the verified value could further

expand the ground truth for subsequent processing. Note that the price of t1 can be readily obtained

from t2.price, since that value has already been validated, and t1 and t2 are identified in the chase. 2

Offline mode. After Γ accumulates sufficient ground truth, the framework may run in the offline mode

to enhance all entities in D. This is essentially step (a) above when E0 is D, without user interaction.

The process may not find all fixes to D if Γ is not inclusive, but it guarantees all fixes deduced to be

justified.

Remark. As opposed to the classical chase [17], (1) an REE is applied only when its precondition is

validated with ground truth Γ. Hence any fix in Chase(D,Σ,Γ, E0) is justified as long as Σ and Γ are

correct. (2) Entity enhancing embeds ML classifiers in logic rules; it collectively resolves both entities

and conflicts simultaneously by extending CFDs, DCs, and MDs across multiple relations.

4 Fundamental problems

In this section we first show that the extended chase is Church-Rosser. We then establish the complexity

of entity enhancing, consistency, satisfiability, and implication problems. We assume w.l.o.g. that ML

classifiers are in polynomial time (PTIME) for testing as commonly found in practice.

(1) Church-Rosser. We show that the chase is Church-Rosser with REEs carrying ML models.

Theorem 1. Chasing with REEs is Church-Rosser. 2

Proof. It suffices to show that (i) all chasing sequences are finite; and (ii) they have the same result.

(i) All chasing sequences are finite. Consider a chasing sequence ξ = (Ū0, E0), . . . , (Ūk, Ek) of D

by (Σ, Γ) from E0. Observe that each chase step in ξ either extends Ūi w.r.t. an atomic formula, or

annotates an ML prediction (see Subsection 3.1). The total number of prediction annotations is bounded

by |Σ| × (|D| + |Γ|)2 considering all pair combinations of data values in D and Γ. In addition, since

each attribute tid.A of D and Γ can appear in at most 6 relations E⊗ of the fixes Ūi (similarly for tid

and constant c), where ⊗ ranges over =, 6=, <,6, >,>, we have that the size of each Ūi is bounded by

6× (|D|+ |Σ|+ |Γ|)2. Putting these together, the length of ξ is bounded by 25× |Σ|2 × (|D|+ |Γ|)2, i.e.,

ξ is finite.

(ii) All terminal chasing sequences have the same results. We prove this by contradiction. Suppose that

two terminal chasing sequences ξ1 = (Ū0, E0), . . . , (Ūk, Ek) and ξ2 = (Ū0, E0), . . . , (Ū
′
l , E

′
l) have different

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:9

results. Then (a) there must exist operator ⊗ (=, 6=, <,6, >,>) such that E⊗ \ E ′
⊗ 6= ∅ or E ′

⊗ \ E⊗ 6= ∅,

where E⊗ (resp. E ′
⊗) is in Ūk (resp. Ū ′

l); or (b) an ML prediction M(x̄, ȳ) is annotated true by ξ1 but

not by ξ2, or vice versa. Assume w.l.o.g. that ξ1 is valid, and either l′ ∈ E ′
⊗ \ E⊗ or there is M(x̄, ȳ)

annotated true by ξ2 but not by ξ1. Let ϕj = X→Y be the REE and h be the valuation of ϕj that are

used to deduce l′ for the first time in ξ2 or to annotate M(x̄, ȳ). Then by induction on the length of ξ2,

it is easy to verify that (Ūk, Ek)⇒(ϕj ,h)(Ūk+1, Ek+1) is also a valid chase step, i.e., ξ1 is not terminal, a

contradiction. Similarly, this can be verified when E⊗ \ E ′
⊗ 6= ∅ or M(x̄, ȳ) is annotated true by ξ1 but

not by ξ2.

Note that we can treat an ML predicate M(x̄, ȳ) as a traditional predicate since it is checked only

after either both x̄ and ȳ have been validated, or it has been annotated in previous chase steps. 2

(2) Entity enhancing. We next settle the complexity of the entity enhancing problem, stated as

follows.

◦ Input: A database schema R, a database D of R, a set Σ of REEs over R, a block Γ of ground truth,

a set E0 of tuples in D, and a fix (x, y).

◦ Question: Is (x, y) ∈ Ū , i.e., a fix deduced in the chase? Here Chase(D,Σ,Γ, E0) = (E, Ū ,D(Ū)).

One can verify that chasing with CFDs alone is NP-complete, i.e., CR alone when Σ consists of CFDs

only. Below we show that unifying ER and CR with REEs does not make our lives harder.

Theorem 2. The entity enhancing problem is NP-complete with REEs. 2

Proof. We first provide an NP algorithm for entity enhancing, and then show that it is NP-hard.

• Upper bound. We provide an NP algorithm for the entity enhancing problem that works as follows.

(a) Guess a chasing sequence ξc = (Ū0, E0) ⇒(ϕ1,h1) (Ū1, E1) ⇒ · · · ⇒ (Ūm−1, Em−1) ⇒(ϕm,hm)

(Ūm, Em) of D by (Σ,Γ) from E0 such that m 6 25× |Σ|2 × (|D|+ |Γ|)2.

(b) Check whether the sequence is terminal and moreover, for each j ∈ [0,m − 1], check whether

(Ūj , Ej)⇒(ϕj+1,hj+1)(Ūj+1, Ej+1) is a valid chase step; if not, reject the guess; otherwise continue.

(c) Check whether the fix (x, y) exists in Ūm; if so, return true.

The correctness of the algorithm follows from Theorem 1, i.e., the Church-Rosser property. For its

complexity, step (b) is in PTIME by the definition of chase steps; step (c) is in PTIME, since |Ūm| 6

25×|Σ|2× (|D|+ |Γ|)2 as shown above. Thus the algorithm is in NP. So is the entity enhancing problem.

• Lower bound. We next show that the problem is NP-hard by reduction from the Boolean conjunctive

query evaluation (BCQE) problem, which is known to be NP-complete [36]. The BCQE problem is to

decide, given a Boolean conjunctive query Q and a database D′, whether Q(D′) is true.

Given Q and D′, we construct a database schema R, a database D of R, a set Σ of REEs over R, a

block Γ of validated data, a set E0 of entities in D and a fix (x, y) such that Q(D′) = true if and only if

(x, y) is in Chase(D,Σ,Γ, E0). We use REEs in Σ to encode the query Q, the database D to encode D′,

and the valuations of REEs in D to encode Q(D′). More specifically, the instance is built as follows.

(1) The database schema R consists of all relation schemas that are referenced in Q and D′, and an

extra relation schema R′ that includes a single attribute A1 plus id. Intuitively, R′ is used to deduce the

fix.

(2) The database D includes all tuples of D′, and two extra tuples t′1 and t′2 of schema R′ with t′1.A1=a1

and t′2.A1=a2, where a1 and a2 are two distinct constants that do not appear in D′.

(3) The set Σ consists of only one REE, namely, Q ∧ R(t1) ∧ R(t2) → t1.id = t2.id. Intuitively, when

Q(D′) = true, we can enforce t1.id = t2.id in D.

