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Abstract Alcohol use disorder (AUD) is a global health concern associated with several comorbidities.

Various health problems related to AUD, such as cognitive deficits, have been linked to neuroinflammation.

Alcohol use has been associated with changes in neuroimmune activity, although current literature has

yielded mixed results. For example, markers of gliosis, including translocator protein 18-kDa (TSPO), pro-

inflammatory cytokines, glutamate (Glu), and myo-inositol (mI), are disrupted in the alcohol-dependent

brain. Further, neuroinflammatory-related phenomena including membrane turnover, blood brain barrier

(BBB) permeability, and adenosine release have also shown alterations in AUD. However, current literature

remains inconclusive about the directionality of these changes. Both in vivo and in vitro studies have provided

insight on the relationship between alcohol use and neuroinflammatory processes, suggesting considerable

treatment potential for alcohol use disorder and its inflammatory comorbidities. Here, we review current

neuroimaging literature assessing the impacts of alcohol use on neuroimmune activity in the brain.
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1 Introduction

Alcohol use disorder (AUD) is a condition characterized by persistent and problematic alcohol use asso-

ciated with clinically significant distress [1]. On a global scale, AUD affects millions and alcohol use is

the seventh leading cause of death [2]. AUD-related neuroinflammation has a role in neurotoxic processes

that contribute to a variety of health disruptions including cognitive impairment, which perpetuates the

addiction cycle [3–9]. Treatment of neuroinflammation in AUD is therefore of interest and may have

beneficial effects on craving, mood, and cognitive functioning [10, 11].

Chronic and acute alcohol consumption contribute to both peripheral and central inflammation [4].

For example, chronic alcohol use enhances gut leakiness, a phenomenon characterized by increased in-

testinal permeability and translocation of bacteria from the gut lumen into peripheral tissues [12]. This

triggers a pro-inflammatory response [12–15]. Further, acute alcohol exposure increases glucocorticoid re-

lease [16], which primes inflammation, causing a greater inflammatory response the next time a response

is elicited [17].

Recent reviews of neuroinflammation in substance use disorders [4, 5, 18] provide rich descriptions of

the involvement of neuroimmune signaling in addiction. Here, we focus in-depth on in vivo neuroimaging
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Table 1 Direct and indirect indicators of neuroinflammation in AUD

Marker Imaging method Regions Findings

Gliosis

18-kDA Human PET

([11C]PBR28)

Averaged across regions;

cerebellum; hippocampusns;

striatumns

AUD < HV [21]

Hippocampus AUD < HV [22]

Whole brain, GM, WM, hip-

pocampus, and thalamus

AUD < HV#. neg corr. between cholesterol and

PBR binding [23]

Baboon PET

([18F]DPA714)

Whole brain Binge > non-binge; sustained TSPO increase af-

ter 7 to 12 months [20]

Rat PET

([11C]PBR28)

n/a No significant differences [19]

Cytokines DSC-MRI Thalamus and frontal GM and

WM

Alcohol-caused increase in CBF in social

drinkers [24]

DSC-MRI Averaged across WM regions Alcohol-caused increase in CBV in social

drinkers [24]

Glutamate MRS Frontal WM Glu neg corr. with drinking severity & “loss of

control” [25]

ACC AUD < HV when presented with cues [26]

Primary visual cortex AUD < HV in early abstinence (Glx) [27]

Bilateral medial frontal cortex AUD < HV in early abstinence [28]

ACC AUD < HV in early abstinence [29]

ACC AUD > HV ([Glu] & [Glu]/[Cr]) [30, 31]

Nucleus accumbens AUD > HV [92]

Myo-inositol MRS Striatum AUD > HV (in patients with HIV) [32]

Parietal GM Heavy drinkers > light drinkers [33]

Averaged across parietal and

frontal WM

AUD > HV [34]

Right thalamus, ACC AUD > HV [35]

Membrane

Turnover

Choline MRS Visual cortex Increase during heavy drinking ([Cho]/[Cr]) [27]

Parietal GM Heavy drinkers > light drinkers [33]

Cerebellum AUD < HV, may or may not recover over time [36,

37]

ACC AUD < HV [30]

Left prefrontal cortex AUD < HV [38]

Frontal WM, cerebellar cortex,

and cerebellar vermis

AUD < HV, recovers after 3 months [39]

BBB

Permeability

Gadolinium-

chelates

CE-MRI Temporal cortex Ethanol induced BBB degradation [40]

Altered water

distribution

Bilateral frontal and temporal

WM;

AUD-C+AUD-R > HV [41]

Bilateral parietal regions,

fornix and thalamus

Adenosine

Release

Acetate† PET([11C]Acetate) Cerebellum and thalamus Intoxication increases acetate uptake [42]

ASL-MRI Medial thalamus Acetate increase in CBF [43, 44]

Right orbitofrontal, medial

prefrontal, and cingulate

cortex, and hippocampus;

superior/inferior frontal gyri

and bilateral ACC

Alcohol increase in CBF [43, 44]

Note: ns: not significant; #: only in medium affinity binders; †: acetate metabolism by the brain that has been linked with

acute and chronic alcohol consumption increases generation of adenosine and might contribute to neurotoxicity and neuroinflam-

mation; ACC: anterior cingulate cortex; ASL-MRI: arterial spin labelling magnetic resonance imaging; CBF: cerebral blood flow;

