
SCIENCE CHINA
Information Sciences

July 2020, Vol. 63 170107:1–170107:3

https://doi.org/10.1007/s11432-019-2819-y

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 info.scichina.com link.springer.com

. LETTER .
Special Focus on Brain Imaging and Addiction

Dysfunctional resting-state EEG microstate

correlated with the severity of cigarette exposure in

nicotine addiction

Yan CHENG1†, Junjie BU2*†, Nan LI3, Jian LI4, Huixing GOU4, Shinan SUN5,

Chang LIU4, Zida JIN4, Changle HE2, Chuan FAN6,

Chialun LIU4 & Xiaochu ZHANG1,4,5*

1School of Humanities and Social Science, University of Science and Technology of China, Hefei 230026, China;
2School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials,

Anhui Medical University, Hefei 230032, China;
3Lab for Cognitive Brain Mapping, RIKEN Center for Brain Science, Wako 3510198, Japan;

4Eye Center, Department of Ophthalmology, the First Affiliated Hospital of USTC, Hefei National Laboratory for
Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of

Science and Technology of China, Hefei 230027, China;
5Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China;

6Department of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

Received 29 November 2019/Revised 4 February 2020/Accepted 11 March 2020/Published online 1 June 2020

Citation Cheng Y, Bu J J, Li N, et al. Dysfunctional resting-state EEG microstate correlated with the sever-

ity of cigarette exposure in nicotine addiction. Sci China Inf Sci, 2020, 63(7): 170107, https://doi.org/10.1007/

s11432-019-2819-y

Dear editor,
Nicotine is a significant cause of severe physical
and psychiatric disorders. Evidence suggests that
smokers have poorer global cognitive functioning
in later life, as well as lower average scores in sev-
eral cognitive domains, including cognitive flexi-
bility and memory [1]. There are large numbers
of electroencephalography (EEG) such as event-
related potential, the late positive potential, the
low-theta EEG coherence network studies in nico-
tine addiction. These traditional EEG methods
provided a rich insight into the electrophysiology
with a high temporal resolution, however, they did
not reflect the transient stable and global func-
tional pattern of the brain. Microstate analysis is
an alternative approach based on global topogra-
phy analysis. EEG microstate as a tool is widely
used in neuropsychiatric disease, but this approach
has rarely been used in addiction research.

Microstate is defined by the topography of elec-
tric potentials recorded in a multi-channel elec-

trode cap, which remains stable for 60–120 ms be-
fore rapidly transiting to a different microstate [2].
The microstate with its associated spatial topog-
raphy may reappear in time, and is referred to
microstate class. Microstate duration represents
the same microstate labels allocated during all suc-
cessive maps. Additionally, microstate occurrence
represents the mean number of occurrences of each
microstate class per second and microstate cover-
age calculated by the percentage of total duration
covered by each microstate class within the over-
all analysis period. Microstate has rich syntactic
structures that include a vast amount of important
information about the cognitive process.

Our study attempts to explore the relation-
ship between indicators of resting-state EEG mi-
crostate and the severity of cigarette exposure and
the degree of nicotine dependence. In our current
study, with microstate analysis, we find that mi-
crostate class B and D topographies are signifi-
cantly different in the smoking group compared to
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the control group. In microstate temporal char-
acteristics, we find that the duration, occurrence,
and coverage of microstate B in the smoking group
are significantly different from those in the con-
trol group. Moreover, the microstate B duration is
negatively correlated with the severity of tobacco
consumption.

Participants. Twenty smokers are involved in
this experiment who meet the criteria in our pre-
vious study [3]. Twenty-one control participants
with no smoking history, matched with age [mean
= 21.8 and SD = 1.8], gender, and education years
[mean = 15.3 and SD = 1.1] are recruited. All par-
ticipants are recruited by Internet advertisements
and posters. Demographic and clinical character-
istics are available in Appendix A.1. All partici-
pants signed written informed consent before the
study. The degree of nicotine dependence is mea-
sured by Fagerstrom Test of Nicotine Dependence
(FTND) [4], and pack-years is used to test the de-
gree of exposure to nicotine. And the inclusion
criteria and exclusion criteria see Appendix A.2.

EEG recording and preprocessing. Resting-state
EEG data is acquired using a Neuroscan SynAmps
RT amplifier comprising 64 Ag/AgCl electrodes
placed on the participant’s scalp following the po-
sition of the extended international 10-20 system.
The impedance of all electrodes is kept below 5 kΩ.
Data are collected of continuous 5 min at a sam-
pling rate of 500 Hz. The preprocessing proce-
dure is performed in MATLAB EEGLAB toolbox
(MathWorks, R2019a). Data preprocessing fol-
lowed basic principles in previous literature [5].
Briefly, for spontaneous continuous EEG data,
first, artifact should be removed and corrected for
cleaning the EEG data. Second, the EEG data
should be recomputed against the average refer-
ence. Third, the EEG data should be filtered
(e.g., 1–30 Hz). EEG segments with eye move-
ments, electromyograms, and other significant ar-
tifacts are removed. Data are then downsampled
at 250 Hz, bandpass filtered between 2–20 Hz and
re-reference to the average reference.