(4) The set E0 includes D; and Γ consists of all the data in D′ (i.e., for each tuple t in D′ and each

attribute A of t, if t.A is c in D′, then t.A = c is in Γ), and none of the data in tuples t′1 and t′2.

(5) The fix is (t′1.id, t
′
2.id), i.e., the two extra tuples t′1 and t′2 that aim to refer to the same entity.

It is easy to show that (t′1.id, t
′
2.id) ∈ Chase(D,Σ,Γ, E0) if and only if Q(D′) = true. 2

(3) Consistency. In practice REEs in Σ are discovered from (possibly dirty) real-life data, and the

block Γ of ground truth is accumulated in user interactions. While Σ and Γ are periodically inspected by

domain experts, we still need to check whether (Σ,Γ) is consistent (see Subsection 3.2), i.e., they have

no conflicts themselves. This highlights the need for studying the consistency problem, stated as follows.

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:10

◦ Input: A database schema R, a set Σ of REEs over R and a block Γ of ground truth.

◦ Question: Is (Σ,Γ) consistent?

A similar problem has been shown coNP-complete for a revision of MDs and CFDs [2]. We show that

the problem retains the same complexity for REEs, even for REEs defined across multiple relations.

Theorem 3. The consistency problem is coNP-complete. 2

Proof. We establish the upper bound and lower bound of the consistency problem. For the upper bound

we need the following small model property, which will be proved at the end of the proof.

Lemma 1. Given a set Σ of REEs and a set Γ of ground truth, we can build in PTIME a database D(Σ,Γ)

and a set E
(Σ,Γ)
0 of tuples such that Chase(D(Σ,Γ),Σ,Γ, E

(Σ,Γ)
0)6=⊥ if and only if (Σ,Γ) is consistent. 2

• Upper bound. The following NP algorithm suffices to check whether (Σ,Γ) is not consistent.

(1) Construct the database D(Σ,Γ) and the set E
(Σ,Γ)
0 of tuples based on Lemma 1.

(2) Guess a chasing sequence (Ū0, E0), . . . , (Ūk, Ek) of D(Σ,Γ) from E
(Σ,Γ)
0 with k 6 25× |Σ|2 × (|D|+

|Γ|)2.

(3) For each j ∈ [0, k − 2], check whether (Ū , Ej) ⇒(ϕj+1,hj+1) (Ūj+1, Ej+1) in the sequence is a valid

chase step; if so, continue; otherwise, reject the current guess.

(4) Check whether (Ūk−1, Ek−1)⇒(ϕk,hk)(Ūk, Ek) is invalid; if so, return true.

The correctness of the algorithm follows from Lemma 1 and Theorem 1. For the time complexity,

step (1) is in PTIME by Lemma 1. Both steps (3) and (4) are also in PTIME by the definition of the

chase step. Therefore, the algorithm is in NP, and hence the consistency problem is in coNP.

• Lower bound. The coNP-hardness can be verified by reduction from the complement of BCQE (see

the proof of Theorem 2 for BCQE). Given Q and D′, we construct a schema R, a set Σ of REEs on R and

a block Γ of validated data such that Q(D′) = true if and only (Σ,Γ) is not consistent. The construction is

similar to the one given in the proof of Theorem 2, except that Γ contains an additional fact t′1.id = t′2.id,

and the consequence Y of the only REE in Σ is t1.id 6= t2.id. Intuitively, we use Σ to encode Q, and Γ

to encode the tuples in D′. When Q(D′) = true, we can apply Σ to Γ, to deduce t′1.id 6= t′2.id, which

contradicts the fact t′1.id = t′2.id in Γ. Conversely, if (Σ,Γ) is inconsistent, we know that t′1.id 6= t′2.id

must be deduced. By Lemma 1, we can further apply rules in Σ to Γ and show that Q(D′) = true.

Proof of Lemma 1. Observe that each chasing sequence starts from the given ground truth Γ and

tuples E0, and “propagates” the changes, i.e., fixes induced by Γ and Σ iteratively. In light of this, we

construct the database D(Σ,Γ) and tuples E
(Σ,Γ)
0 based on Γ such that a mapping can be established

between the chasing sequences of arbitrary database D by Σ and the chasing sequences of D(Σ,Γ), from

which the consistency of (Σ,Γ) can be readily verified using D(Σ,Γ) and E
(Σ,Γ)
0 alone.

- Construction of D(Σ,Γ). For each validated attribute value t.A = c in Γ, we include a tuple t′ in

D(Σ,Γ) and keep t′.A = c in D(Σ,Γ). If Γ contains the validated fact s.A = r.B without any s.A = c

or r.B = c, then we add both tuples s′ and r′ to D(Σ,Γ) and assign # to s′.A and r′.B. If Γ contains

s.id = r.id that is not instantiated with validated value, then we add tuple s′ and r′ to D(Σ,Γ) with #

as their id value. Besides these, we also add an additional tuple tR with a distinct id to D(Σ,Γ) for each

relation schema R of R, where R denotes the database schema over which Σ is defined. The attributes

of tuples in D(Σ,Γ) are given distinct values if they cannot be decided as above. In fact, a mapping hd

from arbitrary database D of R to D(Σ,Γ) is determined via this construction, in which (a) hd(t) = t′ if

tuple t in D has validated attributes as specified in Γ; and hd(t) = tR when t is a tuple of schema R and

has no validated attribute.

- Construction of E
(Σ,Γ)
0 . The set E

(Σ,Γ)
0 simply contains all tuples in D(Σ,Γ).

Obviously the construction of both D(Σ,Γ) and E
(Σ,Γ)
0 can be done in PTIME.

We next show that Chase(D(Σ,Γ),Σ,Γ, E
(Σ,Γ)
0) 6= ⊥ if and only if (Σ,Γ) is consistent. (1) When

Chase(D(Σ,Γ),Σ,Γ, E
(Σ,Γ)
0) = ⊥, (Σ,Γ) is inconsistent by the definition of consistency (Subsection 3.1).

(2) Conversely, when (Σ,Γ) is not consistent, there exist a database D of R and a set E0 of tuples in D

such that Chase(D,Σ,Γ, E0) = ⊥. Assume that ξ = (Ū0, E0), . . . , (Ūk, Ek) is an invalid chasing sequence

of D. We consider the following two cases: (a) Ū0 is invalid, and (b) there exist REE ϕ ∈ Σ and valuation

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:11

h of variables of ϕ such that (Ūk−1, Ek−1) ⇒(ϕ,h) (Ūk, Ek) is a chase step but Ūk is invalid. For case

(a), obviously we have that Chase(D(Σ,Γ),Σ,Γ, E
(Σ,Γ)
0) = ⊥ since Γ is invalid itself. For case (b), based

on ξ and the mapping hd described above, we can construct a chasing sequence ξ1 of D(Σ,Γ) by (Σ,Γ)

from E
(Σ,Γ)
0 such that ξ1 is also invalid, i.e., Chase(D(Σ,Γ),Σ,Γ, E

(Σ,Γ)
0) = ⊥. Here ξ1 and ξ have the same

length and apply the same REE ϕi in every corresponding pair of their chase steps. The only difference

is that each tuple variable tx in ϕi is mapped to hd(hi(tx)) in ξ2, where hi denotes the valuation adopted

in ξ1. 2

We next study two classical decision problems that are associated with any class of logic rules.