CBV: cerebral blood volume; CE-MRI: contrast enhanced magnetic resonance imaging; DSC-MRI: dynamic susceptibility contrast

magnetic resonance imaging; GM: gray matter; MRS: magnetic resonance spectroscopy; PET: positron emission tomography; WM:

white matter.

methods, such as positron emission tomography (PET) and magnetic resonance imaging and spectroscopy

(MRI/MRS) techniques (Table 1 [19–44]) to assess the relationship between neuroinflammation and AUD.
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2 Gliosis

2.1 Overview

Gliosis is a pro-inflammatory process that involves the excessive proliferation of glial cells, such as mi-

croglia and astrocytes, in response to central nervous system (CNS) damage [45–48]. Gliosis occurs in

multiple steps [48], some of which have been associated with AUD.

Some of the first neuroimmune cells to migrate to the location of neural damage are microglia, the

resident macrophages of the CNS [4, 49, 50]. Microglia can undergo several activational stages, including

a pro-inflammatory (M1) or anti-inflammatory (M2) phase [51]. During the M1 state, pro-inflammatory

molecules are released, including cytokines, glutamate (Glu), and reactive oxygen species [9, 52, 53].

Pro-inflammatory cytokines have been positively associated with alcohol craving and withdrawal in both

alcohol-dependent rodents and humans. In rats, infusions of pro-inflammatory cytokine MCP-1 increased

ethanol self-administration [30] and expression of several pro-inflammatory cytokines rose during the

first 48 hours of alcohol withdrawal [54]. Further, lipopolysaccharide injections, which trigger cytokine

release [55], and cytokine treatment both sensitized alcohol withdrawal-induced anxiety behaviors in

rats [56]. In humans, various cytokines have been shown to positively correlate with craving and alcohol

consumption [57, 58]. These findings suggest an involvement of neuroimmune molecules throughout

various stages of the alcohol addiction cycle.

Following microgliosis, a variety of oligodendrocyte precursors, such as NG2-glia [59], migrate to the

damaged region to begin remyelinating injured axons. Damage to white matter has been linked to AUD,

indicating alcohol-induced damage (as reviewed by Harper [60] and Gallucci [61]). Moreover, increases

in oligodendrocyte precursors have been associated with recent alcohol exposure and abstinence from

chronic alcohol use, suggesting that alcohol-induced damage also elicits a reparative response [62, 63].

The final process is astrogliosis, the recruitment of astrocytes, which leads to the formation of scar

tissue. Astroglial activity is key to the neuroinflammatory process: When activated, astroglia regulate

neuroimmune responses to various stimuli, secreting cytokines and other pro-inflammatory molecules in

a similar manner to activated microglia [64, 65]. Astrocyte activity has been linked to various stages of

the alcohol addiction cycle [66, 67]. Further, compared to ethanol-naive rats, three weeks of abstinence

in alcohol-dependent rats led to elevated astrocyte density in the nucleus accumbens core; controlled

astroglial excitation of this region decreased motivation to self-administer alcohol in these abstinent

rats compared to controls [68]. In humans, however, alcohol abstinence has been associated with de-

creases in astrocyte density in the dorsolateral prefrontal and orbitofrontal cortices as well as in the

hippocampus [69–71]. By corroborating evidence of in vivo astrogliosis and microgliosis with evidence of

other pro-inflammatory processes, we may better understand neuroinflammation in the alcohol-dependent

brain.

2.2 Translocator protein 18 kDa

The translocator protein 18 kDa (TSPO) is a proposed biomarker of microglial activation. TSPO func-

tions to maintain healthy cell function and is expressed on active microglia and other monocyte-derived

cells [72]. Typically, TSPO levels are low; during injury and neurodegenerative events, however, activated

microglia upregulates TSPO expression [72]. Thus, heightened levels of TSPO indicate neuroimmune ac-

tivity. Radiotracers have been developed to measure TSPO levels in vitro to assess neuroinflammation in

certain neurodegenerative conditions, including Alzheimer’s disease [73]. More recently, brain autoradio-

graphy studies using TSPO tracers have been conducted in animal models of addiction. A study utilizing

the TSPO radioligand [3H]PK11195 in rats after a 4-day alcohol binge exposure showed higher binding in

the hippocampus and entorhinal cortex in the binge group than in controls [74]. Further, Tyler et al. [19]

observed higher binding of two different TSPO radioligands, [3H]PK11195 and [3H]PBR28, in the thala-

mus and hippocampus of rats exposed to chronic alcohol vapor (dependent rats) compared to controls,

indicating increased TSPO expression after chronic exposure to alcohol. Despite elevated [3H]PK11195

in the hippocampus, however, Marshall et al. [74] did not find evidence for fully activated microglia
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(i.e., absence of OX-6 and ED-1 immunoreactive microglia and no increase in pro-inflammatory cytokines

IL-6 or TNF-alpha). Marshall et al. [74] therefore suggested that the partial activation of microglia in

binge drinking rats, as evidenced by elevated TSPO expression, may be a consequence of alcohol-induced

neurodegeneration rather than the cause of it.