EEG microstate analysis. The microstate anal-
ysis consists of the following procedures [2, 5, 6].
First, global field power (GFP) is extracted which
represents global brain activity. The formula is as
follows:

GFP(t) =

√

∑

N

i
(Vi(t)− V (t))2

N
, (1)

where Vi(t) represents the electric potential of the
ith electrode (i = 1:60 electrodes) at time t, N

represents the number of electrodes, V (t) repre-
sents the mean of instantaneous potentials across

all electrodes, and the GFP(t) means the spatial
standard deviation of the EEG signal across all
electrodes. The local maxima of GFP represent
the instants of the strongest field strength and
the highest signal-to-noise ratio [7]. EEG topogra-
phies tend to be stable around the peaks of GFP
and change rapidly near the local minima of GFP.
Thus, the EEG signal map at each GFP peaks is
selected for segmentation.

Second, for each participant, topographies at
GFP peaks are subjected to a k-means clustering,
which is a well-established clustering method. At
first, in individual level, we have tested the range
of 3 to 8 classes for each participant individually.
Global explained variance (GEV) is used to set-
ting the number of microstate clusters. According
to GEV criteria (Appendix A.3.1), the number of
microstate classes is set to four for all subsequent
analyses. In each subject, all possible permuta-
tions of the 4 individual microstate maps were best
fitted with the 4 prototype maps. The prototypes
were updated by averaging the best-fit permutated
individual microstate maps. The 4 classes are
then averaged across all participants within each
group using a permutation algorithm that maxi-
mizes the common variance over subjects [8] and
overall maps across all participants are calculated
by averaging the group-level maps from the two
groups.

Third, the overall mean maps for all microstate
classes are then fit back to the original data
at GFP peaks. We assign each GFP peak to
one of the microstate classes based on the max-
imal spatial correlation between topographies [6].
Microstate class labels are interpolated between
halfway of two GFP peaks (Appendix A.3). The
mean global explained variance of the smoking
group and the control group are 77.16% (SD
= 6.8%) and 75.3% (SD = 5.7%), respectively.
Finally, microstate duration, microstate occur-
rence and microstate coverage are calculated. Mi-
crostate statistics see Appendix B.1 for a more de-
tailed description.

Microstate topographies. The smoking group,
the control group and the overall group maps of
all the participants are shown in Figure 1(a). The
overall TANOVA reveals a main effect of group be-
tween the smoking group and the control group (p
<0.001) and a main effect of the four microstate
classes (p = 0.002), but no interaction between
the group and class factors (p = 0.155). How-
ever, post hoc analysis shows that the microstate
topographic maps of the smoking group and the
control group are significantly different in class B
and D, while there are no significant differences in
microstate class A and C.
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Figure 1 (Color online) Microstate topographies (a) and correlations between behavior and microstate duration (b).

Microstate parameters characteristics. We find
that the duration of microstate B is shorter in the
smoking group (46 ms) compared with the control
group (51 ms) (t(39) = −3.1, p = 0.004, subfig-
ure A in Figure S2). The occurrence of microstate
B significantly is lower in the smoking group (3.53
per second) compared with the control group (4.36
per second) (t(39) = −2.524, p = 0.016, subfigure
C in Figure S2). Accordingly, the coverage of mi-
crostate B in the smoking group (0.16) is signifi-
cantly less than the control group (0.22) (t(39) =
−3.61, p <0.001, subfigure C in Figure S2). There
are no significant group differences in the duration,
occurrence and coverage of the microstate classes
of A, C and D shown in Appendix B.3.

Correlations between behavior and microstate.
No significant correlation is observed between
pack-years and FTND score in the smoking group
(r(39) = 0.383, p = 0.096). Figure 1(b) shows a
significant correlation is found between pack-years
and the duration of microstate B in the smoking
group (r(39) = 0.480, p = 0.032) and there is no
significant correlation between FTND score and
the duration of microstate B in the smoking group
(r(39) = 0.414, p = 0.193).

Conclusion. There were three major findings in
this study. First, in the topography structure of
the two groups, we found a significant difference
in microstate maps B and D. Second, in the spe-
cific microstate B, we found that the duration of
microstate in the smoking group was significantly
shorter than that in the control group. Finally, in
the smoking group, we found that the duration of
microstate B was negatively correlated with pack-
years, while there was no correlation between the
duration of microstate B and FTND score. Col-
lectively, this study is the first one to apply the
resting-state EEG microstate approach to inves-
tigate nicotine addiction. Moreover, our results
suggest that the duration of microstate class B
is a novel objective biomarker for monitoring the
severity of cigarette consumption in smokers.
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