(4) Satisfiability. Given a set Σ of REEs, we want to know whether the rules in Σ are dirty themselves.

This motivates us to study the satisfiability problem for REEs, stated as follows.

◦ Input: A database schema R and a set Σ of REEs over R.

◦ Question: Does there exist a nonempty instance D of R such that D |= Σ?

We assume w.l.o.g. that the ML models used in REEs output infinitely many true and false results for

different pairs of compatible vectors x̄ and ȳ taken from any practical dense domain. This is guaranteed

by most high dimensional ML classifiers, e.g., decision tree and support vector machine [37].

For functional dependencies (FDs), the satisfiability analysis is trivial: for any set Σ of FDs over R,

there exists a nonempty instance D of R that satisfies Σ [38]. It is easy to verify that this also holds for

equality-generating dependencies (EGDs). However, this no longer holds for CFDs [8] and thus, not for

REEs. For instance, consider a set Σ that includes a single REE R(t)→false, where false is a syntactic

sugar for a conflicting condition, e.g., t.A1 = 0∧ t.A1 = 1. Obviously, there is no nonempty instance that

satisfies Σ.

Nonetheless, we show that the satisfiability problem for REEs is NP-complete. It is the same as for

CFDs, a special case of REEs for CR [8], despite that REEs can be defined across multiple relations.

Theorem 4. The satisfiability problem is NP-complete for REEs. 2

Proof. We first show that the satisfiability problem in NP, and then prove that the problem is NP-hard.

• Upper bound. To show the upper bound, we first show a small model property. We transform REEs

into Horn formulas, in which all the predicates in REEs are simply treated as Boolean variables. By doing

so, the satisfiability checking of REEs can be reduced to testing the satisfiability of a set of Horn formulas.

Normal forms. An REE rule ϕ = X → Y is in the normal form if Y consists of only one predicate l, i.e.,

ϕ = X → l. Given any REE ϕ = X → Y , we can construct an equivalent set Σϕ = {X → l | l ∈ Y } of

REEs such that for any database D, D |= ϕ if and only if D |= Σϕ. That is, REEs and REEs in the normal

form have the same expressive power. In the sequel, we assume that all REEs are in the normal form.

Canonical databases. We adopt canonical databases to verify the satisfiability problem. Assume that

the set Σ of REEs is defined over a relational schema R = (R1, . . . , Rn). A canonical database Ds
i is a

database of R that includes only a single tuple tsi in one of its relations, say instance Di of schema Ri,

where all the other relations in Ds
i are empty. Here tuple tsi has distinct variables xj for all the attributes

specified in schema Ri. Obviously, if there exists a canonical database satisfying Σ, then Σ is satisfiable.

Horn formulas. We now show how to construct a set Hs
i of Horn formulas for each canonical database

Ds
i (i ∈ [1, n]), where each formula has the form of A1 ∧ · · · ∧ Am → B and each Ai (i ∈ [1,m]) denotes

a Boolean variable; similarly for B. More specifically, Hs
i includes three types of Horn formulas.

(1) For each attribute Aj specified in relation schema Ri, we add a Horn formula of ∅ → Zts
i
.Aj=xj

to

Hs
i , assuming that the only tuple tsi in canonical database Ds

i carries a distinct variable xj for attribute

Aj . Here Zts
i
.Aj=xj

is a Boolean variable to indicate the fact that tsi .Aj = xj .

(2) For each REE of the form of Ri(t1) ∧ · · · ∧ Ri(tk) ∧ l1 ∧ · · · ∧ lm → l in Σ, we add a formula

Zh(l1)∧· · · ∧Zh(lm) → Zh(l) to Hs
i . Here h refers to the only valuation of the REE in Ds

i , i.e., all variables

are mapped to tuple tsi ; and each Zh(lj) (j ∈ [1,m]) (resp. Zh(l)) is a Boolean variable representing the

instantiated predicate h(lj) (resp. h(l)), in which tuple variables in lj (resp. l) are replaced by tsi .

For instance, consider REE ϕ = R1(t1) ∧ R1(t2) ∧ (t1.E = t2.F) → t1.D = t2.D in the normal form.

Suppose that the canonical database Ds
1 has a single tuple ts1 of R1. Then we build a Horn formula

Zts
1
.E=ts

1
.F → Zts

1
.D=ts

1
.D. Note that both t1 and t2 are mapped to tuple ts1 in the valuation.

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:12

(3) To avoid assigning distinct constants c and d that appears in Σ to each attribute Aj in schema Ri,

we also include the following Horn formula in Hs
i : Zts

i
.Aj=c ∧ Zts

i
.Aj=d → false.

To check the satisfiability of Σ on canonical databases, it suffices to consider REEs in Σ that are defined

over a single relation. Indeed, if an REE ϕ = X → l carries atoms of different relation schemas, then for

any canonical databaseDs
i ofR, we have that Ds

i |= ϕ. This is because Ds
i consists of a single tuple. Hence

ifX carries atoms of distinct relation schemas, one of them cannot be instantiated inDs
i and thus Ds

i 6|= X ;

as a result, Ds
i |= ϕ. Note that all relation atoms are bounded in precondition X (page 4) and hence the

consequence l does not contain any new relation atoms. For example, if ϕ is R1(t1) ∧ R2(t2) ∧ t1.A =

t2.A → t1.B = t2.B, then no canonical Ds
i can instantiate both tuple variables t1 of R1 and t2 of R2.

Number of variables. Since we aim to give an NP algorithm for the satisfiability problem by testing the

satisfiability of Horn formulas built as above, it is necessary to analyze the number of Boolean variables in

each Hs
i . To this end, we bound the number of all possible predicates that can induce Boolean variables

for the formulas. Observe the following, (1) the number of attributes in each canonical database Ds
i is

at most |R|; (2) for each comparison operator ⊗ ranging over =, 6=, <,6, >,>, the number of predicates

in the form of t.A ⊗ c and t.A ⊗ s.B is bounded by |R|2 + |R| × |Σ|, where c is a constant in Σ; and

(3) there exist at most |Σ| Boolean variables induced by ML predicatesM(x̄, ȳ), since x̄ and ȳ are pairwise

compatible attributes of tuples, i.e., x̄ (resp. ȳ) is from some tuple tx (resp. ty) in Ds
i , and moreover,

there exists only one tuple in Ds
i . Therefore, there exist polynomially many possible predicates to induce

the Boolean variables, and the construction of each set Hs
i of Horn formulas can be done in PTIME.

It is easy to verify the following small model property for the satisfiability of REEs.