While these studies showed increased TSPO binding in vitro, results from in vivo PET studies are less

clear. Prior to euthanasia, in the same rodent sample that showed increased binding of [3H]PK11195

and [3H]PBR28 by autoradiography, PET studies with [11C]PBR28 did not show differences between

dependent and non-dependent rats in vivo, suggesting possible interference in binding of [11C]PBR28

to TSPO [19]. Another PET study that assessed TSPO levels with [18F]DPA714 in adolescent baboons

reported increased TSPO levels throughout the brain during acute binge alcohol exposure, with persistent

elevation 7 to 12 months later, as compared to levels in a single control animal [20]. These contrasting

findings could reflect species differences, diverse alcohol exposure histories, and the distinct methodologies

(in vitro vs in vivo) and radiotracers used to measure TSPO and emphasize the need for continued

investigation in this area of research.

Clinical PET studies assessing TSPO expression in AUD are also unclear. Unlike rodents or ba-

boons, humans have differential binding affinity to [11C]PBR28 depending on genotype [75]. Individuals

homozygous for the TSPO rs6971 polymorphism have a high-affinity binding site for TSPO in their

monocyte-derived cells, whereas individuals heterozygous for the polymorphism have both high-affinity

and low-affinity TSPO binding sites, making them medium-affinity binders [75]. Individuals without

the polymorphism only have low-affinity binding sites, thus, [11C]PBR28 PET cannot reliably predict

microglial activation in these individuals [75].

In three clinical PET studies, medium- and high-affinity TSPO binders were combined, while low-

affinity binders were excluded. Hillmer et al. [21] and Kalk et al. [22] found that individuals with AUD had

lower [11C]PBR28 binding in their first few weeks of abstinence, relative to healthy controls; the authors

concluded that long-term alcohol abuse may have led to downregulation of pro-inflammatory responses

owing to chronic inflammation [21, 22]. In addition, Hillmer et al. [21] observed a lower peripheral pro-

inflammatory cytokine response to lipopolysaccharide stimulation in patients with AUD compared to

healthy volunteers, suggesting that AUD is associated with blunted immune activity in both the CNS

and the periphery. A third study also observed lower [11C]PBR28 binding in individuals with AUD

compared to healthy controls; however, the effect was present only in medium, but not in high-affinity

binders [23]. Kim et al. [23] explored whether the lower [11C]PBR28 binding in AUD medium-affinity

binders reflected competition of plasma cholesterol instead of downregulation of neuroimmune activity.

In healthy cells, cholesterol binds to TSPO for transport during steroid synthesis, modifying the protein’s

structure [76, 77]. In heavy drinkers, plasma cholesterol levels tend to be higher than in controls; these

higher levels may increase TSPO binding competition [78, 79]. Further, the rs6971 polymorphism also

influences the cholesterol binding-domain of TSPO, such that cholesterol binding affinity is lowest in

high-affinity radioligand binders and highest in low-affinity radioligand binders [80]. Plasma cholesterol

levels in both AUD and healthy control groups were inversely correlated with [11C]PBR28 binding in

the brain [23], supporting a role of cholesterol competition in the downregulation of [11C]PBR28 binding

observed in AUD. Recently, the rs6971 polymorphism was also associated with alcohol withdrawal severity

and with plasma cholesterol levels in AUD [81]. These findings highlight the need for further consideration

of rs6971 and cholesterol when assessing TSPO binding in AUD.

To our knowledge, no other brain imaging studies have assessed TSPO binding in AUD. In the mean-

time, new TSPO radiotracers have been developed, such as [11C]ER176, which binds to TSPO in all three

affinity genotypes [82]. These radiotracers may provide additional information on microglial activation

in AUD, as well as allow for continued investigations of second-generation TSPO radioligands on both

pre-clinical and clinical scales.
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2.3 Pro-inflammatory cytokines

Various AUD studies have assessed levels of both peripheral and central pro-inflammatory cytokines,

which are released by microglia and astroglia, respectively, in response to damage [83–85]. Human stud-

ies in vivo have shown elevated levels of peripheral cytokines, such as IL-6, in people with AUD compared

to controls, as well as other central cytokines such as IL-18, IL-1β [4,85–87]. In post-mortem brains of in-

dividuals previously diagnosed with AUD, multiple studies have demonstrated region-specific microglial

markers of proinflammatory cytokine activity, such as toll-like receptor signaling that leads to NFkB

transcription of proinflammatory cytokines [9, 85]. More recent postmortem brain studies also identified

elevation of TNFα, HMGB1, and IL-1β, which are markers for neuroinflammation [9, 86]. Compared to

the post-mortem brains of controls, the ventral tegmental area, substantia nigra, hippocampus, and amyg-

dala of AUD brains featured an increased concentration of the cytokine MCP-1 [85]. Similarly, healthy

volunteers’ brains expressed the presence of MCP-1 following high dose alcohol exposure long after their

blood alcohol level had cleared using multibead-based assay [88]. To our knowledge, however, no stud-

ies have assessed neuroinflammation and found noteworthy results regarding central pro-inflammatory

cytokines in people with AUD using in vivo neuroimaging techniques. So far, researchers have utilized

magnetic transfer resonance, an imaging method that is sensitive to water content and edema, to mea-

sure myelin content. This method has been useful for studying multiple sclerosis and traumatic brain

injury and has successfully traced pathologic neuroinflammatory phenomena such as cytokine presence

in clinical and preclinical studies [84, 89]. Therefore, magnetic transfer resonance may be a promising

tool to study neuroinflammation in AUD in vivo.

Researchers have also identified cerebral blood flow (CBF) and cerebral blood volume (CBV) as meth-

ods to indirectly measure neuroinflammatory changes. Moreover, changes in CBF have been shown to

correlate with the levels of multiple pro-inflammatory cytokines [90]. Specifically, in mice with repet-

itive mild traumatic brain injury, CBF was associated with upregulation of multiple pro-inflammatory

cytokines such as RANTES and IL-17 [90]. These findings suggest that CBF and CBV, when coupled

with peripheral markers of inflammation, might be used to assess neuroinflammation in AUD.

2.4 Glutamate

Glutamate (Glu), the most abundant excitatory neurotransmitter and an important molecule in cellular

metabolism, has been linked to gliosis and has thus been considered a marker of neuroinflammation. It has

been posited that glial cells exaggerate release and disrupt clearance of Glu during neuroinflammation,

which contributes to the development of various mood disorders [91]. However, other studies suggest

that disturbances in glutamatergic transmission can cause decreases in Glu concentrations in various

brain regions implicated in reward networks, such as the anterior cingulate cortex (ACC), as a result of

Glu clearing from those areas [26]. Glu has been measured via proton magnetic resonance spectroscopy

(1H-MRS) in various regions of the human brain [25, 27–29,31, 32, 46, 92–98].

Glu and Glutamine (Gln) work in tandem to regulate neuronal energy metabolism and are difficult to

measure separately with MRS owing to their overlapping contribution to a peak at 2.4 ppm; this combined

peak is often referred to as “Glx” [95]. AUD disrupts the Glu-Gln cycle. One study measured an overall

decrease in Glu and increase in Gln in the ACC of patients with AUD, relative to healthy controls, during

a 2-day period of withdrawal [29], while another observed a similar decrease in the ACC in AUD during

a 5 to 13-day period of withdrawal, which normalized 4 to 6 weeks later [28]. Further, another recent

study showed a significant decrease in Glu concentration in the ACC of individuals with AUD compared

to healthy controls when subjects were presented with alcohol cues [26]. This group also found a negative

correlation between the number of heavy drinking days and Glu concentration in subjects with AUD,

despite a lack of difference in baseline Glu levels between the groups [26]. Additionally, in heavy drinkers,

dependence severity was negatively correlated with Glu concentration in frontal white matter; patients

who reported a “loss of control” over drinking demonstrated significantly lower concentrations of Glu

than those who did not [25]. In the primary visual cortex, the ratio of Glx to total creatine (Cr) was

also shown to be lower in patients with AUD than in healthy controls after an average of 17.5 days of
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abstinence [27]. Total Cr, which indicates cellular energy metabolite concentration, is commonly used as

a reference peak (3.0 ppm) in MRS. However, studies have shown that it can be 2 to 3 times higher in

glial cells compared to neurons and can increase during disease or in old age [47, 99, 100]. Therefore, if

group differences in total Cr are present between AUD and controls, it may be beneficial to normalize

the Glu signal to water rather than total Cr.

In contrast, some studies have found increases in both the absolute Glu concentration [31] and the

ratio of Glu to Cr in the ACC of individuals with AUD during periods of acute withdrawal relative

to healthy controls, which normalized after 2 weeks of abstinence [94]. Hermann et al. [31] additionally

found that increases in the concentration of Glu correlated positively with breath alcohol levels, which also

correlated positively with severity of AUD, percentage of heavy-drinking days, and benzodiazepine dosage

during withdrawal. Additionally, Glu concentration was elevated in the nucleus accumbens of patients

with AUD after 10 days of abstinence, and Glx concentration was positively correlated with measures of

alcohol craving in both the nucleus accumbens and the ACC of patients with AUD [92]. Acamprosate, a

medication that is typically used to reduce cravings and relapse, has been shown to decrease the Glu to

Cr ratio in the ACC compared to a placebo during a 4-week AUD treatment program, consistent with the

hypothesis that manipulation of Glu has therapeutic potential in AUD [97]. Indeed, administration of

N-acetylcysteine, which restores glutamate homeostasis in the synapse, has been shown to protect against

the neuroinflammatory changes from chronic alcohol exposure in rats [101]. These findings necessitate

further exploration of cerebral Glu concentration in AUD, as manipulation may alleviate craving and

neuroinflammation-related AUD comorbidities.

2.5 Myo-inositol

Another marker of gliosis is myo-inositol (mI), an organic osmolyte primarily localized in glial cells that

is involved in glucose storage and volume regulation of primary astrocytes [32, 45–47, 102]. mI has been

shown to accumulate in AUD in vivo, as well as to stabilize intracellular environments in vitro; it can be

measured by MRS at a peak of 3.56 ppm [45,95].

Gliosis has been correlated with elevated mI in certain inflammatory and infectious diseases of the

CNS, including HIV and multiple sclerosis [35]. mI was elevated in the striata of patients with comorbid

AUD and HIV compared to those with HIV alone, as well as compared to healthy controls, and higher

levels of mI were positively correlated with the amount of alcohol consumed over the lifetime [32]. Many

studies have shown higher mI in patients with AUD compared to healthy controls, although they vary in

the duration of abstinence before measurement [32,34,35,46,103]. Heavy drinkers showed higher mI than

light drinkers in parietal gray matter, which was associated with impaired working memory [33]. This

difference was even greater between light drinkers and (more) dependent heavy drinkers, in populations

older than 38 years, and with higher numbers of average monthly drinks consumed over the lifetime [33].