Lemma 2. Given a set Σ of REEs, (1) if Σ is satisfiable, then there exists a truth assignment of the

Boolean variables in some Hs
i that satisfies the Horn formulas of Hs

i ; and (2) if an instance I(Ds
i) of some

canonical database Ds
i induces a truth assignment that can satisfy Hs

i , then I(Ds
i) |= Σ. 2

Here an instance I(Ds
i) of D

s
i is a database obtained by instantiating variables in Ds

i with constants.

Moreover, the truth assignment of Boolean variables inHs
i induced by I(Ds

i) is such defined that Zl′ = true

(resp. Zl′ = false) if and only if the instantiated predicate l′ holds (resp. does not hold) in I(Ds
i).

Proof of Lemma 2. (1) When Σ is satisfiable, there exists a nonempty instance D ofR such that D |= Σ.

Let t be a tuple in the relation of some schema Ri in D, and consider a database Di that consists of only

one tuple t. It is easy to verify that Di |= Σ. Then we can derive a truth assignment µ for the variables

in Hs
i induced by Di as follows. Let h be a valuation of REEs of Σ in Di, which is unique since Di has

only one tuple t. For each Boolean variable Zl of Hs
i , Zl is assigned true (resp. false) by µ if and only if

the instantiated predicate hi(l) is true (resp. false) in Di. Then µ is a satisfying truth assignment for Hs
i .

Indeed, (a) µ satisfies each formula of the form ∅ → Zts
i
.Ai=xi

in Hs
i , which just indicates the association

of attribute and value; (b) µ satisfies Horn formulas Zh(l1) ∧ · · · ∧ Zh(lm) → Zh(l) that are constructed

w.r.t. REEs Ri(t1) ∧ · · · ∧Ri(tk) ∧ l1 ∧ · · · ∧ lm→l, since such formulas specify conditions that guarantee

a nonempty database to satisfy Σ and Di |= Σ; and (c) formulas of the form Zts
i
.Aj=c ∧ Zts

i
.Aj=d→false

are also satisfied by µ since Di is well defined and no attribute is given two distinct values.

(2) Conversely, assume that I(Ds
i) induces a truth assignment µ that satisfies Hs

i . Then for any REE

ϕ = R1(t1)∧ · · · ∧Rl(tl)∧ l1 ∧ · · · ∧ lm → l in Σ and any valuation h of ϕ in I(Ds
i), if Zh(l1) ∧ · · · ∧Zh(lm)

is true by µ, then Zh(l) must also be true since Zh(l1) ∧ · · · ∧ Zh(lm) → Zh(l) is a formula in Hs
i by its

construction and µ is a satisfying truth assignment. That is, h |= ϕ. Thus I(Ds
i) |= Σ. 2

In addition to the small model property, we also need the following Lemma to prove the upper bound.

Lemma 3. Given a truth assignment µ of the Boolean variables in Hs
i , it is in PTIME to check whether

there exists a corresponding instance I(Ds
i) of the canonical database Ds

i that can induce µ. 2

Proof of Lemma 3. We present the following algorithm to verify the existence of such an instance

I(Ds
i).

(1) Divide the Boolean variables of Hs
i into two disjoint sets L⊗ and LM. Here L⊗ includes those

that are specified with predicates in the form of t.A⊗ c or t.A⊗ s.B, where ⊗ is a comparison operator

(=, 6=, <,6, >,>); and LM consists of ML predicates M(x̄, ȳ).

(2) Compute the ranges φ for the variables in canonical database Ds
i that can induce the truth as-

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:13

signment µ for L⊗. That is, the instance I(Ds
i) should bind values from φ to the variables in Ds

i and it

induces truth assignment µ as stated above. If φ is empty, return false; otherwise, continue.

(3) Check whether the truth assignment µ for LM can be induced by the instance I(Ds
i) that binds

values from domain φ only. If so, return true; otherwise, return false.

The correctness of the algorithm follows the definitions of L⊗ and LM. We next analyze its complexity.

Obviously step (1) can be done in PTIME. For step (2), the predicates in L⊗ specify a set of inequalities

based on the truth assignment µ, from which the range φ can be deduced in PTIME [39]. In step (3),

we do the checking as follows. For each ML predicate M(x̄, ȳ) in LM having x̄ and ȳ bound to a fixed

pair of values in step (2), i.e., the domain of x̄ (resp. ȳ) is a singleton set, we compute the result using

M directly in PTIME. If the result and the truth assignment µ for Boolean variable ZM(x̄,ȳ) are not

consistent, then return false; otherwise true is returned. Note that when x̄ or ȳ has a dense domain, we

do not need to check M(x̄, ȳ) by the assumption of the ML models given earlier. 2

Algorithm. Given a set Σ of REEs, we provide the following algorithm to check whether Σ is satisfiable.

(1) Construct the the set Hs
i of Horn formulas for each i ∈ [1, n].

(2) Guess a truth assignment µ for the Boolean variables that appear in Hs
j for some j ∈ [1, n].

(3) Check whether Hs
j is satisfied by µ; if so, continue; otherwise, reject the current guess.

(4) Check whether there exists an instance I(Ds
j) of the canonical database Ds

j that can induce the

truth assignment µ; if so, return true.

The correctness follows from the small model property (Lemma 2). For its complexity, step (1) can be

done in PTIME as analyzed above. Step (3) is in PTIME since there exist polynomially many formulas;

and step (4) is in PTIME by Lemma 3. Hence the algorithm is in NP, and so is the satisfiability problem.

• Lower bound. Consider constraint-generating dependencies with equality and ordering [40], denoted

by CGDs. CGDs are REEs of the form R1(t1) ∧ . . . ∧ Rn(tn) ∧ l1 ∧ . . . ∧ lm → l, where l1, . . . , lm, l are

predicates of the form t.A⊕ c or t.A⊕ t′.B, and ⊕ is one of =, 6=, <,6. It is known that the satisfiability

problem is NP-complete for CGDs with a fixed number of atom formulas [40]; hence so is the problem for

REEs.

As remarked earlier, the satisfiability problem is also NP-complete for CFDs [8], another special case

of REEs. But the intractability only holds when CFDs are defined with attributes having a finite domain.

In contrast, the satisfiability problem is NP-complete for REEs regardless of the domains of attributes. 2

(5) Implication. Another classical problem is the implication problem for REEs. We say that a set

Σ of REEs defined over schema R entails another REE ϕ over R, denoted by Σ |= ϕ, if for any database

D of R, if D |= Σ then D |= ϕ. Intuitively, the implication analysis helps us eliminate redundant rules

and hence, speed up the entity enhancing process. Hence we study the implication problem for REEs.

◦ Input: A database schema R, a set Σ of REEs and another REE ϕ, both defined over R.

◦ Question: Does Σ |= ϕ?

For conventional relational dependencies, it is known that the implication problem for FDs is in linear

time [41] and is coNP-complete for CFDs [8]. We show the implication problem for REEs is Πp
2-complete.

Here Πp
2 is the class of problems in coNPNP. That is, when it comes to the implication analysis, the extra

expressive power of REEs does come with a (slightly) higher complexity unless P = NP. As stated below,

the higher complexity arises from REEs defined over multiple relations for collective entity enhancing.