One study found greater parietal and frontal white matter mI (averaged) in 4-week detoxified participants

with AUD compared to healthy controls [34]. The same group found higher mI in the right thalamus

and ACC of 6-week detoxified patients with AUD compared to controls, and these elevated mI levels

were also higher than those observed in patients with 1.7 years of abstinence on average [103]. In sum,

these studies indicate that although mI is elevated during early abstinence in patients with AUD, this

temporary elevation recovers during extended periods of abstinence presumably as neuroinflammation

subsides.

3 Membrane turnover

3.1 Overview

The activation of microglia in neuroinflammation produces reactive oxygen species that can result in

cellular membrane damage or altered membrane homeostasis [104]. Changes in membrane homeostasis

can include increased membrane turnover in viral diseases, such as HIV [105, 106], HIV-related dis-
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eases [107], or acute demyelination [108]. Significant changes in the concentration of choline-containing

compounds are indicative of altered cell membrane synthesis and turnover; an increase in the concen-

tration of these compounds can indicate cell membrane injury [105]. Preclinical studies indicate that

membrane turnover, with respect to phosphatidylcholine, is higher in alcohol-tolerant rats, but decreases

as tolerance progresses into dependence [109].

3.2 Choline-containing compounds

Choline-containing compounds (Cho), such as free choline, phosphocholine, and glycerophosphocholine,

are found in white matter and can be measured with MRS at a peak of 3.2 ppm [32, 46]. Studies have

shown that during periods of drinking, Cho concentration is increased in certain regions of the brain;

one study found a significant increase in the ratio of Cho to Cr concentration in the visual cortex [27].

Additionally, a study comparing heavy and light drinkers found a significantly higher concentration of

Cho in the parietal gray matter of non-abstinent binge drinkers than in non-binge drinkers [33]. This

group also observed a positive correlation between average monthly drinks (consumed over the lifetime)

and thalamic Cho concentration in non-abstinent heavy drinkers, suggesting that Cho concentration may

also be elevated in this region during periods of heavy drinking [33].

While Cho levels in various brain regions may increase during periods of drinking [27,33], studies have

shown lower Cho in various brain regions during early abstinence, which may be indicative of neuronal

dysfunction and can recover to normal levels after longer periods of abstinence. Bendszus et al. [36]

found that after only a few days of abstinence, the ratio of Cho to Cr in the cerebellum was lower in

patients with AUD than healthy controls; after 5 weeks of abstinence, however, the Cho to Cr ratio

increased such that there were no longer significant differences between the AUD and control groups [36].

A similar study also found a lower cerebellar Cho concentration in patients with AUD relative to healthy

controls after 3 to 5 days of abstinence; however, in contrast to the previous findings, after 3 months of

abstinence, Cho concentrations did not normalize to those of controls [37]. These studies suggest that

although cerebellar Cho can decrease in AUD in early abstinence, whether it recovers during long-term

abstinence is less clear. Cho concentrations were also significantly lower in the ACC of patients with

AUD than in healthy controls after an average of 15.5 days of abstinence; this decrease was correlated

with impairment of short-term memory in patients with AUD [94]. Further, the ratio of Cho to Cr was

lower in the left prefrontal cortex of subjects with AUD compared to healthy controls after 2 weeks of

abstinence; daily alcohol consumption was negatively associated with this ratio [38]. Cho concentrations

also decreased significantly during early detoxification in patients with AUD (relative to healthy controls)

in the frontal white matter, cerebellar cortex, and cerebellar vermis, but increased after 3 months; after

6 months, no additional significant increase was found [25]. It is therefore possible that Cho increases

during acute exposure and decreases during chronic exposure and early detoxification in a similar manner

to TSPO [20–23, 74], as the result of a competing endogenous process or a burnout effect. It appears

that although Cho can recover over time, further research is required to investigate the impact of lifetime

drinks, age, and comorbidities on the recovery of Cho levels during prolonged abstinence in patients with

AUD.

4 Blood brain barrier permeability

4.1 Overview

Although abnormalities in blood brain barrier (BBB) permeability are not a direct indication of neuroin-

flammation, a barrier breakage almost invariably accompanies neuroinflammation [110]. The BBB acts

as a tightly-controlled vascular membrane that is critical for the protection and delivery of nutrients to

the brain. When it breaks down, both functions are compromised, and the draw of pro-inflammatory

cytokines triggers an inflammatory response [110]. Specifically, the cytokines TNFα and IL-1β cross the

BBB and may contribute to central effects [111,112]. In the context of alcohol research, BBB disruption
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reliably identifies areas associated with neuroinflammation owing to alcohol use along with the corrobo-

ration of other identifiers, such as proinflammatory cytokines and activated microglia [35, 110, 113]. It is

important to note that BBB permeability alone is not a significant identifier of neuroinflammation, as it

may signal other pathological phenomena such as stroke, trauma, or infection [113].