Theorem 5. The implication problem is Πp
2-complete for REEs. It is coNP-complete when checking

Σ |= ϕ and ϕ is not collective, i.e., ϕ does not carry relation atoms over different schemas. 2

Proof. Below we first show that (i) the implication problem is Πp
2-complete. We then prove that

(ii) the problem is NP-complete when the REE ϕ is not defined collectively.

(i) General case. Given a set Σ of REEs and another REE ϕ, we first give a Πp
2 algorithm to check

whether Σ |= ϕ. We then show that the problem is Πp
2-hard.

• Upper bound. Similar to the proof of Theorem 4, we also define a canonical database, construct a

set of Horn formulas for the canonical database, and establish a small model property for the implication

problem by using the truth assignments of Horn formulas. These differ from their counterparts for

Theorem 4 in the following. (1) When determining whether Σ |= ϕ, the canonical database Ds is defined

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:14

w.r.t. those relation schemas that appear in ϕ only. (2) If there are m occurrences of a relation schema Ri

in ϕ, then we include m tuples in the canonical database w.r.t. Ri, and they still carry distinct variables

as in the proof of Theorem 4. (3) The Horn formulas encode REE ϕi ∈ Σ and all the valuations of ϕi

in the canonical database. (4) For ϕ = X → Y , we use two groups of extra Horn formulas: (a) for

each predicate l in X , a Horn formula ∅ → Zl to enforce the precondition of ϕ; and (b) a Horn formula

Zl1 ∧ · · · ∧ Zlk → false, where l1, . . . , lk are predicates in Y , and Y refers to the consequence of ϕ.

Observe that the canonical database only includes tuples of relation schemas that appear in ϕ. We

do not consider relation schemas R′ that appear in Σ but not in ϕ. In fact, the canonical database Ds

satisfies those REEs that have R′ in their preconditions, since the instance of R′ in Ds is empty (see proof

of Theorem 4). That is, such REEs have no impact on the small model property for Σ 6|= ϕ (see below).

Denote by Hs (resp. Ds) the union of Horn formulas (resp. canonical database) built as above, and

denote by V s the set of Boolean variables in Hs. Based on the construction of Horn formulas and the

statement of the implication problem, we have the following small model property for the implication

problem, which can be readily verified along the same lines as the proof of Lemma 2.

Lemma 4. Given a set Σ of REEs and an REE ϕ, (1) if Σ 6|= ϕ, then V s has a truth assignment that

satisfies the Horn formulas in Hs, and (2) if an instance I(Ds) of the canonical database Ds induces a

truth assignment that can satisfy Hs, then Σ 6|= ϕ. 2

Different from the proof of Theorem 4, there may exist exponentially many Horn formulas in Hs here

since the canonical database can include multiple tuples and the combinations of all valuations have to

be considered when constructing the formulas. However, V s is of polynomial size and we can validate the

truth assignments of Hs by simply guessing unsatisfied formulas in Hs, which results in the following.

Lemma 5. Given a truth assignment µ for V s, it is in coNP to check whether µ satisfies Hs. 2

Algorithm. We now provide the following algorithm to check whether Σ 6|= ϕ.

(1) Construct the set V s of Boolean variables for Hs.

(2) Guess a truth assignment µ of V s.

(3) Check whether µ satisfies all the Horn formulas that can be included in Hs; if so, continue.

(4) Check whether there exists an instance I(Ds) of canonical Ds that can induce µ; if so, return true.

The correctness follows from Lemma 4. For the complexity, step (1) is in PTIME due to polynomial-size

V s. Step (3) is in coNP by Lemma 5 and step (4) is in PTIME by Lemma 3. Hence the algorithm is in

NPcoNP, i.e., Σp
2. That is, checking Σ 6|= ϕ is in Σp

2. Therefore, the implication problem is in Πp
2.

• Lower bound. We prove that the problem is Πp
2-hard by reduction from the complement of the

generalized graph coloring problem, denoted by GGCP, which is known to be Σp
2-complete [42,43]. GGCP

is to decide, given two undirected graphs F = (VF , EF) and G = (VG, EG), whether there exists a two-

coloring of F such that there is no monochromatic subgraph of F isomorphic to G. Here a monochromatic

subgraph of F is a subgraph whose nodes are assigned the same color. It is known that GGCP remains

Σp
2-complete even when G is a complete graph and F does not contain any self cycles [42].

Given two undirected graphs F = (VF , EF) and G = (VG, EG), we construct a database schema R, a

set Σ of REEs and another REE ϕ over R such that Σ 6|= ϕ if and only if there exists a 2-coloring of F so

that no monochromatic subgraph of F is isomorphic to G. Intuitively, (1) we use two REEs ϕ1 and ϕ2 in

Σ to check the existence of the monochromatic subgraph and to specify the domain of colors, respectively;

and (2) REE ϕ is to encode the structure of F . When Σ 6|= ϕ, we can deduce a 2-coloring of F from

the valuation of ϕ and further conclude that there does not exist a requested monochromatic subgraph

via ϕ1. Conversely, suppose that there exists a 2-coloring of F such that F contains no monochromatic

subgraph that is isomorphic to G, we can construct an instance D of R witnessing Σ 6|= ϕ.

More specifically, we define R, Σ and ϕ as follows.

(1) The relational schemaR consists of three relation schemas, namely, RV , RE and RO that are defined

with attributes {AV , AC}, {AV1
, AV2

} and AO, respectively. Here we use (a) RV to encode nodes and

their colors, (b) RE to store edges of F and G, and (c) RO to witness Σ |= ϕ, which will be clear soon.

(2) Σ is composed of two REEs ϕ1 and ϕ2, which are to check the existence of the monochromatic

subgraph and enforce the domain of colors, respectively.

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:15

(i) REE ϕ1 is defined as X1
1 ∧ X1

2 ∧ X1
3 → Y 1, where (a) X1

1 is
∧

(u,v)∈EG
(RV (tu) ∧ RV (tv) ∧

tu.AC = tv.AC), recording nodes of G and their colors; here tuple variables tu and tv represent nodes

u and v, respectively, and the equality requires that the nodes on each edge of G have the same color;

(b) X1
2 is

∧
(u,v)∈EG

{(RE(t(u,v)) ∧ t(u,v).AV1
= tu.AV ∧ t(u,v).AV2

= tv.AV) ∧ (RE(t(v,u)) ∧ t(v,u).AV1
=

tv.AV ∧ t(v,u).V2 = tu.AV)}, which encodes the edges in G; (c) X1
3 is a relation atom RO(t) to wit-

ness the implication; and (d) Y 1 is to ensure that the AO attribute value of the tuple t is 1, i.e.,

t.AO = 1.

(ii) REE ϕ2 enforces that the colors can only be 0 or 1. More specifically, ϕ2 is defined as RV (tx) ∧

tx.AC 6= 0 ∧ tx.AC 6= 1 → tx.AC 6= tx.AC . Since tx.AC 6=tx.AC never holds, tx.C is either 0 or 1.

(3) REE ϕ is to represent the structure of F . Similar to the construction of ϕ1, ϕ is defined as

X1 ∧ X2 ∧ X3 → Y1. Here X1, X2 and X3 are to encode the nodes and edges of F and enforce a

constraint on attribute AO, respectively, similar to their counterparts in ϕ1. More specifically, (a) X1 is
∧

u∈VF
(RV (tu)∧tu.AV = cu), where cu is a constant other than 0 or 1, to represent node u of F ; (b) X2 is

∧
(u,v)∈EF

{(RE(t(u,v))∧ t(u,v).AV1
=cu ∧ t(u,v).AV2

=cv)∧ (RE(t(v,u))∧ t(v,u).AV1
= cv ∧ t(v,u).AV2

= cu)},

where each edge (u, v) in F is encoded with two atoms RE(t(u,v)) and RE(t(v,u)); (c) X3 has only one

predicate RO(t); and (d) Y1 is defined as t.AO = 1, i.e., the AO attribute of tuple t is requested to be 1.

Since the structures of G and F are encoded in Σ and ϕ, we can easily prove that Σ 6|= ϕ if and only

if there exists a 2-coloring of F such that F does not contain a monochromatic G as a subgraph.

(ii) Special case. When the REE ϕ is not collective, it does not carry relation atoms over different

relation schemas. We show that the implication problem becomes coNP-complete in this case.

For the upper bound, since ϕ is not collective, the canonical database Ds consists of only one tuple,

and hence Hs has polynomially many Horn formulas. Then the algorithm for the general case still works,

except that now step (3) is in PTIME as in the proof of the satisfiability problem. Hence the algorithm

is in NP; so is the implication problem. Note that the REEs in Σ may still carry atoms over different

relation schemas, since when establishing the small model property for Σ 6|= ϕ, the canonical database

Ds and Horn formulas Hs are constructed w.r.t. the (single) relation schema in ϕ only (Lemma 4).

The lower bound follows from [40], which shows that the implication problem for CGDs is already

coNP-complete. As remarked in the proof of Theorem 4, CGDs are a special case of REEs. 2

5 Conclusion

We have proposed a framework that unifies collective ER and CR, extends logic rules with ML classifiers,

and warrants correctness for fixes deduced. We have extended the chase underlying the framework, and

verified its Church-Rosser property. We have also settled the fundamental problem associated with the

framework, having complexity the same as or slightly higher than their CFD counterparts.

To put the framework in action, there is naturally much more to be done. First, efficient algorithms need

to be developed for discovering useful REEs from real-life data. Second, parallel algorithms are needed

for implementing the chase, to scale with both the number and size of relational datasets. Moreover,

parallel algorithms should be in place for incremental CR and ER in response to updates to the data.

Such algorithms are already in place for CFDs and are being used in practice. Hence practical algorithms

for REEs are also within the reach given that REEs bear complexity comparable to CFDs.

Acknowledgements This work was supported in part by Shenzhen Institute of Computing Sciences, Beijing Advanced

Innovation Center for Big Data and Brain Computing (Beihang University), Royal Society Wolfson Research Merit Award

(Grant No. WRM/R1/180014), European Research Council (Grant No. 652976), Engineering and Physical Sciences

Research Council (Grant No. EP/M025268/1).

References

1 Wikibon. A comprehensive list of big data statistics, 2012. http://wikibon.org/blog/big-data-statistics/

2 Fan W F, Gao H, Jia X B, et al. Dynamic constraints for record matching. VLDB J, 2011, 20: 495–520

https://doi.org/10.1007/s00778-010-0206-6

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:16

3 Bertossi L, Kolahi S, Lakshmanan L V S. Data cleaning and query answering with matching dependencies and matching

functions. Theory Comput Syst, 2013, 52: 441–482

4 Bhattacharya I, Getoor L. Collective entity resolution in relational data. ACM Trans Knowl Discov Data, 2007, 1: 5

5 Arasu A, Ré C, Suciu D. Large-scale deduplication with constraints using Dedupalog. In: Proceedings of the 25th

International Conference on Data Engineering, 2009

6 Mudgal S, Li H, Rekatsinas T, et al. Deep learning for entity matching: a design space exploration. In: Proceedings

of International Conference on Management of Data, 2018

7 Arasu A, Götz M, Kaushik R. On active learning of record matching packages. In: Proceedings of International

Conference on Management of Data, 2010

8 Fan W F, Geerts F, Jia X B, et al. Conditional functional dependencies for capturing data inconsistencies. ACM

Trans Database Syst, 2008, 33: 1–48

9 Golab L, Karloff H, Korn F, et al. On generating near-optimal tableaux for conditional functional dependencies.

In: Proceedings of the VLDB Endowment, 2008

10 Fan W F, Geerts F, Tang N, et al. Conflict resolution with data currency and consistency. J Data Inf Qual, 2014, 5:

1–37

11 Arenas M, Bertossi L, Chomicki J. Consistent query answers in inconsistent databases. In: Proceedings of Symposium

on Principles of Database Systems, 1999

12 Chu X, Ilyas I F, Papotti P. Holistic data cleaning: putting violations into context. In: Proceedings of IEEE Interna-

tional Conference on Data Engineering, 2013

13 Chiticariu L, Li Y Y, Reiss F R. Rule-based information extraction is dead! Long live rule-based information extraction

systems! In: Proceedings of Empirical Methods in Natural Language Processing, 2013

14 Fan W F, Li J Z, Ma S, et al. Interaction between record matching and data repairing. In: Proceedings of International

Conference on Management of Data, 2011

15 Dong X, Halevy A, Madhavan J. Reference reconciliation in complex information spaces. In: Proceedings of Interna-

tional Conference on Management of Data, 2005

16 Whang S E, Benjelloun O, Garcia-Molina H. Generic entity resolution with negative rules. VLDB J, 2009, 18:

1261–1277

17 Sadri F, Ullman J D. The interaction between functional dependencies and template dependencies. In: Proceedings of

International Conference on Management of Data, 1980

18 Bahmani Z, Bertossi L, Vasiloglou N. ERBlox: combining matching dependencies with machine learning for entity

resolution. Int J Approx Reason, 2017, 83: 118–141

19 Whang S E, Garcia-Molina H. Joint entity resolution on multiple datasets. VLDB J, 2013, 22: 773–795

20 Verroios V, Garcia-Molina H, Papakonstantinou Y. Waldo: an adaptive human interface for crowd entity resolution.

In: Proceedings of International Conference on Management of Data, 2017

21 Firmani D, Saha B, Srivastava D. Online entity resolution using an Oracle. Proc VLDB Endow, 2016, 9: 384–395

22 Ebraheem M, Thirumuruganathan S, Joty S, et al. Distributed representations of tuples for entity resolution.

In: Proceedings of Very Large Data Bases, 2018

23 Qian K, Popa L, Sen P. Active learning for large-scale entity resolution. In: Proceedings of Conference on Information