4.2 Gadolinium-chelates

BBB damage is most commonly analyzed using non-invasive contrast-enhanced MRI that utilizes con-

trast media with gadolinium [35, 114]. This method takes advantage of the gadolinium-chelates, which

would not normally pass through an intact BBB [115]. Investigators have used this method to identify

alcohol-induced protein tyrosine kinase signaling as a tracer for BBB degradation, which is a result of

neuroinflammation from alcohol injury [40]. A dynamic contrast-enhanced curve MRI study also reported

significantly elevated BBB permeability in the hippocampus of social drinkers [116]. More studies are

necessary to elucidate the role of dynamic contrast-enhanced MRIs in analyzing neuroinflammation in

AUD.

4.3 Altered water distribution

Changes in BBB permeability can also be detected by diffusion tensor imaging (DTI), which measures

altered water distribution. Neuroinflammation causes an increase of water in brain tissue, which also

increases its mean water diffusivity, a measure of total diffusivity within a voxel [117]. On a molecular

level, BBB permeability variation results in changes in interstitial space composition, such as the onset

of vasogenic edema and the leakage of macromolecules [118]. Altered water distribution is indicative of

increased leakage, as more water moves through the damaged BBB and white matter in an anisotropic

fashion [119]; this can be imaged by MRI using a diffusion tensor imaging sequence [41, 117, 119–122].

Researchers have analyzed white matter to locate abnormalities in subcortical areas associated with mem-

ory and sensory processing in AUD DTI-MRI using tract-based spatial statistics, a voxelwise statistics

tool that analyzes the nonlinear transformation of individual participants’ images on a mean fractional

anisotropy skeleton [35, 41, 123, 124]. Participants with current AUD displayed abnormal diffusivity in

fronto-temporal regions compared to healthy controls, indicating damage in these brain areas implicated

in memory, attention, and impulsivity [41]. In addition, AUD participants with at least one year of

remission exhibited damage in parietal regions critical to visuospatial and self-awareness processing [41].

These findings suggest that brain damage in AUD can be successfully captured by imaging water distri-

bution abnormalities using DTI techniques that future studies, when combined with peripheral marker

of inflammation, might be able to use to assess neuroinflammation with AUD.

In addition to these three methods, researchers have also analyzed permeability in vitro using para-

cellular markers such as [3H]Inulin or propidium iodide [125]. Toborek et al. [126] sought to identify

disruption in BBB permeability because it has previously been linked to HIV. They found that both

HIV-1 gp120 and alcohol induced the formation of stress fibers, cytoplasmic filaments made up of actin

that increase endothelial permeability [127], which was linked to increased BBB permeability [125]. Given

the reliability of BBB permeability as a neuroinflammation marker, we recommend exploring its use in

identifying neuroinflammation in people with AUD.

5 Adenosine release

5.1 Overview

Adenosine in the CNS functions as a neuromodulator that controls neuron excitability as well as the

activity of microglia and astrocytes [128]. However, its modular role in neuroinflammation is complex

owing to its ambiguity in either inhibiting or promoting neuroinflammation depending on the cell type and
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interplay with other neurotransmitters [129–131]. The main factor influencing adenosine’s functional am-

biguity is the variance in the four metabotropic receptors: A1, A2A, A2B , and A3. All adenosine receptors

are expressed in immunocompetent cells residing in the CNS and circulating in the periphery [132, 133].

Altered signaling in brain adenosine has been implicated in AUD: in cell cultures, acute exposure

to alcohol inhibited adenosine reuptake via the adenosine transporter, ENT1, which led to increased

extracellular concentrations of adenosine [134]. In contrast, chronic exposure to alcohol downregulated

the expression of ENT1, decreasing adenosine concentrations [134]. Moreover, in vivo rodent studies have

shown that adenosine is a key player in the behavioral effects of alcohol, including the promotion of sleep

and the impairment of motor movements mediated by A1 receptors [135–137]. Several PET radiotracers

for adenosine A1 and A2 receptors have been developed [138–141]. Studies in healthy controls with

the adenosine A1 receptor PET ligand [18F]CPFPX reported a 26% increase in receptor availability in

several brain regions with ethanol infusion [142]. Therefore, future studies investigating adenosine and

neuroinflammatory markers in the brain in AUD patients may yield promising results.

5.2 Acetate

Acetate, a metabolite of alcohol [128], is believed to contribute to alcohol induced neurotoxicity [141].

After alcohol is ingested, acetate becomes an energy source alongside ATP and acts as an agonist at G-

protein coupled receptors in neurons [43, 131]. Acetate increases the generation of adenosine, a powerful

vasodilator [143, 144]. Using PET and [11C]Acetate, Volkow et al. [42] found that acute alcohol con-

sumption increased acetate uptake in the human brain, whereas it decreased brain glucose metabolism.

Arterial spin labeling sequencing with MRI, an alternative measure to trace the presence of acetate, and

therefore adenosine and inflammation, has been used to track CBF regionally [43,44]. Alcohol researchers

identified increased CBF in the medial thalamus, left parietal cortex, and hippocampus; these regions

have been found to be affected by neuroinflammation in relation to acetate [43]. Another group using

the same arterial spin labeling-MRI technique found five significant clusters, including the superior and

inferior frontal gyri and bilateral ACC, that demonstrated increased CBF in participants with low re-

activity to alcohol, a preemptive phenotype of AUD [44]. To the best of our knowledge, there are no

reported studies that have investigated the association between brain acetate levels and metabolism and

neuroinflammation in AUD. This highlights an area of potential growth for neuroinflammation research

in the field of AUD.