and Knowledge Management, 2017

24 Zhang D X, Guo L, He X N, et al. A graph-theoretic fusion framework for unsupervised entity resolution.

In: Proceedings of the 34th International Conference on Data Engineering, 2018

25 Yakout M, Elmagarmid A K, Neville J, et al. Guided data repair. In: Proceedings of Very Large Data Bases, 2011

26 He J, Veltri E, Santoro D, et al. Interactive and deterministic data cleaning. In: Proceedings of International

Conference on Management of Data, 2016

27 Assadi A, Milo T, Novgorodov S. Dance: data cleaning with constraints and experts. In: Proceedings of International

Conference on Data Engineering, 2017

28 Guo S T, Dong X L, Srivastava D, et al. Record linkage with uniqueness constraints and erroneous values.

In: Proceedings of Very Large Data Bases, 2010

29 Fan W F, Li J Z, Ma S, et al. Towards certain fixes with editing rules and master data. VLDB J, 2012, 21: 213–238

30 Fan W F, Lu P, Tian C, et al. Deducing certain fixes to graphs. Proc VLDB Endow, 2019, 12: 752–765

31 Yakout M, Berti-Équille L, Elmagarmid A K. Don’t be scared: use scalable automatic repairing with maximal likelihood

and bounded changes. In: Proceedings of International Conference on Management of Data, 2013. 553–564

32 Abiteboul S, Hull R, Vianu V. Foundations of Databases. Reading: Addison-Wesley, 1995

33 Aires J P, Meneguzzi F. Norm conflict identification using deep learning. In: Proceedings of International Conference

on Autonomous Agents and Multiagent Systems, 2017. 194–207

34 Sycara K P. Machine learning for intelligent support of conflict resolution. Decision Support Syst, 1993, 10: 121–136

https://doi.org/10.1007/s00224-012-9402-7
https://doi.org/10.1145/1217299.1217304
https://doi.org/10.1145/1366102.1366103
https://doi.org/10.1145/2631923
https://doi.org/10.1007/s00778-009-0136-3
https://doi.org/10.1016/j.ijar.2017.01.003
https://doi.org/10.1007/s00778-013-0308-z
https://doi.org/10.14778/2876473.2876474
https://doi.org/10.1007/s00778-011-0253-7
https://doi.org/10.14778/3317315.3317318
https://doi.org/10.1016/0167-9236(93)90034-Z

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:17

35 Loshin D. Master Data Management. San Francisco: Knowledge Integrity Inc., 2009

36 Chandra A K, Merlin P M. Optimal implementation of conjunctive queries in relational data bases. In: Proceedings

of Symposium on the Theory of Computing, 1977

37 Aggarwal C C. Data Classification: Algorithms and Applications. Boca Raton: CRC Press, 2014

38 Fan W F, Geerts F. Foundations of Data Quality Management. San Rafael: Morgan & Claypool Publishers, 2012

39 Klug A. On conjunctive queries containing inequalities. J ACM, 1988, 35: 146–160

40 Baudinet M, Chomicki J, Wolper P. Constraint-generating dependencies. J Comput Syst Sci, 1999, 59: 94–115

41 Beeri C, Bernstein P A. Computational problems related to the design of normal form relational schemas. ACM Trans

Database Syst, 1979, 4: 30–59

42 Rutenburg V. Complexity of generalized graph coloring. In: Proceedings of International Symposium on Mathematical

Foundations of Computer Science, 1986

43 Schaefer M, Umans C. Completeness in the polynomial-time hierarchy: a compendium. 2002. http://ovid.cs.depaul.

edu/documents/phcom.pdf

https://doi.org/10.1145/42267.42273
https://doi.org/10.1006/jcss.1999.1632
https://doi.org/10.1145/320064.320066
http://ovid.cs.depaul.edu/documents/phcom.pdf
http://ovid.cs.depaul.edu/documents/phcom.pdf

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:18

Profile of Wenfei FAN

Professor Wenfei Fan is the chair of web data manage-

ment at the University of Edinburgh, UK, the chief scientist

of Shenzhen Institute of Computing Science, and a chief sci-

entist of Beijing Advanced Innovation Center for Big Data

and Brain Computing, China. He received his Ph.D. from

the University of Pennsylvania (USA), and his MS.c. and

BS.c. from Peking University (China). He joined the Uni-

versity of Edinburgh in 2004; prior to that, he was a mem-

ber of technical staff at Bell Laboratories in Murray Hill,

NJ, USA.

He is a foreign member of Chinese Academy of Science,

a fellow of the Royal Society (FRS), a fellow of the Royal

Society of Edinburgh (FRSE), a member of the Academy

of Europe (MAE), and an ACM Fellow (FACM). He is a re-

cipient of Royal Society Wolfson Research Merit Award in

2018, ERC Advanced Fellowship in 2015, the Roger Need-

ham Award in 2008 (UK), Yangtze River Scholar in 2007

(China), the Outstanding Overseas Young Scholar Award

in 2003 (China), the Career Award in 2001 (USA), and

several Test-of-Time and Best Paper Awards (Alberto O.

Mendelzon Test-of-Time Award of ACM PODS 2015 and

2010, Best Paper Awards for SIGMOD 2017, VLDB 2010,

ICDE 2007, and Computer Networks 2002).

Prof. Fan “has made fundamental contributions to both

theory and practice of data management. He has both for-

malized the problems of querying big data and has devel-

oped radically new techniques that overcome the limits as-

sociated with conventional database systems. In addition,

he has made seminal contributions to data quality, in which

he devised new techniques for data cleaning that have found

wide commercial adoption. He has also contributed to our

understanding of semi-structured data” (cf. the Royal So-

ciety, UK). His current research interests include database

theory and systems, in particular big data, data quality,

data sharing, distributed computation, query languages,

and social media marketing.

Querying big data. Dealing with massive data collec-

tions introduces fundamental challenges to database sys-

tems. Prof. Fan initiated formal approaches to querying

big data.

(1) BD-tractability. Prof. Fan was one of the first to

observe that querying big data requires a departure from

classical computational complexity theory and the conven-

tional query evaluation paradigms. That is, polynomial-

time problems, which are called “tractable” in classical

complexity theory, can no longer be considered tractable

on big data. He revised the theory of tractability and pro-

posed BD-tractability, a class of tractable queries in big

data.

(2) A new parallel model. Graphs are a major source

of big data, such as social networks and knowledge bases.

To query big graphs, parallel computation is often a must.

However, parallel algorithms are hard to write, debug and

analyze.

Prof. Fan proposed a parallel model for graph compu-

tations based on simultaneous fixpoint computation with

partial and incremental evaluation. It allows one to re-use

existing serial graph algorithms as a whole, and it auto-

matically parallelizes the computation. Under a monotone

condition, the parallelized computation is guaranteed to

converge at a correct answers as long as the serial algo-

rithms are correct. Better yet, the ease of programming

often comes with performance improvement. The work re-

ceived three awards from SIGMOD 2017, VLDB 2017, and

SIGMOD 2018. GRAPE, a parallel graph system based on

the model, is being used at Alibaba Group and has proven

effective in various applications.

(3) A new query paradigm. Parallel processing of big

data requires necessary hardware that few organizations

can afford.

Prof. Fan approached the problem by proposing a the-

ory of bounded evaluation. The idea is to reduce queries

on big data to computations on small data. It was shown

that with the right auxiliary structures, many queries are

boundedly evaluable, i.e., they can be answered using a

fixed fraction of the total data. To handle queries that

are not bounded, he introduced a data-driven approxima-

tion scheme, which uses the available resources to compute

a set of approximate answers such that each approximate

answer is within a fixed distance of an exact answer and

conversely, each exact answer is within a fixed distance of

an approximate answer. Putting these together, Prof. Fan

proposed a new paradigm for querying big data under lim-

ited resources. This promises to provide small companies

with the capability of big data analytics. The work received

Royal Society Wolfson Research Merit Award in 2018.

As proof of concept, a world-class telecommunication

company found that 90% of their queries are bound-

edly evaluable, and that bounded evaluation reduces big

datasets from petabytes to gigabytes in many cases, im-

proving performance by orders of magnitude.

Data quality. Together with volume, quality (veracity)

is often considered the most important problem in data

management. The cost of bad data is huge; some esti-

mates put the annual cost to the USA alone into the tril-

lions1). While the study of data quality goes back to 1960s,

it was Prof. Fan’s work starting in 2005 that reshaped the

field. There are five central issues: consistency, accuracy,

completeness, timeliness, and entity resolution. Prof. Fan’s

work had substantial impact on each of these, from theory

to practice.

(1) Theory. Prof. Fan provided models, characteriza-

tions and complexity for each of the five issues. For exam-

ple, to catch semantic inconsistencies, he defined what is

1) Harvard Business Review. https://hbr.org/2016/09/bad-data-costs-the-u-s-3-trillion-per-year.

Fan W F, et al. Sci China Inf Sci July 2020 Vol. 63 172001:19

now called the “standard class” of conditional dependen-

cies that extends classical dependency theory in relational

databases. To cope with missing data, he introduced a no-

tion of relative information completeness, which revises the

conventional closed world and open world assumptions. He

also proposed a uniform logical framework to reason about

the interaction of the five issues of data quality.

(2) Practical techniques. Prof. Fan’s team transferred

their theoretical work to technology, by developing key al-

gorithms for discovering data quality rules, detecting errors

by employing the rules, and repairing the data by fixing the

errors with certainty. These yield a package of techniques

for cleaning real-life data. The combination of theory and

practice received best paper awards from two of the leading

database systems conferences (VLDB and ICDE) and the

British Computer Society’s Roger Needham Award, as well

as awards from industry (IBM, Google, and Yahoo).

Semi-structured data. Prof. Fan was also recognized

for opening up the field of integrity constraints for semi-

structured data, and making contributions to Web data

management.

(1) Constraints. Earlier in his career, Prof. Fan devel-

oped the field of integrity constraints for XML, now a ma-

ture area well represented in the full spectrum of database

research, from theory to practice and standards. This work

won him his first test-of-time award for PODS 2010. More

recently Prof. Fan studied constraints for graphs, as a com-

bination of topological constraints and value dependencies.

Prof. Fan developed axiom systems, complexity and algo-

rithms for reasoning about such constraints. These find

applications in knowledge acquisition, knowledge base en-

richment, and fraud detection.

(2) Web data management. Beyond constraints,

Prof. Fan has also worked on a variety of topics for Web

data management, including (a) query languages, (b) trans-

formations between Web data and relations, (c) integration

of Web data, (d) securing XML queries, and (e) graph as-

sociation rules for social media marketing. Prof. Fan made

contributions to each and every of these topics, from theory

to practice. His work on query languages earned him his

second test-of-time award from PODS and is the standard

reference work on this topic.

Selected publications. Following conventions in the

subject, authors are usually listed alphabetically.

• Fan W F, Lu P. Dependencies for graphs. ACM Trans

Database Syst, 2019, 44: 5 (invited extension of a PODS

2017 paper)

• Fan W F, Yu W Y, Xu J B, et al. Parallelizing se-

quential graph computations. ACM Trans Database Syst,

2018, 43: 18 (invited extension of an SIGMOD paper, which

received the Best Paper Award for SIGMOD 2017)

• Fan W F, Cao Y, Xu J B, et al. From think parallel to

think sequential. In: Proceedings of International Confer-

ence on Management of Data, 2018. 47: 15–22 (SIGMOD

Research Highlight Award)

• Deng T, Fan W F, Geerts F. On the complexity of

package recommendation problems. SIAM J Comput, 2013,

42: 1940–1986

• Fan W F, Geerts F, Neven F. Making queries tractable

on big data with preprocessing. In: Proceedings of the

39th International Conference on Very Large Data Bases

(VLDB), 2013. 6: 47–481

• Fan W F, Geerts F. Foundations of Data Quality Man-

agement. San Rafael: Morgan & Claypool Publishers, 2012

• Fan W F, Geerts F, Wijsen J. Determining the cur-

rency of data. ACM Trans Database Syst, 2012, 37: 25

(invited extension of a PODS 2011 paper)

• Fan W F, Li J Z, Ma S, et al. Towards certain fixes

with editing rules and master data. VLDB J, 2012, 21: 213–

238 (invited extension of a VLDB paper, which received the

Best Paper Award for VLDB 2010)

• Fan W F, Geerts F. Relative information completeness.

ACM Trans Database Syst, 2010, 35: 27 (invited extension

of a PODS 2009 paper)

• Fan W F, Geerts F, Neven F. Expressiveness and

complexity of XML publishing transducers. ACM Trans

Database Syst, 2010, 33: 25 (invited extension of a PODS

2008 paper)

• Fan W F, Geerts F, Ji X B, et al. Conditional

functional dependencies for capturing data inconsistencies.

ACM Trans Database Syst, 2008, 33: 6 (its conference ver-

sion “Conditional functional dependencies for data clean-

ing” received the Best Paper Award for ICDE 2007)

• Fan W F. Dependencies revisited for improving data

quality. In: Proceedings of Symposium on Principles of

Database Systems, 2008. 159–170 (invited paper)

• Benedikt M, Fan W F, Geerts F. XPath satisfiability

in the presence of DTDs. J ACM, 2008, 55: 8: (invited ex-

tension of a PODS 2005 paper, which received the PODS

Test-of-Time Award in 2015)

• Fan W F, Siméon J. Integrity constraints for XML.

J Comput Syst Sci, 2003, 66: 254–291 (invited extension

from a PODS 2000 paper, which received the PODS Test-

of-Time Award in 2010)

• Buneman P, Davidson S, Fan W F, et al. Keys for

XML. Comput Netw, 2002, 39: 473–487 (invited extension

of a WWW 2001 paper; the Best Paper of the Year Award

from Computer Networks in 2002)

• Fan W F, Libkin L. On XML integrity constraints in

the presence of DTDs. J ACM, 2002, 49: 368–406

	Introduction
	Logic rules with machine learning models
	Entity enhancing with extended chase
	Extending the chase
	An entity enhancing framework

	Fundamental problems
	Conclusion
	Profile of Wenfei FAN