6 Discussion

The relationship between alcohol and neuroinflammation is complex. Although there is agreement that

alcohol exposure is pro-inflammatory, the neural correlates of neuroinflammation in AUD remain unclear.

The current mixed findings highlight the necessity for more research on alcohol-related neuroinflammation

so that ultimately, treatments for AUD that target the neuroimmune system can be developed.

6.1 Mechanisms of neuroinflammation

The mechanism by which alcohol acts to induce neuroinflammation must be further explored. While

several studies link alcohol exposure to neuroinflammation, the type of exposure and time since exposure

vary. Many animal studies assess models of acute binge drinking, while others focus on chronic alcohol

use. Further, studies of abstinent individuals with AUD vary; some studies comprise individuals in their

first few days of abstinence, while others include long-term abstinent patients. We suggest broadening

current literature by designing studies that consider both acute and chronic patterns of alcohol use to

understand whether the amount of exposure (by volume or duration) impacts how neuroinflammation and

alcohol use interact. We also recommend longitudinal studies that follow abstinent patients long-term to

determine whether healthy neuroimmune activity is recovered over time.

Further, the studies discussed do not address whether the neuroinflammation associated with alcohol

use is solely mediated by peripheral inflammatory events (such as through increased gut-leakiness) or
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if alcohol also immediately elicits neuroinflammation upon reaching the brain. Although changes in

peripheral and central inflammation have been linked in populations with AUD [21], we suggest that

more studies consider peripheral inflammation, including plasma measures of C-reactive protein and

other inflammatory markers. A clearer link between peripheral inflammation and AUD would permit

development of targeted treatments. For example, if the neuroinflammation elicited by alcohol exposure

is primarily caused by initial peripheral inflammation, medications that pinpoint systemic inflammation

may be feasible options, as side-effects caused by passage through the BBB [145] would not be a concern.

These medications would also be useful in treating a variety of conditions comorbid with AUD that are

also linked to inflammation, including heart disease, liver cirrhosis, and bone density deficits [146–149].

Also, clinical studies have rarely considered gender differences in neuroinflammatory responses to alcohol,

despite preclinical evidence that sex is a variable that influences alcohol toxicity [150].

An additional mechanism by which alcohol may elicit neuroinflammation is via sleep disturbances.

While the role of adenosine in neuroinflammation is unclear, it is known to be involved in sleep reg-

ulation [151–153]. AUD is associated with sleep disorders [154–158] and sleep deprivation appears to

increase immune activity as measured by increased levels of plasma and brain pro-inflammatory cy-

tokines [159–163]. Thus, it is possible that adenosine modulates neuroinflammation in AUD through

sleep, but findings supporting a relationship between adenosine and sleep in AUD are limited. For ex-

ample, in rats, acute ethanol-induced adenosine release in the basal forebrain has been associated with

a decrease in wake-promoting neurons, suggesting adenosine might modulate the acute sleep-promoting

effects of alcohol [163–168]. In another set of preclinical studies, sleep disruption was linked to higher

levels of adenosine and increased ethanol self-administration [135, 169], and sleep restriction was associ-

ated with decreased ethanol sensitivity [135,169]. Whether ethanol-induced changes in adenosine release

are a cause or effect of sleep deprivation is unknown.

6.2 Corroboration between markers of neuroinflammation

Another critical limitation of current literature is the focus on a single marker (e.g., TSPO, Glu) as indica-

tive of neuroinflammation. Neuroinflammation is a complex phenomenon; one marker does not confirm

neuroimmune activity [113]. Consideration of multiple markers is necessary to infer neuroinflammation.

Although many of the studies reviewed here only found significant changes in a single neurometabo-

lite [26, 29, 31, 92], there is evidence across studies that the various neuroinflammatory markers seem to

show AUD-related alterations that converge in specific brain regions. For instance, the ACC has been

repeatedly implicated in AUD over several studies using different methodologies related to neuroinflam-

mation. During withdrawal, ACC Glu decreases in patients with AUD at rest [28, 29] or when subjects

were presented with alcohol cues [26], indicating Glu suppression in early abstinence. It appears that

gliosis may have a coordinated impact on neurometabolite concentrations in patients with AUD, with

mI concentration negatively correlating with Glu in both the visual cortex and the ACC [27,94]. These

studies, along with others, displayed a synchronized effect of gliosis and increased membrane turnover,

perhaps indicating the ACC is an area of high neuroimmune activity [27, 33, 94].

More broadly, the ACC is a nexus for higher-level functions critical for AUD, including cognitive control

and emotion regulation [170], as evidenced by its strong connections with both the limbic system and other

prefrontal regions [171]. Patients with AUD consistently show functional and structural abnormalities the

ACC. For example, lower left ACC volume in adolescence predicted alcohol use four years later [172] and in

patients with AUD, abstinence from alcohol was linked to ACC volume increases [173]. Further, in a study

comparing heavy social drinkers to dependent, non-abstinent drinkers, BOLD activity in the ACC was

greater during a spatial working memory task [174] in the dependent group. These results likely provide

valuable insight into neuroinflammatory processes in patients with AUD, since other studies [175, 176]

have shown strong associations between these fMRI measures and markers of inflammation. However,

future studies are needed to confirm whether ACC neuroinflammation is linked to these MRI findings in

AUD.

The incorporation of additional indicators of neuroinflammation would also be helpful to corroborate
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current findings. N-acetyl-aspartate (NAA), for example, is a marker of living, mature neurons which

can be measured with 1H-MRS [46]. Decreases in the concentration of NAA may be useful in the

assessment of neuroinflammation in individuals with AUD, as alcohol-induced brain damage may initiate

neuroinflammation. NAA MRS peaks have been used to indirectly measure the degree of neuronal loss

in patients; compared to controls, studies have demonstrated decreased NAA in heavy drinkers, which

was shown to recover during periods of abstinence [27, 33, 34, 36, 37, 46, 177, 178]. Further, PET imaging

of the BBB in AUD may advance knowledge of neuroinflammation. [68Ga]EDTA, for example, detects

BBB permeability [179–182]. This tracer has been used in patients with multiple sclerosis [181], and has

the potential to assess neuroinflammation in AUD. Further consideration of these molecules may provide

helpful information for understanding the role of neuroinflammation in AUD and possible interventions.

6.3 Structural and functional MRI

Future studies should also consider brain structural changes associated with AUD as measured with

MRI. AUD is associated with lower gray matter volume relative in matched controls in many brain

regions [183,184]. There are several processes by which gray matter loss can occur, including healthy aging

and sedentary lifestyle [185,186]. Neuroinflammation has been shown to contribute to neurodegeneration

via activation of toll-like receptor 4 (TLR4), which is expressed in microglia [187, 188]. In patients with

AUD, TLR4 methylation, a process which impedes TLR4 activity [189], was increased in regions where

AUD-related gray matter loss has been the most pronounced, including the precuneus and inferior parietal

cortex [190,191]. This paradoxical finding hints at the possibility that chronic alcohol use induces TLR4

upregulation as a protective mechanism. It remains unclear whether TLR4 plays a causal role in gray

matter depletion.

Functional MRI studies may also be useful for determining the role of neuroinflammation in AUD.

AUD is associated with marked alterations in resting state connectivity [192–194], as well as increased

neural responses to alcohol cues [137, 195]. Not much is known about the impact of neuroinflammation

on BOLD response to cue reactivity and other tasks in AUD. One study in elderly healthy volunteers,

however, did find a negative correlation between neural activation during a working memory task and

plasma cytokine levels, suggesting a possible relationship between inflammation and task-related brain

function [175]. Although functional connectivity in patients with Alzheimer’s and other neurodegenerative

disorders has been linked to changes in [11C]PK11195 binding to TSPO [176], this association has not

yet been studied in AUD. Studies that include both MRI and nuclear imaging targeting inflammatory

markers are needed to determine the relationship between functional activity and neuroinflammation in

individuals with AUD.

6.4 Treatment potential for AUD

Manipulation of neuroinflammation in animal models of AUD has promising results. For example,

treatment with minocycline, a tetracycline antibiotic with inhibitory effects on microglia, reduced al-

cohol self-administration in rats [196, 197]. Anti-inflammatory indomethacin reduced both alcohol self-

administration and alcohol-induced neurotoxicity in rodents, suggesting that targeting the neuroimmune

system to treat AUD may impact the addiction cycle as well as the CNS damage associated with drink-

ing [198]. Further, phosphodiesterase inhibitors such as ibudilast and rolipram have anti-inflammatory

effects and reduced alcohol self-administration in rodents [199–201]. In clinical trials, ibudilast appears to

reduce craving in individuals with AUD [202], but whether this would result in lower alcohol consumption

long-term is still unknown. Finally, TLR4 inhibitors such as nalmefene and naltrexone have also been

useful for decreasing alcohol administration in rodents [203, 204]. In humans, these medications have

generally found success in reducing alcohol consumption [205–207]. Given the link between gray matter

integrity and TLR4 [190,191], these drugs might also protect against cognitive impairments linked to gray

matter reduction [208, 209]. These findings demonstrate the rich treatment potential that investigations

into alcohol-related neuroinflammation offer.
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In addition to medications, behavioral interventions show potential for treating neuroinflammation in

AUD. Cognitive behavioral therapy, for example, has been effective in treating AUD [210], and decreasing

systemic inflammation among individuals with depression [211]. Mindfulness meditation, a method which

has recently gained traction for AUD treatment [212], has also been associated with anti-inflammatory

effects in studies of stressed, but otherwise healthy adults [213–215]. Finally, among its variety of benefits,

exercise is associated with improvements in peripheral inflammatory markers [216]. Although it has not

been shown to reduce alcohol consumption, exercise reduced depression symptoms and, as expected,

improved physical fitness in a study of individuals with AUD [217]. Thus, exercise may be useful in

treating cognitive deficits and other processes associated with neuroimmune activity in AUD.

6.5 Summary

In sum, the current literature provides compelling but incomplete information on the relationship between

AUD and neuroinflammation. The findings discussed are indicative of the great potential in targeting

neuroimmune activity in AUD to treat symptoms of addiction (e.g., craving) and associated deficits such

as cognitive impairment.
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